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Preface 
 

These proceedings contain the papers presented at the 2013 International SpaceWire 

Conference, held in the Radisson Blu Scandinavia Hotel, Gothenburg, Sweden, between 10 and 13 

June, 2013.  The International SpaceWire Conference aims to bring together SpaceWire product 

designers, hardware engineers, software engineers, system developers and mission specialists 

interested in and working with SpaceWire to share the latest ideas and developments related to 

SpaceWire technology. SpaceWire technology is now being used or designed into over one hundred 

spacecraft, covering science, exploration Earth observation and commercial applications. High profile 

missions like James Webb Space Telescope, Astro-H, GAIA, ExoMars, Bepicolombo, Sentinels 1, 2, 

3 and 5 precursor, and GOES-R are using SpaceWire extensively. SpaceWire is being used in Europe, 

Japan, USA, Russia, China, India, and other countries of the World. 

The conference covers many different aspects of SpaceWire technology and includes both 

academic and industrial presentations. Sessions address recent developments of the SpaceWire set of 

standards, space missions and other applications using SpaceWire, new components, sensors and 

cables which support the SpaceWire standard; products supporting SpaceWire including onboard 

equipment, instruments and related onboard software; methods and equipment to aid the test and 

verification of SpaceWire components, units and systems; and SpaceWire networks, their 

architecture, configuration, and discovery, as well as “plug and play” concepts, other higher level 

protocols and related hardware and software design issues. A technical seminar on SpaceWire at the 

conference was presented by several world leading experts on SpaceWire providing hints and tips on 

using SpaceWire based on many years’ experience. 

The community of engineers working on SpaceWire meet regularly at the SpaceWire 

Working Group meetings to help with the further development of SpaceWire and related standards 

and technologies. This group includes engineers from many parts of the World with substantial 

contributions from Europe, Japan, Russia and the USA. The SpaceWire Conference complements 

these Working Group meetings with more formal presentations from a wider range of contributors.   

There is growing interest in the SpaceFibre which aims to provide multi-gigabit/s network 

technology for future space flight application like high-resolution multi-spectral imaging and 

synthetic aperture radar. A second seminar introduced and demonstrated SpaceFibre technology 

which can operate over both electrical and fibre-optic media. A growing number of papers in the 

conference addressed SpaceFibre. 

The conference committee would like to acknowledge the support and hard work of the many 

individuals who made International SpaceWire Conference 2013 a reality.  First, we thank the authors 

and the keynote speakers for their high-quality contributions.  We express our gratitude to the 

Technical Committee for their assistance in the review process.  We thank all people supporting us at 

Aeroflex, the Space Technology Centre at the University of Dundee and the European Space Agency. 
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Programme Overview 

Monday 10 June 

15:30 – 19:00 Registration 

16:00 – 18:00 Tutorials of SpaceWire and SpaceFibre 

Tuesday 11 June 

09:00 – 10:00 Conference Opening / Keynote Presentations (60 min) 

10:00 – 10:50 Standardisation 1 (50 min) 

11:10 – 12:25 Standardisation 2 (75 min) 

13:45 – 15:25 Test & Verification 1 (100 min) 

15:45 – 17:00 Onboard Equipment & Software (75 min) 

Wednesday 12 June 

09:00 – 10:55 Components 1 (115 min) 

11:15 – 12:05 Components 2 (50 min) 

12:05 – 12:35 Onboard Equipment & Software (30min) 

13:55 – 15:10 Networks & Protocols (75 min) 

15:10 – 16:40 Poster Session (90 min) 

  



Thursday 13 June 

09:00 – 09:45 Standardisation (45 min) 

09:45 – 10:45 Test & Verification (60 min) 

11:05 – 12:35 Missions & Applications (90 min) 

13:55 – 15:10 Components (75 min) 

15:30 – 17:10  Networks & Protocols (100 min) 

 

 

 

 

Programme is subject to change 



Tuesday 11 June 
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Abstract— SpaceFibre is a very high-speed serial link 

designed specifically for use onboard spacecraft. It carries 

SpaceWire packets over virtual channels and provides a 

broadcast capability similar to SpaceWire time-codes but 

offering much more capability. SpaceFibre operates at 10 

times the data-rate of SpaceWire, can run over fibre optic 

or electrical media, provides galvanic isolation, includes 

coherence Quality of Service (QoS) and Fault Detection 

Isolation and Recovery (FDIR) support, and provides low-

latency signalling. SpaceFibre can run over distances of 5m 

with copper cable and 100 m or more with fibre optic cable.  

SpaceFibre is compatible with the packet level of the 

SpaceWire standard (ECSS-E-ST-50-12) and is therefore 

able to run the SpaceWire protocols defined in ECSS-E-

ST-50-51C, 52C and 53C. This means that applications 

developed for SpaceWire can be readily transferred to 

SpaceFibre. 

The aim of SpaceFibre is to provide point-to-point and 

networked interconnections for very high data-rate 

instruments, mass-memory units, processors and other 

equipment, on board a spacecraft. 

This paper introduces SpaceFibre, describes the 

SpaceFibre QoS, FDIR and network level operation of 

SpaceFibre. 

 
Index Terms—SpaceWire, SpaceFibre, networks, spacecraft 

onboard processing 

I. INTRODUCTION 

SpaceFibre [1] [2] [3] [4] is a very high-speed serial data-

link being developed by the University of Dundee for ESA 

which is intended for use in data-handling networks for high 

data-rate payloads. SpaceFibre is able to operate over fibre-

optic and electrical cable and support data rates of 2 Gbit/s in 

the near future and up to 5 Gbit/s long-term. It aims to 

complement the capabilities of the widely used SpaceWire 

onboard networking standard [5]: improving the data rate by a 

factor of 10, reducing the cable mass by a factor of four and 

providing galvanic isolation. Multi-laning improves the data-

rate further to well over 20 Gbits/s. 

SpaceFibre provides a coherent quality of service 

mechanism able to support best effort, bandwidth reserved, 

scheduled and priority based qualities of service. It 

substantially improves the fault detection, isolation and 

recovery (FDIR) capability compared to SpaceWire.  

SpaceFibre aims to support high data-rate payloads, for 

example synthetic aperture radar and hyper-spectral optical 

instruments. It provides robust, long distance communications 

for launcher applications and supports avionics applications 

with deterministic delivery constraints through the use of 

virtual channels. SpaceFibre enables a common onboard 

network technology to be used across many different mission 

applications resulting in cost reduction and design reusability. 

SpaceFibre uses a packet format which is the same as 

SpaceWire enabling simple connection between existing 

SpaceWire equipment and high-speed SpaceFibre links and 

networks. 

The SpaceFibre interface is designed to be implemented 

efficiently, requiring substantially fewer logic gates than a 

RapidIO interface. It is currently being prototyped in a range of 

onboard processing, mass memories and other spacecraft 

applications. Interoperability tests between independent 

Japanese and European implementations were carried out 

successfully in December 2012 and April 2013. 

II. SPACEFIBRE PROTOCOL STACK 

The SpaceFibre protocol stack is illustrated in Figure 1. 
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Figure 1 SpaceFibre Protocol Stack 

The network layer protocol is responsible for the transfer of 

application information over a SpaceFibre network. It provides 

two services: Packet Transfer Service and Broadcast Message 

Service. The Packet Transfer Service transfers SpaceFibre 

packets over the SpaceFibre network, using the same packet 

format and routing concepts as SpaceWire uses. SpaceFibre 

supports both path and logical addressing. The broadcast 

message service is responsible for broadcasting short messages 

(8 bytes) to all nodes on the network. These messages can carry 

time and synchronisation signals and be used to signal the 

occurrence of various events on the network. 

The management layer is responsible for configuring, 

controlling and monitoring the status of all the layers in the 

SpaceFibre protocol stack. For example it can configure the 

QoS settings of the virtual channels in the QoS and FDIR 

layer. 

The QoS and FDIR layer is responsible for providing 

quality of service and managing the flow of information over a 

SpaceFibre link. It frames the information to be sent over the 

link to support QoS and scrambles the packet data to reduce 

electromagnetic emissions. The QoS and FDIR layer also 

provides a retry capability, detecting any frames or control 

codes that go missing or arrive containing errors and resending 

them. With this inbuilt retry mechanism SpaceFibre is very 

resilient to transient errors. 

The Multi-Lane layer is responsible for operating several 

SpaceFibre lanes in parallel to provide higher data throughput. 

In the event of a lane failing the Multi-Lane layer provides 

support for graceful degradation, automatically spreading the 

traffic over the remaining working links. 

The Lane layer is responsible for lane initialisation and 

error detection. In the event of an error the lane is 

automatically re-initialised. The Lane layer encodes data into 

symbols for transmission using 8B/10B encoding and decodes 

these symbols in the receiver. 8B/10B codes are DC balanced 

supporting AC coupling of SpaceFibre interfaces. 

The Physical layer is responsible for serialising the 8B/10B 

symbols and for sending them over the physical medium. In the 

receiver the Physical layer recovers the clock and data from the 

serial bit stream, determines the symbol boundaries and 

recovers the 8B/10B symbols. Both electrical cables and fibre-

optic cables are supported by SpaceFibre. 

III. SPACEFIBRE QUALITY OF SERVICE 

A SpaceFibre interface includes a number of virtual 

channels. Each provides a FIFO type interface like a 

SpaceWire link. When data from a SpaceWire packet is placed 

in a SpaceFibre virtual channel it is transferred over the 

SpaceFibre link and placed in the same numbered virtual 

channel at the other end of the link. Data from the several 

virtual channels are interleaved over the physical SpaceFibre 

connection. To support the interleaving, data is sent in short 

frames of up to 256 SpaceWire N-chars each. A virtual channel 

can be assigned a quality of service which determines the 

precedence with which that virtual channel will compete with 

other virtual channels for sending data over the SpaceFibre 

link. Priority, bandwidth reservation, and scheduled qualities of 

service can be supported all operating together using a simple 

precedence mechanism. 

In this section the SpaceFibre quality of service mechanism 

is described. 

A. Frames and Virtual Channels 

To provide quality of service, it is necessary to be able to 

interleave different data flows over a data link or network. If a 

large packet is being sent with low priority and a higher 

priority one requests to be sent, it must be possible to suspend 

sending the low priority one and start sending the higher 

priority packet. To facilitate this SpaceWire packets are 

chopped up into smaller data units called frames. When the 

high priority packet requests to be sent, the current frame of the 

low priority packet is allowed to complete transmission, and 

then the frames of the high priority packet are sent. When all 

the frames of the high priority packet have been sent, the 

remaining frames of the low priority packet can be sent. 

Each frame has to be identified as belonging to a particular 

data flow so that the stream of packets can be reconstructed at 

the other end of the link. Low priority packets belong to one 

data stream and high priority packets belong to another data 

stream. 

Each independent data stream allowed to flow over a data 

link is referred to as a virtual channel (VC). Virtual channels 

are unidirectional and have a QoS attribute, e.g. priority. At 

each end of a virtual channel is a virtual channel buffer (VCB), 

which buffers the data from and to the application. An output 

VCB takes data from the application and buffers it prior to 

sending it across the data link. An input VCB receives data 

from the data link and buffers it prior to passing it to the 

receiving application. 

There can be several output virtual channels connected to a 

single data link, which compete for sending information over 

the link. A medium access controller determines which output 

virtual channel is allowed to send the next data frame. When an 

output VCB has a frame of data ready to send and the 

corresponding input VCB at the other end of the link has room 
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for a full data frame, the output VCB requests the medium 

access controller to send a frame. The medium access 

controller arbitrates between all the output VCBs requesting to 

send a frame. It uses the QoS attribute of each of the requesting 

VCBs to determine which one will be allowed to send the next 

data frame. 

Priority is one example of a QoS attribute. Other types of 

QoS are considered in the subsequent sections. 

B. Precedence 

For the medium access controller to be able to compare 

QoS attributes from different output VCBs, it is essential that 

they are all using a common measure that can be compared. 

The name given to this measure is precedence. The competing 

output VCB with the highest precedence will be allowed to 

send the next frame. 

C. Bandwidth Reservation 

When connecting an instrument via a network to a mass 

memory, what the systems engineer needs to know is “how 

much bandwidth do I have to transfer data from the instrument 

to the mass memory?” Once the network bandwidth allocated 

to a particular instrument has been specified, it should not be 

possible for another instrument to impose on the bandwidth 

allocated to that instrument. A priority mechanism is not 

suitable for this application. If an instrument with high priority 

has data to send it will hog the network until all its data has 

been sent. What is needed is a mechanism that allows 

bandwidth to be reserved for a particular instrument. 

Bandwidth reservation calculates the bandwidth used by a 

particular virtual channel, and compares this to the bandwidth 

reserved for that virtual channel to calculate the precedence for 

that virtual channel. If the virtual channel has not used much 

reserved bandwidth recently, it will have a high precedence. 

When a data frame is sent by this virtual channel, its 

precedence will drop. Its precedence will increase again over a 

period of time. If a virtual channel has used more than its 

reserved bandwidth recently, it will have a low precedence. 

A virtual channel specifies a portion of overall Link 

Bandwidth that it wishes to reserve and expects to use, i.e. its 

Expected Bandwidth. 

When a frame of data is send by any virtual channel, each 

virtual channel computes the amount of bandwidth that it 

would have been permitted to send in the time interval that the 

last frame was sent. This is known as the Bandwidth 

Allocation. Bandwidth Allowance is calculated as follows:  
andwidthLastFrameBExpectedllowanceBandwidthA   

Where Expected or Expected Bandwidth Percentage is the 

portion of overall link bandwidth that a virtual channel wishes 

to use, and Last Frame Bandwidth is the amount of data sent in 

the last data frame. 

Each virtual channel can use this to determine its 

Bandwidth Credit, which is effectively the amount of data it 

can send and still remain within its Expected Bandwidth. 

Bandwidth Credit is the Bandwidth Allowance less the 

Bandwidth Used accumulated over time. 

Bandwidth Credit is calculated for each virtual channel as 

follows: 





Frames Expected

dthUsedBandwillowanceBandwidthA
reditBandwidthC

Where Used Bandwidth is the amount of data sent by a 

particular virtual channel in the last data frame, which is zero 

except for all virtual channels except for the one that sent the 

last frame. 

The Bandwidth Credit is updated every time a data frame 

for any virtual channel has been sent. A Bandwidth Credit 

value close to zero indicates nominal use of bandwidth by the 

virtual channel. A negative value indicates that the virtual 

channel is using more than its expected amount of link 

bandwidth. A positive value indicates that the virtual channel is 

using less than its expected amount of link bandwidth. 

To simplify the hardware required to calculate the 

Bandwidth Credit it is allowed to saturate at plus or minus a 

Bandwidth Credit Limit, i.e. if the Bandwidth Credit reaches a 

Bandwidth Credit Limit it is set to the value of the Bandwidth 

Credit Limit. 

When the Bandwidth Credit for a virtual channel reaches 

the negative Bandwidth Credit Limit it indicates that the virtual 

channel is using more bandwidth than expected. This may be 

recorded in a status register and used to indicate a possible 

error condition. A network management application is able to 

use this information to check correct utilisation of link 

bandwidth by its various virtual channels. 

For a virtual channel supporting bandwidth reserved QoS, 

the value of the bandwidth counter provides the precedence 

value for that virtual channel.  

The operation of a bandwidth credit counter is illustrated in 

Figure 2. 

time

1
2

3 4

5

Precedence

 

Figure 2 Bandwidth Credit Counter 

The bandwidth credit for a particular VC increments 

gradually. At point (1) a frame is sent from by this VC, 

resulting in a sudden drop in credit. The size of the drop is 

amount of data sent in the frame divided by the percentage 

bandwidth reserved for the VC. This means that the smaller the 

percentage bandwidth the larger the drop, and hence the longer 

it takes to regain bandwidth credit.  

After the drop at point (1) the bandwidth credit gradually 

increments until point (2) when another frame is sent by the 

VC. Further frames are sent at points (3), (4), (5) etc. If the 

frames sent are full frames then the drop in bandwidth credit 

every time a frame is sent, will be the same size. 
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The bandwidth credit counter for another VC is illustrated 

in Figure 3. This VC has about half the bandwidth of the VC in 

Figure 2 allocated to it. This means that the drops in bandwidth 

credit when frames are sent by this VC are about twice the size, 

as can be seen Figure 3 at points (1), (2) and (3). 
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Figure 3 Bandwidth Credit Counter with Smaller 

Reserved Bandwidth 

The bandwidth credit counter of another VC is shown in 

Figure 4.  In this case the bandwidth credit slowly increments 

and although some frames are sent at points (1), (2) and (3), the 

bandwidth credit eventually saturates, reaching its maximum 

permitted value at point (4). Although more bandwidth should 

be accumulated after point (4) this is effectively ignored since 

the maximum possible bandwidth credit has been reached. At 

point (5) a frame is sent once more, resulting in a drop from the 

maximum bandwidth credit value. 
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Figure 4 Bandwidth Credit Counter Reaching Saturation 

All three VCs are shown together in Figure 5. When a VC 

has a data frame ready to send and room for a full data frame at 

the other end of the link, it competes with any other VCs in a 

similar state, the one with the highest bandwidth credit being 

allowed to send the next data frame. At points (1), (2) and (3) 

the red VC has data to send and sends frames. At points (4), (5) 

and (6) the green VC has data to send and sends a data frame. 

At point (7) both the blue and the red VCs have data to send. 

The blue VC wins since it has the highest bandwidth credit 

count. After this the red VC is allowed to send a further data 

frame at point (8).  
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Figure 5 Bandwidth Credit of Competing VCs 

If the bandwidth credit counter reaches the minimum 

possible bandwidth credit value, it indicates that it is using 

more bandwidth than expected and a possible error may be 

flagged. This condition may be used to stop the VC sending 

any more data until it recovers some bandwidth credit, to help 

with “babbling idiot” protection. 

Similarly if the bandwidth credit counter stays at the 

maximum possible bandwidth credit value for a relatively long 

period of time, the VC is using less bandwidth than expected 

and this condition can be flagged to indicate a possible error. 

The bandwidth credit value is the precedence used by the 

medium access controller to determine which VC is permitted 

to send the next data frame. 

 

D. Priority 

The second type of QoS provided by VCs is priority. Each 

VC is assigned a priority value and the VC with the highest 

priority (lowest priority number) is allowed to send the next 

data frame as soon as it is ready. Figure 6 shows three priority 

levels. SpaceFibre has 16 priority levels.  

time

Priority 1

Priority 2

Priority 3

 

Figure 6 Multi-Layered Precedence Priority QoS 

Within any level there can be any number of VCs which 

compete amongst themselves based on their bandwidth credit. 

A higher priority VC will always have precedence over a lower 

priority VC unless its Bandwidth Credit has reached the 
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minimum credit limit in which case it is no longer allowed to 

send any more data frames. This prevents a high priority VC 

from consuming all the link bandwidth if it fails and starts 

babbling. More than one VC can be set to the same priority 

level in which case those VC’s will compete for medium 

access using bandwidth reservation. 

 

6.5 Scheduled 

To provide fully deterministic data delivery it is necessary 

for the QoS mechanism to ensure that data from specific virtual 

channels can be sent (and delivered) at particular times. This 

can be done by chopping time into a series of time-slots, during 

which a particular VC is permitted to send data frames. This is 

illustrated in Figure 7. 

Time-slot 1 2 3 4 5 6 7 8
VC 1
VC 2
VC 3
VC 4
VC 5
VC 6
VC 7
VC 8

 

Figure 7 Scheduled Quality of Service 

Each VC is allocated one or more time-slots in which it is 

permitted to send data frames. VC1 is scheduled to send in 

time-slot 1 and VC2 is scheduled to send in time-slots 2 and 3. 

The time-slot duration is a system level parameter, typically 

100 μs, and there are 256 time-slots. 

During a time-slot, if the VC is scheduled to send in that 

time-slot, it will compete with other VCs also scheduled to 

send in that time-slot based on precedence (priority and 

bandwidth credit). A fully deterministic system would have 

one VC allowed to send in a time-slot. 

The schedule is always operating. If a user does not want to 

use scheduling the schedule table is simply filled completely, 

allowing any VC to send in any time-slot, competing with 

precedence. 

Scheduling can waste bandwidth if only one VC is allowed 

to send in a time-slot and that VC is not ready. To avoid this 

situation, the critical VC can be allocated a time-slot and given 

high priority. Another VC can be allocated the same time-slot 

with lower priority. In this way when that time-slot arrives the 

high priority VC will be allowed to send its data, but if it is not 

ready the VC with lower priority can send some data. This 

configuration is illustrated in Figure 7 time-slot 3 and VCs 6 

and 8. 

Time-slots can be defined using broadcast messages to send 

start of time-slot signals or to send  time information and 

having a local time counter which determines the start and end 

of each time-slot. The SpaceFibre broadcast message 

mechanism support both synchronisation and time distribution. 

The SpaceFibre QoS mechanism is simple and efficient to 

implement and it provides bandwidth reservation, priority and 

scheduling integrated together, not as separate options. 

Furthermore SpaceFibre QoS provides a means for detecting 

“babbling idiots” and for detecting nodes that have ceased 

sending data when they are expected to be sending 

information. 

 

IV. SPACEFIBRE FAULT DETECTION, ISOLATION AND 

RECOVERY 

SpaceFibre provides automatic fault detection, isolation and 

recovery. When a fault occurs on a SpaceFibre link, it is 

detected and the erroneous or missing information resent. 

SpaceFibre recovers from intermittent faults very rapidly, 

detecting faults, recovering and resending data faster than 

SpaceWire disconnects and reconnects a link. The retry 

mechanism does not depend on time-outs, naturally adapting to 

different cable delays. 

Fault detection is provided by checking each 8B/10B 

symbol for disparity errors and invalid 8B/10B codes. 

SpaceFibre has selected the 8B/10B K-codes it uses to have 

enhanced Hamming distance from data-codes. This means that 

a single bit error occurring in a data-code cannot result in a 

valid K-code used by SpaceFibre. In addition each data frame, 

broadcast frame, FCT, ACK and NACK are protected by a 

CRC.  

Fault isolation is provided at various levels in SpaceFibre. 

AC coupling is used in the physical layer to prevent damage 

from faults that cause DC voltages exceeding the maximum 

permitted to appear on the transmitter outputs or receiver 

inputs. This feature also enables galvanic isolation to be 

implemented readily. At the Quality level SpaceFibre provides 

time containment, containing errors in the data frame in which 

they occur, and bandwidth containment, containing errors to 

the virtual channel in which they occur; an error in one VC 

does not affect data flowing in another VC. Babbling idiots are 

contained using the QoS mechanism described above. 

Fault recovery is provided at the link level using a retry 

mechanism that resends data frames, broadcast frames and 

FCTs. The retry is very fast, uses a minimum amount of buffer 

memory, and adapts automatically to different link lengths. In 

addition to the retry mechanism the multi-lane functionality 

includes graceful degradation on lane failure. If a lane fails 

permanently, so that a retry or re-initialisation does not recover 

lane operation, a multi-lane system will continue using the 

remaining lanes available. This reduces the bandwidth 

available but does not stop the link operating. For critical 

operations an extra lane can be included and the graceful 

degradation will then provide automatic replacement of a faulty 

lane. The bit error rate (BER) of a lane is monitored and a lane 

reported as faulty if the (BER) is above a level which results in 

the effective link bandwidth being unusable. This feature 

allows lanes that can re-initialise successfully but which will 

not run for very long before having to re-initialise again, to be 

detected, isolated and replace by a fully functional lane. 

V. SPACEFIBRE NETWORKS 

A SpaceFibre network uses similar packet formats, packet 

addressing and routing concepts to SpaceWire. The main 

difference is that SpaceFibre includes virtual channels. 
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A SpaceFibre router is illustrated in Figure 8. 
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Figure 8 SpaceFibre Router 

The SpaceFibre router comprises a number of SpaceFibre 

interfaces and a routing switch matrix. Each SpaceFibre 

interface has several virtual channels. The VC number for each 

virtual channel can be configured, except for VC0 which is a 

virtual channel used for configuration, control and monitoring 

of the SpaceFibre network. When a packet arrives on a 

SpaceFibre interface it is placed in the appropriate virtual 

channel, i.e. the one with the same VC number as it was 

transmitted on. The leading data character of the packet 

determines which port of the routing switch the packet is to be 

forwarded through using either path or logical addressing. The 

port that it is to be switched to must have a VC configured with 

the same number as the VC that the packet arrived on. The 

packet is then passed through the routing switch matrix and 

placed frame by frame in the VC of the output port. The packet 

is then transferred across the SpaceFibre link, competing with 

other VCs in that port for access to the link medium according 

to their precedence. 

If a packet arrives and the output port that the packet is to 

be switched to does not have a VC with the same number as 

that on which it arrived, the packet is spilt and an error 

recorded. 

Virtual channels can be used to construct virtual networks 

where a single VC number is used for connecting to all or 

several of the nodes attached to the network. This is illustrated 

in Figure 9 where VC6 (blue) is used to connect all the nodes 

on the network. Using VC6 the Control Processor can send 

commands to Instrument 1 or 2 or the Mass Memory unit, 

setting their operating mode or reading housekeeping 

information, etc. This virtual network acts like a SpaceWire 

network. 
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Figure 9 A Simple SpaceFibre Network 

Virtual channels can also be used to construct virtual point 

to point links from one node to another. VC2 and VC4, in 

Figure 9, are providing virtual point to point links. VC2 

provides a virtual point to point link between Instrument 2 and 

the Mass Memory Unit and VC4 between Instrument 1 and the 

Mass Memory. These virtual channels can be each allocated 

the bandwidth they need to send their data to the Mass Memory 

Unit. Once this bandwidth is allocated other virtual channels or 

virtual networks will not interfere with their operation. 

Figure 10 shows a more realistic onboard network using 

SpaceFibre which includes a SpaceWire to SpaceFibre Bridge. 

Two high data-rate instruments (Instruments 1 and 2) have 

SpaceFibre connections. Four less demanding instruments have 

SpaceWire connections to the SpaceWire to SpaceFibre 

Bridge. Each instrument has a virtual point to point connection 

to the Mass Memory Unit and there is a virtual point to point 

connection between the Mass Memory and the Downlink 

Telemetry Unit. The Control Processor has a virtual network 

for configuring and controlling all devices on the network. 
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Figure 10 Realistic SpaceFibre Network 

Figure 10 is solving a complex communication task with 

many separate, isolated virtual channels providing point to 

point links, and a virtual network being used to control the 

entire system. Figure 11 shows this same network with the 

virtual channels removed, revealing the simplicity of 

implementation of a complex communication task when using 

SpaceFibre. 
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Figure 11 Simple System Architecture with SpaceFibre 
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VI. SPACEFIBRE IMPLEMENTATIONS 

The SpaceFibre specification has been written by the 

University of Dundee for ESA, and has been widely reviewed 

by the international spacecraft engineering community. It has 

also been simulated and implemented in several forms. While 

work remains to be done on the specification the existing draft 

specification is close to maturity. In this section the current 

state of SpaceFibre is explored. 

A SpaceFibre interface has been designed by University of 

Dundee and STAR-Dundee for ESA. This VHDL IP core has 

been used at all stages of the draft specification to validate and 

prove the concepts being explored. As a consequence the 

VHDL IP core has gone through as many iterations as the 

SpaceFibre specification. At present the VHDL IP core 

implements all layers of the SpaceFibre specification with the 

exception of the Multi-Lane layer. 

To support the testing of SpaceFibre a suitable test platform 

was required, so STAR-Dundee developed the STAR Fire unit, 

which has two SpaceFibre interfaces and includes a link 

diagnostic capability for analysing traffic on a SpaceFibre link. 

Two STAR Fire units are being used in  Figure 12 to help with 

the testing of radiation tolerant Fibre Optic transceivers for 

SpaceFibre operating over 100 m of Fibre Optic cable. 

 

Figure 12 STAR Fire Testing 100m Fibre Optic Cable 

 

A radiation tolerant SpaceFibre interface device (VHiSSI) 

is being developed by University of Dundee and several 

partners within a European Union (EU) Framework 7 project 

[6]. 

NEC and Melco are both developing SpaceFibre interface 

devices to the specification produced by the University of 

Dundee. This work is providing valuable feedback on the 

specification and implementation of SpaceFibre. 

Interoperability testing in December 2013 and April 2013 has 

been successful with various levels of the SpaceFibre protocol 

stack being implemented and tested. 

Research carried out during the SpaceWire-RT EU 

Framework 7 project  resulted in the Quality layer for 

SpaceFibre being developed by University of Dundee. Within 

this same project St. Petersburg University of Aerospace 

Instrumentation (SUAI) modelled and simulated the various 

layers of SpaceFibre and ELVEES assessed the feasibility of 

ASIC implementation using a custom designed SerDes. 

Several ESA projects are using the Dundee SpaceFibre IP 

core under a Beta evaluation programme including: 

 High Performance COTS Based Computer, Astrium 

and CGS. 

 Leon with Fast Fourier Transform Co-processor, 

SSBV. 

 FPGA Based Generic Module and Dynamic 

Reconfigurator, Bielefeld University. 

 Next Generation Mass Memory, Astrium, IDA and 

University of Dundee. 

 1 x High Processing Power DSP, Astrium and STAR-

Dundee. 

Work on the formal European Cooperation for Space 

Standardization (ECSS) standard for SpaceFibre is schedule to 

start in early 2014, once the technical specification is complete. 

VII. CONCLUSIONS 

SpaceFibre is a multi-gigabit/s networking technology 

designed specifically for spaceflight applications. It 

incorporates a comprehensive quality of service capability 

providing integrated bandwidth reservation, priority and 

scheduling. Efficient, effective and rapid fault detection, 

isolation and recovery mechanisms are included in the 

SpaceFibre interface, enabling rapid detection and recovery 

from link level errors. 

SpaceFibre is designed to support very high data-rate 

missions like multi-spectral imagers and synthetic aperture 

radar. It reduces development time and costs, because of its 

integrated QoS and FDIR capabilities and because it simplifies 

previously complex onboard data-handling architectures. 

SpaceFibre is designed to use the same packet format as 

SpaceWire enabling straightforward upgrading of spacecraft 

networks to include the improved QoS, FDIR and bandwidth 

of SpaceFibre while being able to operate with existing 

SpaceWire equipment. SpaceWire units can be readily 

integrated with SpaceFibre using a SpaceWire to SpaceFibre 

Bridge. 
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Abstract— The available SpaceFibre literature views each 

SpaceFibre virtual channel as logically equivalent to a SpaceWire 

physical link. This view can be interpreted as allowing 

SpaceWire packet traversal of the SpaceFibre network through 

any appropriate virtual channel. Because SpaceWire packets do 

not have associated Quality of Service (QoS) attributes, the 

SpaceFibre Standard Draft [1] associates QoS attributes with 

virtual channels. As a result, SpaceFibre routers must make 

routing decisions using a combination of SpaceWire packet 

header and virtual channel QoS attributes to provide a consistent 

QoS from source to destination. Parkes and Suess [2] introduce 

the concept of a SpaceFibre virtual network composed of virtual 

channels with identical Virtual Channel Identifier (VCID) and 

QoS attributes such that packet routing can be performed using 

the SpaceWire packet header and the VCID. 

 While the virtual network concept is beneficial for providing 

routes with the same QoS attributes through the SpaceFibre 

network, the mechanisms used should have the flexibility to 

address the majority of application use cases.  In particular, the 

solution must address the likelihood that some SpaceFibre 

endpoint implementations will support a small number of virtual 

channels (for example, one or two). Mapping the resulting 

collection of virtual networks onto the SpaceFibre network is 

likely to be a significant problem for larger networks.  

We consider the limitations imposed on SpaceFibre network 

routing by the coupling of VCIDs with virtual networks. We also 

review possible methods for addressing the limitations identified. 

Index Terms—SpaceFibre, SpaceWire, network, routing, 

quality of service, virtual channel, virtual network. 

I. INTRODUCTION 

The introduction of Virtual Channels and Quality of 

Service (QoS) in SpaceFibre is a significant advancement for 

the SpaceWire community. The new capabilities also increase 

the complexity of networks based on SpaceFibre protocols. 

The concept of establishing virtual networks to provide 

customized performance capabilities for each network traffic 

type introduces an abstraction that makes SpaceFibre network 

routing easier to contemplate and accomplish. By associating a 

QoS type (we define a QoS type as a specific set of QoS 

attributes) with each virtual network (VN), network users can 

view the physical SpaceFibre network as a collection of virtual 

SpaceWire networks. Each virtual SpaceWire network offers 

specific network performance characteristics established by the 

associated QoS type. 

II. OVERVIEW OF SPACEFIBRE VIRTUAL CHANNELS AND 

QUALITY OF SERVICE 

Virtual channels are fundamental to the SpaceFibre 

architecture and form the basis for any concept of SpaceFibre 

networks. A virtual channel is a unidirectional logical link 

through a physical SpaceFibre link between two nodes. 

Multiple virtual channels can share a single SpaceFibre 

physical link. Each virtual channel has independent flow 

control and behaves like a traditional SpaceWire physical link. 

Because of the unidirectional nature of SpaceFibre virtual 

channels, the number of virtual channels operating in one 

direction can be different than the number operating in the 

other direction. This capability offers significant flexibility to 

SpaceFibre network designers. 

Each SpaceFibre Encoder/Decoder (CODEC) 

implementation must provide no less than one virtual channel 

(up to a maximum of 256). A SpaceFibre CODEC must 

include a Virtual Channel Buffer (VCB) for each Virtual 

Channel (VC) supported. The SpaceFibre link provides flow 

control and other link management support by associating a 

Virtual Channel Identifier (VCID) with each virtual channel. 

SpaceFibre frames transmitted by the link encoder are 

associated with the virtual channel by including the VCID in 

the frame header. A SpaceFibre data frame is shown in Fig. 1 

with the header consisting of COMMA, Start of Data Frame 

(SDF) and VC characters.  The frame trailer consists of an End 

of Data Frame (EDF), Frame Sequence (FR_SEQ#) and CRC. 
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Fig. 1.  SpaceFibre Data Frame Format. 

 

One of the key benefits of SpaceFibre is support for Quality 

of Service behaviors. Each QoS behavior defines a mechanism 

for ensuring that a defined set of network performance 

characteristics are met. Because SpaceWire packets do not 

have associated Quality of Service attributes, the SpaceFibre 

Standard Draft associates QoS attributes with virtual channels. 

SpaceWire packets traversing a SpaceFibre link are prioritized 

based on the QoS attributes of the virtual channel. The QoS 

behavior is established for each virtual channel at the 

SpaceFibre link transmitter while the link receiver treats all 

virtual channels equally. 

The SpaceFibre Standard Draft defines four QoS behaviors: 

best effort, priority, bandwidth reservation and scheduled. The 

Medium Access Controller (MAC) in the SpaceFibre CODEC 

uses the precedence of each virtual channel to prioritize data 

transmission. The best effort QoS behavior is assigned the 

lowest precedence and is dependent on the availability of 

unallocated link bandwidth to allow packets to traverse the 

network. The priority QoS behavior defines 16 levels of 

priority and the SpaceFibre Standard Draft assigns a specific 

precedence to each level. The best effort QoS is equivalent to 

lowest precedence level of the priority QoS. 

The bandwidth reservation and scheduled QoS behaviors 

are more complex than the best effort and priority behaviors.  

In order to determine the precedence of a virtual channel with 

the bandwidth reserved QoS behavior, the MAC must consider 

the expected bandwidth utilization of the virtual channel, along 

with its recently utilized bandwidth and the available link 

bandwidth. The scheduled QoS behavior is based on fixed time 

periods or slots, where a virtual channel may be configured to 

transmit frames in one or more time slots. Priority may be 

combined with bandwidth reservation or scheduled QoS to 

provide more control over precedence for a virtual channel. 

III. SPACEFIBRE NETWORK CONCEPTS 

Much of the existing SpaceFibre literature envisions using 

SpaceFibre links in point-to-point applications. The focus on 

single-link applications is appropriate since the SpaceFibre 

Standard Draft does not address network-level aspects. While 

some work [2] [3] [4] has considered the application of 

SpaceFibre to general networks, many aspects remain 

unresolved. 

Earlier work on QoS in SpaceFibre networks [4] has shown 

the difficulties derived from a lack of QoS attributes associated 

with SpaceWire packets. Two alternatives for associating QoS 

attributes with SpaceWire packets traversing SpaceFibre 

networks were discussed. The first, association of QoS with 

each virtual channel, is the basis of the method used by the 

SpaceFibre Standard Draft. The second, including QoS 

information in the SpaceFibre frame header, offers greater 

flexibility in network routing at a significant cost in 

implementation complexity. 

The primary disadvantage of associating QoS with the 

virtual channel is that the number of available VCIDs 

establishes the upper bound on the number of independent QoS 

types that can be used in any SpaceFibre link. Recent 

SpaceFibre work [3] exacerbates this disadvantage by also 

using the VCID in the SpaceFibre network routing mechanism. 

Including QoS attributes within the SpaceFibre frame 

header has the disadvantage that each SpaceWire packet 

traversing the virtual channel can dynamically change the QoS 

attributes of the virtual channel. For the simple QoS types 

(priority and best effort), this behavior does not have much 

effect, but for the complex QoS types (bandwidth reservation 

and scheduled) that are dependent on historical traffic patterns 

or out-of-band events, such perturbations would be difficult to 

address. 

More recent work [2] [3] defines virtual networks as 

collections of virtual channels with identical QoS attributes 

(QoS type). All SpaceWire packet traffic utilizing the virtual 

network has the same precedence through the physical 

SpaceFibre network. 

In its simplest form, this concept uses virtual SpaceWire 

networks with topology identical to the physical topology of 

the host SpaceFibre network. Each virtual network is 

associated with the QoS attributes needed by one class of 

SpaceWire traffic used in the system application. For 

simplicity, each virtual network is allocated a virtual channel in 

both directions of each SpaceFibre link. In cases where the 

packet traffic flows in a single direction through the virtual 

network, the reverse virtual channel is unused. 

The concept can be extended by recognizing that the 

system application is unlikely to use all of the links of the 

SpaceFibre physical topology in each of the virtual SpaceWire 

networks. The unused virtual channels do not need to be 

allocated physical SpaceFibre link resources, freeing those 

resources for use by other virtual channels. 

There are a number of factors that should be considered to 

make the virtual SpaceWire network design effort sufficiently 

flexible and convenient. Initial SpaceFibre network 

implementations are likely to utilize relatively simple 

topologies containing few links. These initial versions will be 

composed from newly developed devices designed for the 

specific applications. The SpaceFibre community should 

expect to face the issues that have arisen in the SpaceWire 

community as more capable devices become available and 

must be integrated into complex networks with older, less-
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capable devices. The SpaceFibre Standard Draft should be 

developed with the expectation that long-term use will result in 

similar experiences as technology and applications evolve. 

IV. SPACEFIBRE NETWORK CONSIDERATIONS 

The SpaceFibre Standard Draft [1] does not address 

network-level topics relevant to SpaceWire packet routing, 

raising a number of concerns. The recent suggested methods 

[3] [4] for routing in SpaceFibre networks address some, but 

not all, of these concerns. We review each concern in this 

section. 

A. Practical Implementation Constraints 

When developing SpaceFibre networks composed of 

elements with differing levels of VC support, SpaceFibre 

network designers must assess the many possible mappings of 

QoS to virtual networks to reach an optimum configuration. In 

relatively complex cases, achieving a satisfactory result may be 

dependent on the VC capacity of some network elements. 

As an example, a network designer can begin by 

identifying all of the QoS classes needed for the various data 

flows through the SpaceFibre network. The designer can then 

define a virtual network for each QoS class by assuming that 

every network endpoint and router is capable of supporting all 

of the virtual networks. Figure 2 shows an example on-board 

data processing system with five SpaceWire VNs identified. 

The Configuration Network and the Data Network are bi-

directional, while the two Instrument Networks and the Uplink 

Network are unidirectional. 

A complete definition of each virtual SpaceWire network 

requires a detailed inventory of the virtual channels available 

for each SpaceFibre link. As the number of virtual networks is 

increased, the ability to optimally provision each VN as desired 

becomes more difficult. Solutions to such SpaceFibre network 

optimization problems require the ability to assign virtual 

channels to an arbitrary virtual network map. 

 

 

 

 

 
Fig. 2.  Virtual Network Identification
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B. Interoperability of Resource-Constrained Devices 

Practical SpaceFibre endpoint and router implementations 

are likely to minimize the number of distinct virtual channels 

supported in order to limit complexity and power dissipation 

characteristics. Such resource-constrained implementations 

must be allowed to participate in SpaceFibre networks equally 

with more capable implementations. The SpaceFibre Standard 

Draft should not impose requirements that unnecessarily favor 

one class of device implementation over another. 

A SpaceFibre endpoint must provide a virtual channel that 

supports each QoS type used by the application. Since each 

application utilizing SpaceFibre endpoints will have unique 

QoS needs, the number of virtual channels and QoS types 

supported by any specific SpaceFibre endpoint device will be 

correspondingly unique. Because of the industry tendency to 

develop products tailored for a specific application, a wide 

variety of SpaceFibre endpoint devices with a correspondingly 

wide mix of capabilities are likely to be developed over time. 

C. SpaceFibre Network Configuration 

The need to associate identical QoS attributes with a virtual 

channel of each network link traversed by a SpaceWire packet 

increases the configuration overhead of SpaceFibre networks 

significantly compared to SpaceWire networks. Each 

SpaceFibre router and endpoint must be configured with the 

QoS characteristics of each virtual network it supports. The 

time needed to configure a SpaceFibre network will scale 

linearly with the number of network entities to be configured 

and, separately, with the number of virtual networks to be 

utilized. 

A SpaceFibre link clearly must support at least one virtual 

channel in one direction to be useful (at least one virtual 

channel in each direction is the likely minimum 

implementation). Support for additional virtual channels is an 

implementation decision that will balance application needs 

against complexity and power dissipation constraints. 

The SpaceFibre Standard Draft is ambiguous regarding 

VCID configuration. The likely interpretation is that the VCID 

can be written only once after the CODEC exits the cold-reset 

state. SpaceWire Working Group presentations [3] are 

consistent with that interpretation. The ambiguity is 

exacerbated by the fact that each VCB configuration defaults to 

a VCID of zero. There doesn’t appear to be any mechanism to 

guarantee virtual channel uniqueness (avoid multiple virtual 

channels with the same VCID, etc.). 

The SpaceFibre Standard Draft does not establish 

mechanisms for negotiating virtual channel use between the 

ends of a SpaceFibre link. The standard draft apparently 

presumes that such negotiations are performed using a higher 

level of the protocol stack. It also does not address the 

methodology to be followed by compliant implementations 

when initializing virtual channels. Some concepts [3] assume 

that VC 0 is always assigned to a Configuration Virtual 

Network, presumably automatically configured following cold-

reset to provide full-duplex best-effort access to SpaceFibre 

network devices. 

We can infer that a Flow Control Token (FCT) issued by 

the link receiver for a specific VCID indicates that the receiver 

supports that virtual channel. Whether the link transmitter has 

any obligation to allocate resources to the virtual channel is 

unclear. Previous negotiation of support for the virtual channel 

at each end of the link would clearly be beneficial. 

The mechanism for initializing virtual channels other than 

VCID 0 is likely intended to be implemented using a 

SpaceWire configuration protocol (SpaceWire PnP or similar). 

While not addressed by the standard, the SpaceFibre CODEC 

must provide the configuration protocol with a method for 

determining the available virtual channel capacity. 

Additionally, the SpaceFibre CODEC at each end of the link 

must expose the virtual channel configuration fields and 

provide a mechanism for enabling the virtual channel after 

configuration is complete. 

V. VIRTUAL NETWORKS USING IDENTICAL VIRTUAL 

CHANNELS 

The VCID-based virtual network abstraction [2] [3] offers a 

conceptually simple method for routing SpaceWire packets 

over SpaceFibre networks by using the VCID as a substitute 

for QoS type when making routing decisions. Figure 3 

illustrates the concept by showing the use of VCIDs to route 

SpaceWire traffic through the virtual networks identified in 

Fig. 2. A virtual channel in every SpaceFibre link used by the 

virtual network must be assigned the identical VCID regardless 

of the number of virtual channels supported by the specific 

SpaceFibre link. Note that routing of SpaceWire packets 

through the virtual network is performed similarly to traditional 

SpaceWire routing. 
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Fig. 3.  Packet Routing Based on Virtual Channel Identifier

In the example shown in Fig. 3, the application creating 

SpaceWire traffic in Instrument 1 sends data to the Mass 

Memory Unit over the VCID2 virtual network. During network 

initialization, all of the network endpoints and routers must be 

configured with identical QoS attributes assigned to every 

virtual channel with a VCID of 2. Any violation of this rule 

causes inconsistent QoS behavior within the virtual network. If 

the application in Instrument 2 were to use the VCID2 virtual 

network to send packets to the Mass Memory Unit, the router 

must arbitrate between the two packet streams for access to 

VC2 of Port 2. When Instrument 2 uses the VCID3 virtual 

network as shown in Fig. 3, the router simply forwards the 

packets over the respective virtual channels of Port 2. 

A. Limits on the Number of Virtual Networks 

As mentioned in previous work [4], using the VCID as a 

QoS type identifier limits the number of QoS types that can be 

mapped onto the physical SpaceFibre link. By extension, using 

the VCID as a virtual network identifier limits the number of 

virtual SpaceWire networks that can be mapped onto the 

physical SpaceFibre network. While not a concern for the 

SpaceFibre networks considered in currently proposed 

applications, future SpaceFibre applications are likely to 

impose much more complex scenarios. 

The number of virtual networks mapped to a physical 

network can be increased beyond the limit of 256 VCIDs in 

cases where a VCID can be used to identify multiple virtual 

networks. Such cases only arise if certain virtual networks have 

non-overlapping footprints within the overall physical network. 

The definition of non-overlapping virtual networks is 

dependent on the ability to establish isolation boundaries 

within the physical SpaceFibre fabric. An isolation boundary 

prevents SpaceWire packets on one virtual network from 

bleeding into a different virtual network when both virtual 

networks have the same VCID. 

B. Virtual Channel Initialization 

The SpaceFibre Standard Draft requires that SpaceFibre 

CODECs establish the VCID associated with each VCB after 

cold reset. The QoS parameters associated with a VCID are 

configurable using the CODEC link management interface. 

The VCID-based virtual network abstraction requires that 

assignment of the VCID be accomplished during network 

configuration. 

C. Initial Virtual Channel Identifier Assignment 

If simple SpaceFibre CODEC implementations statically 

assign the VCID of each virtual channel supported (sequential 

integers starting at zero, for example), the ability to design 

complex SpaceFibre networks with more than a few virtual 

networks is significantly limited. To support the VCID-based 

virtual network abstraction, any individual SpaceFibre 

endpoint might need to connect to multiple non-contiguous 

virtual networks within the VCID state space. 
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D. Virtual Channel Identifier Reassignment 

Since a physical SpaceFibre network can be composed of 

many virtual SpaceWire networks, an endpoint containing a 

small number of virtual channels would benefit from the ability 

to dynamically connect and disconnect to any arbitrary virtual 

SpaceWire network desired. To support the VCID-based 

virtual network abstraction, such a capability would require 

reconfiguring a virtual channel to match the QoS attributes and 

VCID of the desired network. Since the virtual channel 

reconfiguration must be performed at both ends of the 

SpaceFibre link, the most appropriate method involves taking 

the virtual channel offline, reconfiguring each end of the link 

and bringing the virtual channel back online. 

As currently specified in the SpaceFibre Standard Draft, the 

flow control counters associated with a virtual channel can 

only be initialized by reset or remote flush (link initialization). 

These events apparently affect the flow control counters of all 

virtual channels, making it very difficult to dynamically 

reassign a single virtual channel to a different virtual network 

(VCID) without taking the entire SpaceFibre link offline. This 

limitation is particularly acute for SpaceFibre endpoints with 

few virtual channels that need to support more QoS classes 

than the number of virtual channels available. 

VI. VIRTUAL NETWORKS USING ARBITRARY VIRTUAL 

CHANNELS 

Many of the issues raised regarding virtual networks 

composed of virtual channels with identical VCIDs can be 

eliminated by allowing a virtual network to use any virtual 

channel that has been initialized with the appropriate QoS 

attributes. Creating virtual networks from arbitrary collections 

of virtual channels with identical QoS attributes allows much 

greater network design flexibility. 

As previously mentioned, a virtual network is composed of 

virtual channels with identical QoS attributes. Every virtual 

channel in the virtual network must be initialized to have the 

same QoS attributes.  The use of virtual channels is greatly 

simplified by introducing the concept of a Virtual Network 

Identifier (VNID) that identifies a specific QoS type 

(combination of QoS attributes). 

A. Limits on the Number of Virtual Networks 

The VNID concept allows practically unlimited scaling of 

the number of virtual SpaceWire networks that a SpaceFibre 

network can support. The limit on the number of virtual 

networks that can simultaneously use a single SpaceFibre link 

remains, but has little affect on the number of virtual networks 

that can be globally defined. An additional benefit is the low 

complexity associated with virtual channel initialization and 

VCID assignment. 

A specific set of QoS attributes is associated with each 

virtual channel using the corresponding VNID. While a virtual 

channel must be associated with one VNID, an individual 

VNID can be associated with more than one VCID on the same 

link. Note that the number of VNIDs supported by an endpoint 

device can exceed the number of VCBs available since the 

QoS attributes of a virtual channel are allowed to change 

without reinitializing the virtual channel. 

Figure 4 illustrates the concept by showing the SpaceWire 

traffic routed through virtual networks identified by the VNID. 

Any virtual channel in a SpaceFibre link can be associated with 

the virtual network since the VCID is not used for network 

routing. The SpaceFibre router contains the mapping between 

the VNID and the associated VCID(s) of each router port. 

SpaceWire packets entering the router through a virtual 

channel are sent to the virtual SpaceWire network associated 

with that virtual channel. The virtual network routes the 

SpaceWire packets to the output port using traditional 

SpaceWire routing methods. The packets are transmitted over 

the output virtual channel associated with the virtual network. 

In the example shown in Fig. 4, the application creating 

SpaceWire traffic in Instrument 1 sends data to the Mass 

Memory Unit over the VNID2 virtual network. During network 

initialization, all of the network endpoints and routers must be 

configured with identical QoS attributes assigned to every 

virtual channel associated with virtual network VNID2. Any 

violation of this rule causes inconsistent QoS behavior within 

the virtual SpaceWire network. When the application in 

Instrument 2 sends packets to the Mass Memory Unit over the 

VNID3 virtual network, the router sends the packet that entered 

over Port 5, VCID 1, out over Port 2, VCID 2. In the same 

vein, packets traversing the VNID1 (Configuration) virtual 

network are routed over links using a variety of VCIDs as 

shown in Fig. 4. 

B. Initial Virtual Channel Identifier Assignment 

Eliminating the use of the VCID as a virtual network 

identifier returns the VCID to its primary purpose as a link-

level bandwidth allocation mechanism. As such, the VCID 

associated with a virtual channel has no relevance beyond the 

CODECs at each end of the SpaceFibre link. 
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Fig. 4.  Packet Routing Based on Virtual Network Identifier. 

C. Virtual Channel Identifier Reassignment 

Similarly, the need for reassigning VCID values is 

eliminated when the VCID is no longer used for network 

routing. An application can easily associate a different VNID 

with any available virtual channel to join another virtual 

SpaceWire network at will (the VNID reassignment must be 

applied to both ends of the SpaceFibre link). 

D. Virtual Network Routing 

Using VNIDs for routing decisions in SpaceFibre networks 

allows SpaceWire packets to traverse any virtual channel of the 

outbound port with the matching VNID. The complexity of 

routing decisions is not significantly greater than using VCIDs 

since the one-to-one mapping of incoming VCID to VNID can 

be viewed as a form of indirect addressing. 

A characteristic of VNID-based routing is that VNID 

values do not need to be identical throughout the SpaceFibre 

network. The VNID value assignments in each router are 

independent of the assignments in any other router. As with 

VCID-based routing, however, the QoS attributes of an 

individual virtual SpaceWire network must be configured 

identically in every router. Note that there are practical benefits 

to treating the VNID values as virtual network identifiers and 

assigning them consistently throughout the SpaceFibre 

network. 

VII. SPACEFIBRE STANDARD IMPROVEMENTS 

We have identified an ambiguity in the SpaceFibre 

Standard Draft with regard to assignment of the initial VCID 

value to each virtual channel. In addition, the default VCID 

value of zero raises concern about the possibility of multiple 

virtual channels with the same VCID value. There is also a lack 

of clarity regarding the acceptable methods for negotiating 

virtual channel utilization between opposite ends of the 

SpaceFibre link. 

A. Improvements for Virtual Networks Using Virtual Channel 

Identifiers 

As discussed above, using VCIDs as virtual network 

identifiers restricts the use of resource-constrained endpoint 

devices and complicates the virtual network design task for 

system implementers. In the event that the SpaceFibre 

community chooses this method for SpaceFibre routing, a 

number of improvements to the SpaceFibre Standard Draft are 

appropriate. 

1) Virtual Channel Initialization 

Clarification of the virtual channel initialization method is 

important regardless of the SpaceFibre routing mechanism 

used. It is critical when the virtual channels must be mapped to 

an arbitrary VCID in order to be associated with a virtual 

SpaceWire network identified by that VCID. 

The SpaceFibre Standard Draft must provide a detailed 

description of the CODEC features that make virtual channel 

initialization possible. It should also describe a process for 

negotiating virtual channel use between the ends of a 

SpaceFibre link. 

2) Virtual Channel Identifier Configuration 

Allowing dynamic VCID assignment improves the 

usability of resource-constrained endpoint devices in complex 

VCID-based SpaceFibre networks. An application needing to 
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connect to more virtual SpaceWire networks than the attached 

SpaceFibre link can support should be able to reassign virtual 

channels to achieve the desired communication flexibility. 

To achieve this capability, the SpaceFibre Standard Draft 

must provide a mechanism for independent reconfiguration of 

individual virtual channels. This mechanism should include the 

ability to clear the FCT counters associated with the virtual 

channel without affecting the operation of other virtual 

channels. 

B. Using Virtual Network Identifiers for Virtual Network 

Routing 

The improvements discussed above are generally 

unnecessary if a level of indirection is added to the virtual 

network routing mechanism. By identifying virtual SpaceWire 

networks using the VNID instead of the VCID, any virtual 

channel (regardless of the assigned VCID) associated with the 

VNID is a member of the virtual network. There is no longer a 

need to assign specific VCIDs to virtual channels, so 

SpaceFibre CODECs can hardwire the VCID of each 

supported virtual channel. 

Because VNID-based virtual SpaceWire networks don’t 

care about the VCID values used, the virtual channel 

initialization concerns raised above are less serious. The 

negotiation of virtual channel utilization between opposite ends 

of the SpaceFibre link can be significantly simplified. 

VIII. SUMMARY 

We believe that virtual SpaceWire networks based on 

VNID routing mechanisms is the simplest and most flexible 

solution for implementing SpaceFibre routers. The simple 

indirection method described makes the design of complex 

SpaceFibre networks much simpler than alternatives. In 

addition, the number of virtual SpaceWire networks that can be 

defined is not unnecessarily limited by the maximum number 

of virtual channels possible in any single SpaceFibre link. 
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Abstract—SpaceWire network technology is intended to be 
used for spacecraft on-board communication.  Providing low 
implementation and overhead costs as well as hard real-time 
communication services, currently SpaceWire fails to meet the 
latest communication system requirements in the fields of data 
transmission rate, galvanic isolation, cable length and cable mass 
raised by world-wide space industry. This paper discusses the 
new physical layer for SpaceWire called GigaSpaceWire which is 
aimed to make SpaceWire networks satisfying the requirements. 

Index Terms—GigaSpaceWire, gigabit links, galvanic isolation, 
standardisation. 

I. INTRODUCTION 

SpaceWire technology becomes a general interconnection 
technology in national and international missions. As its 
applications become more and more diverse, the constraints of 
SpaceWire limit its usage in next generation demanding 
missions. In accordance with analyses made by representatives 
from the Russian and European [1] and US space industries 
[2], the main SpaceWire problems are: 1) lack of galvanic 
isolation; 2) cable length is limited to 10 m distance; 3) limited 
data rates, while gigabit rates are demanded for new missions; 
4) lack of QoS that is required for real-time control. New 
developments to overcome these problems are on the way (e.g. 
SpaceFibre, SpaceWire-RT). However they are in the course of 
development (and would be for a couple of years, at least, 
before would be finally fixed) and their great features would be 
not free. Overheads for them would be reasonable where they 
are actually needed and would be a burden where not.  

Analysis shows that the first three of four main constraints 
of SpaceWire could be solved just now without considerable 
problems and overheads. 

In order to enhance link characteristics for SpaceWire 
networks this paper describes the GigaSpaceWire technology 
that has been developed by St. Petersburg State University of 
Aerospace Instrumentation and ELVEES Company. 

GigaSpaceWire provides gigabit link technology with longer 
distances and galvanic isolation capability for SpaceWire 
networks. The GigaSpaceWire standard has been previously 
introduced in paper [3] and its specification has been 
developed [4] and is considered now as a part of the Russian 
national SpaceWire-based standard draft.  

The core principle of GigaSpaceWire technology is to 
substitute DS encoding scheme with 8b10b encoding which is 
currently used in a wide number of communication standards, 
e.g in such as Fibre Channel [5] and Serial RapidIO [6]. 
Consequently, galvanic isolation can be implemented, the 
maximum transmission rate can be raised up to 2.5 Gbit/s (5 
Gbit/s in future), the maximum cable length can be increased to 
100 m with cable mass significantly reduced. 

II. GIGASPACEWIRE PROTOCOL STACK 

The GigaSpaceWire protocol stack is shown in Fig. 1. It 
contains new character, encoding and PHY layers, the 
modified SpaceWire exchange level and the conventional 
SpaceWire packet and network levels. 

The PHY layer principal task is to transmit and receive a 
raw bit sequence over a physical link. In order to perform it, 
the PHY layer receiver establishes bit synchronization before 
starting the reception of data from the link. When bit 
synchronization is achieved, at the receiving side the PHY 
layer accepts bit stream from the physical link, performs de-
serialization and symbol alignment and transmits 10-bit code 
sequences to the encoding layer. The transmitting side of the 
PHY layer accepts 10b code sequences from the encoding 
layer, serializes them and sends bit-wide stream to the physical 
link. 
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Fig. 1.  The GigaSpaceWire protocol stack 

The encoding layer performs the 8b10b encoding. At the 
transmitting side the encoding layer accepts 8b symbols from 
the character layer and substitutes them with correspondent 10b 
code sequences. Accordingly, at the receiving side the 
encoding layer accepts 10b code sequences from the PHY layer 
and transforms them into 8b symbols. 

The exchange layer manages the point-to-point connection 
over the link. After reset the exchange layer tries to establish 
bi-directional connection with the exchange layer entity of the 
remote side. If the connection is acquired, the upper layers are 
allowed to send SpaceWire packets, Time-codes and 
Distributed Interrupt codes over the link and the exchange 
layer performs flow control, data rate adjustment and 
connection maintenance functions. The data stream through the 
GigaSpaceWire protocol stack is depicted in Fig. 2. 

The SpaceWire packet and network levels are not changed. 
It provides easy GigaSpaceWire links integration into regular 
SpaceWire networks. 

The purpose of the GigaSpaceWire technology is to 
substitute DS encoding, which is used in the SpaceWire 
standard, with 8b10b encoding. In turn, it brings to SpaceWire 
networks such features as possibility for galvanic isolation and 
long distance data transmission at the rate of several gigabits. 
However, introduction of the 8b10b encoding into a SpaceWire 
link causes considerable changes in such basic elements of 
SpaceWire technology as the exchange level state machine, the 
silence exchange procedure, the flow control mechanism and 
the encoding of SpaceWire characters and codes as well as the 
complete substitution of the signaling and physical levels with 
the new GigaSpaceWire PHY layer. However, beyond these 
unavoidable changes the GigaSpaceWire technology does not 
attempt to introduce new services that are irrelevant to 
SpaceWire. The principle SpaceWire features that are not 

affected by GigaSpaceWire are data and control interfaces that 
link interface offers to the upper layers. 

In the following sections the key principles that have been 
changed in the GigaSpaceWire technology are discussed in 
detail. 

III. EXCHANGE LAYER STATE MACHINE 

The state machine which is deployed in the GigaSpaceWire 
exchange layer is given in Fig. 3. The state machine has the 
same set of states as the SpaceWire exchange level state 
machine but changes both the rules managing the transmission 
among the states and operations of transmitter and receiver in 
particular states. 

The most significant difference between the state machines 
of GigaSpaceWire and SpaceWire consists in the actions that 
are performed in the ErrorReset, ErrorWait and Ready states. 
While the PHY layer technology which is incorporated in 
GigaSpaceWire can require considerable time to make the 
PHY layer transmitter and receiver ready for communication, 
the GigaSpaceWire state machine may not disable them each 
time when the ErrorReset state is entered. Therefore, in order 
to maintain the bit synchronization and symbol alignment 
established at the PHY layer, the exchange layer state machine 
enables the transmitter in all the states. However, in the 
ErrorReset, ErrorWait and Ready states the transmitter is 
permitted to send only filler symbols, which are called as IDLE 
symbols. Simultaneously, the exchange layer receiver is 
disabled in the ErrorReset state while the PHY layer receiver 
still operates. 

GigaSpaceWire decreases both the 6.4 us and 12.8 us 
timeouts which manage the transitions from the ErrorReset to 
the ErrorWait and from the ErrorWait to the Ready states 
respectively. As in GigaSpaceWire the silence exchange 
procedure(described below) takes considerably less time and 
the transmitter and receiver of the PHY layer are never 
disabled upon entering the ErrorReset state, the durations of 
both the timeouts are shorted to 5.12 us. 

 

 

Fig. 2.  The GigaSpaceWire data flow 
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Fig. 3.  The GigaSpaceWire exchange layer state machine 

 
Duration of the timeout in the Started state is increased 

significantly from 12.8 us to 25.6 us. It is assumed (but not 
required) that the PHY layer and the exchange layer state 
machine are enabled simultaneously. Therefore, while 
powering on the 25.6 us timeout in the Started state is 
dedicated to provide enough time for both ends of the link to 
lock PLLs and establish bit synchronization. After the 
connection at the PHY layer is established, the 25.6 us timeout 
is not expected to be used. 

While IDLE characters, which are used in GigaSpaceWire 
as NULL codes in SpaceWire, must be sent in any state, the 
Got_IDLE condition becomes meaningless. Consequently, in 
GigaSpaceWire Comma characters are deployed at the 
connection establishment procedure instead of NULL codes 
that are used in SpaceWire. In the ErrorWait, Ready or Started 
state the reception of the first Comma permits error detection. 
In the Ready state the reception of the first Comma enables the 
transition to the Started state if the Autostart mode is set. Also, 
the transmission from the Started to the Connecting state is 
conditional on the got first Comma condition and the sent first 
Comma condition. After the exchange of the initial Comma 
characters is done and the state machines at the both sides of 
the link are entered the Connecting state, Comma symbols 
must be sent periodically to maintain the connection. 

The SpaceWire exchange level state machine uses the 
gotNULL and gotFCT conditions while transitioning from the 
Started to the Connecting and from the Connecting to the Run 
state accordingly. However, in the both cases these got 

conditions, which are not accompanied by the corresponded 
sent conditions, are not enough for the reliable connection 
establishment. Especially, this concerns the case of entering the 
Run state from the Connecting state upon the reception of the 
first FCT.  

Consider a situation when the side A of the link has enough 
space in the receive buffer to send an FCT but the side B does 
not. Thus, the side B gets at least one FCT from the side A and, 
consequently, enters the Run state. However, after entering the 
Run state the side B must send SpaceWire packets or Time-
codes or Interrupt-codes if any requested. At the same time the 
side A keeps to be in the Connecting state until the reception of 
an FCT from the side B or the expiration of the 12.8 us 
timeout. As a result, if the side B starts the transmission of user 
data before sending at least one FCT, these data will be 
definitely lost causing the side A to enter the ErrorReset state. 

In order to overcome the potential problem in the 
GigaSpaceWire exchange layer state machine the transitions 
from the Started to the Connecting and from the Connecting to 
the Run state must be performed only when the both 
correspondent got and sent conditions are met. While this 
keeps the link from the lost of user data as in the case discussed 
above, the usage of both the Got_FCT and Sent_FCT 
conditions in the Connecting state also eliminates the need of 
the 12.8 us timeout. Consequently, if at least one side of a 
GigaSpaceWire link does not have enough room to send one 
FCT, the connection establishment will be suspended at the 

30



Connection state until the both side have the necessary space in 
the buffer or the connection will be closed. 

IV. CONNECTION MAINTENANCE AND SILENCE EXCHANGE 

GigaSpaceWire connection includes implicitly the PHY 
layer connection and the exchange layer connection. The 
exchange layer connection is managed by the correspondent 
state machine that is discussed in the previous section. While 
establishing the PHY layer connection the receivers at the both 
sides of the link must acquire bit synchronization and then 
symbol alignment before considering the incoming data to be 
valid. 

It is assumed that the establishment of both the exchange 
layer connection and the PHY layer connection is started 
simultaneously. However, until the receiver of the local PHY 
acquires bit synchronization and symbol alignment the 
exchange layer receiver does not get any valid data from the 
link. Since the PHY layer connection is established, the 
exchange layer can receive data sent by the remote side. 

The GigaSpaceWire error recovery procedure follows the 
SpaceWire error recovery procedure. This means that in case of 
any error, the side which has detected the error must indicate 
this to the remote side and then both the sides must re-establish 
the connection. To indicate an error to the remote side a 
SpaceWire node disables its transceiver at least for 19.2 us that 
causes a disconnect error at the remote side. However, 
GigaSpaceWire cannot adopt this approach. While the 
establishment of bit synchronization and symbol alignment at 
the PHY layer can take considerably long time, the PHY layer 
connection must not be broken each time when a link error 
occurs. Therefore, as the transceiver of GigaSpaceWire link 
interface must not be disabled upon error detection, the 
GigaSpaceWire technology has to adopt another approach to 
implement the silence exchange procedure. 

In order to develop its silence exchange procedure in 
another way GigaSpaceWire introduces new link characters 
that are called as Comma characters. In the Started, Connecting 
and Run states the transmitter must periodically insert a 
Comma character into the outcoming data flow that allows the 
other side of the link to monitor whether the connection is alive 
or not.  

A. GigaSpaceWire silence exchange 

The GigaSpaceWire silence exchange procedure, which is 
depicted in Fig. 4, is organized as following. When a receiver 
of the side A of a GigaSpaceWire link detects an error, the 
exchange layer state machine must leave its current state and 
enter the ErrorReset state. However, as was discussed above, 
the GigaSpaceWire transmitter does not cease its operation 
upon the entrance to the ErrorReset state and continues to 
transmit filler characters being in the ErrorReset, ErrorWait 
and Ready states. On the other hand, so as to indicate the 
detected error to the side B the GigaSpaceWire transmitter 
terminates the insertion of Comma characters into the 
outcoming data flow. Meanwhile, when the receiver at the side 
B has not received a Comma for a predefined time interval 
called as the disconnection time interval (TD), a disconnect 

error must be detected and its exchange layer state machine 
shall enter the ErrorReset state. As a result, the both sides of 
the link have entered the ErrorReset state and start to re-
establish the connection. 

To complete the silence exchange procedure the side A, 
which has initiated the re-connection, must disable its receiver 
at the exchange layer until the remote side B detects the 
disconnect error and enters the ErrorReset state. Otherwise, if 
the side A left the ErrorReset state when the side B has not 
ceased sending Comma characters into the link yet, it could 
received one of these last Comma characters as the first 
Comma. Eventually, when the side B entered the ErrorReset 
state, the side A in turn would detect a disconnect error and 
enter the ErrorReset state again.  

To avoid this situation the duration of the ErrorReset state 
timeout has to be long enough to ensure that the “Comma 
silence” has propagated over the link in both directions. To 
define the Comma silence propagation time, consider the worst 
case when the side A detects an error just after its transmitter 
has introduced a Comma character into the outcoming data 
flow. Consequently, the Comma silence propagation time has 
to include the symbol propagation time (Tprop that is discussed 
below) over the GigaSpaceWire link. Then, it means that for 
the disconnect interval (TD) the side B will continue sending 
Comma characters as it consider the connection to be valid. 
Only upon the expiration of the TD timeout the side B will stop 
sending Comma characters. Thus, the Comma silence 
propagation time has to include the disconnect interval as well. 
Finally, considering the worst case possibility that the last 
Comma has been sent from the side B just before the TD 
timeout expiration, the Comma silence propagation time must 
be incremented by the symbol propagation time again. 
Formally, this means that the ErrorReset timeout duration (TER) 
must be not less than the doubled symbol propagation time 
Tprop plus the disconnect interval TD: 

 . 
DopER TTT  Pr2

In accordance with Eq. 1 the GigaSpaceWire standard sets 
duration of the ErrorReset timeout to the value of 5.12 us. 

B. GigaSpaceWire clock tolerance compensation 

GigaSpaceWire also uses Comma characters so as to 
compensate possible deviations between the transmit clocks at 
both sides of the GigaSpaceWire link. 

Accordingly to the specification the transmit clock 
accuracy must not exceed +/- 300 parts per million (ppm). 
Therefore, the worst case clock difference between the transmit 
and receive clocks of a link occurs when the one side deviation 
is at +300 ppm and the other side deviation is at -300 ppm, 
resulting in a 600 ppm difference. A receiver elastic buffer is 
intended to compensate in the receiver the difference between 
the transmit and receive clocks. 
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Fig. 4.  The GigaSpaceWire silence exchange procedure 

Given that in the Started, Connecting and Run states the 
transmitter periodically inserts Comma characters into the 
outcoming data flow, the receiver must manages them to keep 
its elastic buffer in the half-full / half-empty state. When a 
Comma is received and the elastic buffer is more than half-
depth full then the Comma shall be ignored, i.e. not be written 
into the elastic buffer. When a Comma is read from the elastic 
buffer and the elastic buffer is empty than half-depth then the 
Comma shall be read twice from the elastic buffer. 

V. FLOW CONTROL 

The application field of GigaSpaceWire link can be divided 
into  two broad categories: a connection between two usual 
GigaSpaceWire nodes or a connection between two SpaceWire 
nodes which need galvanic isolation or long distance cable 
between them. In the last case each SpaceWire node is 
connected through SpaceWire interface to a GigaSpaceWire-
SpaceWire bridge and these bridges are connected via 
GigaSpaceWire link as it depicted in Fig. 5. 

For these two different use cases GigaSpaceWire provides 
two distinctive flow control modes: the new  GigaSpaceWire 
flow control mode and the traditional SpaceWire flow control 
mode. The GigaSpaceWire flow control is dedicated primarily 
for a direct connection of two GigaSpaceWire nodes and the 
SpaceWire flow control is recommended to be deployed when 
a GigaSpaceWire link connects two SpaceWire nodes by 
means of GigaSpaceWire-SpaceWire bridges.  

 

 
Fig. 5.  Connection of two SpaceWire nodes via GigaSpaceWire link 

The GigaSpaceWire flow control mode has the same 
protocol as the flow control, which is defined by the 
SpaceWire specification, but sets different values for the 
parameters. In the GigaSpaceWire flow control one Flow 
Control Token credits transmission of 32 symbols instead of 8 
characters as in SpaceWire. Also, in the GigaSpaceWire flow 
control the maximum permitted value of both the credit counter 
in the transmitting side and the outstanding counter in the 
receiving side is 512 when the SpaceWire flow control system 
restricts the same parameters by the value of 56. 

The chosen values were derived from the analysis of the 
symbol propagation time over GigaSpaceWire link (Tprop). 
Such symbol propagation time consists of the symbol 
propagation time via the transmiter logics, the transmitter 
SerDes, the cable, the receiver SerDes, the elastic buffer and, 
finally, via  the receiver logic: 


CableSerDesElasticBufLogicop TTTTT Pr

, 

where TLogic is the sum of the propagation times over the 
transmitter and receiver logic, TSerDes is the sum of the 
propagation times over the transmitter and receiver SerDes, 
TElasticBuf is the elastic buffer delay and TCable is the propagation 
time over the cable. 

In turn, the propagation time over the cable depends on the 
cable length (Lcable), the transmitter frequency (FTx), the signal 
propagation delay over the medium (TS, measured in ns) and 
the ration of the local frequency to the transmitter frequency 
(kFr): 

  )( STxCableFrCable TFLkT  . 

The minimum number of credits (MNC) is the least value 
of the credit and outstanding counters that allows utilization of 
the whole capacity of the given link at the given local and 
transmitter frequencies for the given implementation of 
GigaSpaceWire link interface. As a portion of the link capacity 
is utilized by the link control information (e.g. by Comma and 
FCT characters) as well as by the SpaceWire Time codes and 
Distributed Interrupt codes, only the link capacity, which is 
available for packet data (CUser) should be taken into account: 

  ))1(2(MNC Pr  FCTTTTC TxFCTopUser
, 

where TFCT is the FCT generation time, TTx is expected FCT 
transmission delay caused by the transmission of other 
GigaSpaceWire control codes and characters with higher 
priority (i.e. Comma, Time-codes, etc) and FCT is the number 
of normal characters which can be sent in response to one FCT. 

Therefore, in order to utilize the whole capacity of 
GigaSpaceWire link the maximum permitted value of the 
credit and outstanding counters must be not less than the 
minimum number of credits (MNC). To calculate the symbol 
propagation time and the minimum number of credit values 
close enough to the practical experience, the initial parameters 
in Eq. 2, 3 and 4 should be not the worst case but a typical 
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case. In accordance with this principle and for the current 
version of the electrical specification the minimum number of 
credits is 273 given the FCT value of 32. However, taken into 
account possible development of the GigaSpaceWire electrical 
specification (e.g. an incrise in the data transmission rate up to 
2.5 Gbit/s or more) the maximum permitted value of the credit 
and outstanding couters is set to 512. For the implementations 
intended to satisfy the current version of the GigaSpaceWire 
standard the recommended depth of the receive buffer is 288 
characters. 

The GigaSpaceWire flow control system requires 
considerably more buffer space than the SpaceWire flow 
control. However, this is obvious that when a GigaSpaceWire 
connection is used to connect two SpaceWire nodes, the whole 
gigabit capacity of GigaSpaceWire link cannot be utilized 
because the corresponded SpaceWire interface supplies the 
data at the maximum rate of 400 Mbit/s. For this reason 
GigaSpaceWire adopt the SpaceWire flow control as well. As 
some devices can be trageted at only bridge functions, they can 
implement only the SpaceWire flow control system. Therefore, 
the SpaceWire flow control system is chosen to be obligatory 
and the GigaSpaceWire flow control system is set to be 
optional. 

VI. CHARACTERS ENCODING 

GigaSpaceWire deploys 8b10b encoding scheme instead of 
Data-Strobe encoding, which is used in SpaceWire. While not 
all  SpaceWire characters correspond to the 8b symbol format, 
the GigaSpaceWire character layer is responsible for the 
representation of SpaceWire characters into proper 8b symbols.  
This means that all characters that are transmitted over the 
GigaSpaceWire link have the same length of 10 bit. 

Each of the GigaSpaceWire link characters, which 
comprise Comma, FCT and IDLE characters, as well as the 
End of Packet and Error End of Packet markers are encoded by 
single 8b10b K-codes. Each byte of the SpaceWire packet 
destination address and packet cargo is encoded by a single D-
code. 

Each SpaceWire Time-code, Interrupt-code or 
Interrupt_Acknowledge-code is encoded by two consecutive 
8b symbols. The first symbol is a dedicated K-code and the 
second symbol is a D-code, which includes the control code 
identifier as the two or three most significant bits and the value 
of the control code as the other six or five bits respectively. 
Transmission of the two symbols of a Time-code, Interrupt-
code or Interrupt_Acknowledge-code must not be preempted 
by any other character. 

VII. CONCLUSION 

The presented GigaSpaceWire communication technology 
is a practical modification of the low levels of the SpaceWire 
protocol stack. 

So as to improve the SpaceWire physical layer capabilities, 
GigaSpaceWire technology acquires 8b10b encoding scheme. 
The GigaSpaceWire protocol stack inherits the packet and 
network levels of SpaceWire and defines new PHY, endocing, 
character and exchange layers. The deployment of SpaceWire 

upper layers guarantees that any application compatible with 
SpaceWire technology can use GigaSpaceWire links as well. 
GigaSpaceWire low layers implement 8b10b encoding and 
ensure transparency of the physical layer technology for the 
SpaceWire upper layers. 

GigaSpaceWire changes only those SpaceWire features 
which cannot be used in relation with 8b10b encoding. 

Bit synchronization and the lock of PLLs, which are 
performed by the GigaSpaceWire PHY layer, usually cannot be 
acquired in a relatively short time. For this reason, 
GigaSpaceWire rejects the SpaceWire error recovery scheme 
that consists in disabling transmitter in case of an error so as to 
indicate the error to the remote side. Instead of this, 
GigaSpaceWire introduces special link control characters, 
named as Comma characters. These characters are periodically 
inserted by the transmitter into the outcoming data flow 
covering the broad field of tasks. Especially, the absence of 
Comma characters among the incoming data indicates to the 
receiving side that the remote side of the link has entered the 
ErrorReset state. 

GigaSpaceWire offers two different flow control 
approaches. The default approach is the SpaceWire flow 
control and the optional one is a new GigaSpaceWire flow 
control. The GigaSpaceWire flow control has the same 
principles as the SpaceWire one, but increases the key 
parameter values: one FCT credits transmission of 32 normal 
characters and the maximum number of outstanding credits is 
512. The GigaSpaceWire flow control is introduced to utilize 
the whole transmission capacity of links with gigabit rates. On 
the other hand, the SpaceWire flow control can be used as well, 
especially when two SpaceWire nodes communicate via 
GigaSpaceWire link bridges. 

GigaSpaceWire makes changes in a link only and fits in the 
general SpaceWire network architecture. It could be embedded 
into a network controller, a routing switch or a simple link type 
converter (e.g. a GigaSpaceWire-SpaceWire bridge). 
Integration of GigaSpaceWire into a SpaceWire network is 
relatively easy: change the links you need for higher 
throughput, longer distances or galvanic isolation and use the 
common SpaceWire network infrastructure elsewhere. 

By the moment, the GigaSpaceWire technology has been 
successfully prototyped in FPGA and already implemented in a 
number of chips “Multiboard” produced by ELVEES. The 
implementation of the GigaSpaceWire link controller is 
protected by patents [7]. 
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Abstract— SpaceWire is a standard for spacecraft on-board 
communication systems for transmission of both payload and 
control traffic.  However, while SpaceWire mostly meets the 
requirements imposed by data computing and data handling 
applications, it fails to fully satisfy the requirements raised by on-
board control loops. In order to resolve the problem this paper 
presents the final version of the Distributed Interrupt mechanism 
aimed at covering the area of hard-real time signal distribution 
in SpaceWire networks. The mechanism is dedicated primarily 
for transmission of short and low-frequent alarm messages and 
critical commands. The described Distributed Interrupt 
mechanism is intended to be included in the Revision 1 of the 
SpaceWire standard which is currently being drafted by ECSS. 

Index Terms—hard real-time signalling, Distributed 
Interrupts, Time-codes, standardisation. 

I. INTRODUCTION 

One of the main advantages of the SpaceWire technology 
[1] is the ability to be an integrated communication 
infrastructure for spacecraft on-board networking. SpaceWire-
based networks can accommodate different types of traffic that 
in previous generation of on-board networking used to be 
implemented by a set of separate interconnections that follow 
different standards. SpaceWire networks can integrate data 
stream traffic, packet traffic for distributed processing, 
command traffic for control, time stamps etc. 

It is reasonable to complement the already available 
SpaceWire features with a hard real-time signal delivery 
service so as to substitute dedicated signalling lines that are 
used in onboard systems today and to integrate them in a 
common networking infrastructure. Hard real-time signalling 
imposes strict signal delivery constraints and requires high 
reliability of signal delivery [2]. However, the ECSS-E-50-12C 
standard SpaceWire services do not address these requirements 
up to now. The SpaceWire packet transfer service cannot 

ensure guaranteed low-latency massage delivery in an arbitrary 
network topology due to the possibility of congestion with 
other traffic. Though the SpaceWire Time-code service does 
ensure low-latency delivery of time-stamps, it cannot be used 
for transmission of a variety of hard-real time signals.  

This paper describes the final version of the Distributed 
Interrupt mechanism, which is already an established approach 
for hard real-time signalling in SpaceWire networks [3, 4], and 
its applications. The Distributed Interrupt mechanism key 
features are ultra low signal delivery latency, simple 
configuration and high reliability of delivery. 

II. REQUIREMENTS FOR DISTRIBUTED INTERRUPT SIGNALLING  

Since the Distributed Interrupt signalling mechanism is 
dedicated to substitute side-band signal wiring in on-board 
communication systems, it has the same aims and 
requirements. The main purpose of the Distributed Interrupt 
mechanism is transmission of system-critical urgent signals 
and commands, e.g. alarm signals.  

The major requirements to the side-band signalling that are 
set by Russian and the European space industry cover latency, 
message transmission rate and reliability [2]. Thus transmission 
latency shall be less than 1 µs per link. In order to ensure high 
reliability of the signal delivery, the mechanism shall provide 
broadcast transmission, automatic acknowledgment of signal 
delivery and fault detection, isolation and recovery policies. 

III.  KEY PRINCIPLES 

The Distributed Interrupt mechanism uses broadcast 
distribution of hard real-time signals providing ultra-low 
delivery latency and high reliability. 

The low transmission latency of Distributed Interrupt codes 
is allowed by low control code size and a high priority level 
compared to other SpaceWire codes and characters. A 
Distributed Interrupt code consists of the 4-bit SpaceWire 

35



Escape character followed by a 10-bit SpaceWire data 
character; the total size of the distributed Interrupt code is 14 
bits. Distributed Interrupt codes take priority over SpaceWire 
FCT characters, data characters and NULL control codes. 
Therefore, the transmission of Interrupt signals is not affected 
by data packets flowing through the same links. Moreover, as 
Distributed Interrupt signalling is not managed by the 
SpaceWire flow control mechanism, Interrupt distribution can 
be performed even over links that are blocked by data packets 
e.g. in case of congestion. The only SpaceWire codes that have 
the higher priority level than Distributed Interrupt codes are 
Time-codes. However, transmission of Time-codes should not 
have significant impact of the Interrupt signals distribution 
because Time-codes are not expected to be sent often. 

As a SpaceWire control code, each 14-bit Interrupt code 
carries 8-bit data field which, in turn, contain 3-bit code 
identifier and 5-bit Interrupt identifier. The 3-bit code identifier 
is used to distinguish Interrupt codes from other SpaceWire 
control codes (e.g. Time-codes) as well as to determine the 
type of Interrupt code. There are two types of Distributed 
Interrupt codes. Each Interrupt request has a particular 5-bit 
Interrupt identifier that is used to distinguish this request from 
other Interrupt requests in the network. Therefore, in a network 
there may be up to 32 different Interrupt requests with 
identifiers from 0 to 31. It is assumed that for any Interrupt 
request in the network there is at least one node that is assigned 
to receive and process the code. Such node is called an 
Interrupt handler. When an Interrupt handler receives an 
Interrupt request which this handler is assigned to process, it 
may issue a confirmation code that is called an Interrupt 
acknowledgment, which is another type of Interrupt code. Each 
Interrupt acknowledgment has the same Interrupt identifier as 
the correspondent Interrupt request. 

Broadcast distribution of Interrupt codes allows simple 
configuration of the network that does not require routing 
tables in switches. In case of hardware redundancy in the 
network, broadcast distribution leads to higher reliability of 
Interrupt code delivery. However, broadcast distribution in 
networks with circular connections may lead to repeated 
propagation of Interrupt codes. So as to overcome the problem 
each SpaceWire switch or node, which supports the Distributed 
Interrupt mechanism, has a 32-bit Interrupt Source Register 
(ISR). Each i-th ISR bit corresponds to the Interrupt identifier 
with the same number. When a node issues an Interrupt request 
or a node or a switch receives an Interrupt request, the 
correspondent bit of the ISR must be checked. If the bit is 
already set to ‘1’, it means that the incoming Interrupt request 
is invalid and must not be forwarded or processed. Otherwise, 
if the bit is ‘0’, it is switched to ‘1’ and the correspondent 
Interrupt request is considered to be valid for processing in the 
node and forwarding to all the output ports of the switch. On 
the contrary, an incoming Interrupt acknowledgment code is 
assumed to be valid if the correspondent ISR bit is ‘1’ and 
invalid otherwise. 

IV.  OPERATION MODES 

Distribution of an Interrupt codes with a particular Interrupt 
identifier may be organized in one of two modes: either in the 
Acknowledged Mode or in the Unacknowledged Mode. If an 
Interrupt handler has accepted an Interrupt request for 
processing which is distributed in the Acknowledged Mode, 
this handler must generate and send the correspondent Interrupt 
acknowledgment. If the Interrupt request is distributed in the 
Unacknowledged Mode, the handler must not send the 
Interrupt acknowledgment. 

Both operation modes which can be used concurrently in a 
network are discussed in the following subsections in more 
details. 

A. Acknowledged mode 

The key advantages of the Acknowledged Mode is that an 
Interrupt source gets a confirmation that the issued Interrupt 
request has successfully propagated over the network and 
reached at least one Interrupt handler which is assigned to 
process such Interrupt requests. If either the Interrupt request or 
the Interrupt acknowledgment has been lost, the Interrupt 
source is informed about it by the error recovery mechanism. 
Also, propagation of the Interrupt acknowledgment clears 
correspondent ISRs’ bits in the network switches and nodes on 
its rout allowing distribution of next Interrupt request with the 
same Interrupt identifier. 

The Acknowledged Mode imposes a set of constraints in 
the Interrupt codes distribution procedure. An Interrupt source 
must not send out next Interrupt request until the expiration of 
a special time interval, Tg, that is started at the reception of the 
Interrupt acknowledgment with the same Interrupt identifier. 
Similarly, an Interrupt handler must not send an Interrupt 
acknowledgment until the expiration of a time interval Th that 
is started at the reception Interrupt request with the 
correspondent Interrupt identifier. Both requirements are aimed 
to ensure that the Interrupt request and Interrupt 
acknowledgment with the same Interrupt identifier will not 
collide in the network. Finally, in the Acknowledged mode in a 
network there must be not more than one Interrupt source for 
Interrupt requests with a particular identifier. 

In the Acknowledged Mode distribution of Interrupt 
acknowledgments is the primary way to clear the ISRs and 
prepare the network for transmission of the next Interrupt 
request. However, either an Interrupt request or the 
correspondent Interrupt acknowledgment can be lost while 
propagating over the network. To deal with the problem each 
bit in the ISR is associated with a reset timer. The reset timer is 
started when an Interrupt request is received in a switch (or 
sent from a node) and the correspondent ISR bit is set to ‘1’, 
and stopped when an Interrupt acknowledgment is received 
and the correspondent bit is reset to ‘0’. If the correspondent 
Interrupt acknowledgment has not been received and, 
consequently, the ISR bit has not been reset to ‘0’, the 
expiration of the reset timer causes reset of the ISR bit. 
Therefore, the reset timer mechanism ensures network 
recovery from either loss of Interrupt request or loss of 
Interrupt acknowledgment. 
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As an example of the Acknowledged Mode utilisation 
considers a use case of a satellite attitude control system 
orienting to the Sun. Let the system consist of two subsystems: 
an orientation module and a central computer. Normally, the 
orientation module monitors whether the satellite orientation is 
correct and transmits attitude information to the central 
computer. The central computer accepts the information from 
the module and commands to take a particular action in 
response to a change in the attitude. However, in order to 
ensure reliability, the orientation module can operate in an 
automatic mode in case of emergency. When the module 
detects that the attitude has changed into incorrect one, it sends 
a correspondent Interrupt request to the central computer and 
waits for the Interrupt acknowledgment. If the 
acknowledgement has not been received, the module assumes 
that the central computer does not operate now and enters the 
automatic mode. In this mode the module is permitted to 
perform the attitude recovery without the command from the 
computer. 

B. Unacknowledged mode 

In the Unacknowledged Mode the reset timers are the only 
way to clean the network ISRs after the propagation of an 
Interrupt request. As in the Acknowledged Mode the reset 
timer is started at the reception of the correspondent valid 
Interrupt request. However, since in the Unacknowledged 
Mode the correspondent Interrupt acknowledgment would not 
be received, the reset timer always expires clearing the ISR bit. 

The absence of Interrupt acknowledgments leads to the 
subsequent differences between the modes. In the 
Unacknowledged Mode an Interrupt source cannot get the 
automatic confirmation that the issued Interrupt request has 
reached an Interrupt handler. Since in the Unacknowledged 
Mode Interrupt handlers does not send Interrupt 
acknowledgments, the Th time interval is not used. Also, in 
Interrupt sources the next Interrupt request may be sent 
immediately after the expiration of the correspondent ISR reset 
timer without the Tg delay.  

In the Unacknowledged Mode multiple Interrupt sources 
may simultaneously issue Interrupt requests with the same 
Interrupt identifier. However, it should be noted that in the case 
of several Interrupt sources which simultaneously issue 
Interrupt requests with the same Interrupt identifier only one of 
the requests will reach a particular Interrupt handler and it 
cannot be distinguished which was the source of the particular 
request. Several Interrupt handlers do not cause problems in 
this mode. 

The Unacknowledged Mode is recommended to be used for 
applications which either do not need acknowledgments of 
correct Interrupt request delivery or require considerably high 
level of performance. For example, it may be a network 
manager which sends an Interrupt request prohibiting all the 
nodes (or several nodes of a particular type) from transmission 
of data packets to clear the network. In this case it is not 
necessary for nodes to response with the Interrupt 
acknowledgment on the reception of the command, because 
only one acknowledgement will reach the manager. Thus, the 

manager will not be informed whether the command has 
reached all the target nodes. 

V. RELIABILITY  

To increase the reliability of Interrupt codes delivery the 
mechanism offers several approaches for error tolerance and 
recovery. The main tools to implement reliability are broadcast 
distribution of Interrupt codes, reset timers and ISR change 
timers. 

In networks with hardware redundancy broadcast 
distribution guarantees that a loss of an Interrupt code in a link 
will not stop the propagation of the code over the network.  

Reset timers recover the network for the distribution of 
subsequent Interrupt codes. While in Acknowledged and 
Unacknowledged Modes reset timers are dedicated for 
different purposes, in both modes reset timers allow recovery 
after a loss of an Interrupt code. 

ISRs and ISR change timers can be used to ensure a 
protection from occurrence of unexpected Interrupt codes. 
There are two primarily sources of unexpected Interrupt codes. 
Firstly, an unexpected Interrupt code can be caused by network 
malfunction producing a false Interrupt code (e.g by bits 
inversion in a link due to a noise). Secondly, an unexpected 
Interrupt code can be issued by an incorrectly operating node, a 
“babbling idiot” node. In both cases an unexpected Interrupt 
code occurrence can lead to either an Interrupt handler will 
receive and process a false Interrupt request, or infinite looping 
Interrupt code could occur in a network with circular 
connection. Particularly, the last case can happen if a false 
Interrupt request appears when the correspondent Interrupt 
acknowledgment is propagating over the network and vice 
versa. 

ISRs are implicitly used to stop propagation of unexpected 
Interrupt codes. When a received unexpected Interrupt code 
dose not correlate with the value of the correspondent ISR, this 
Interrupt code is ignored and not transmitted further. However, 
this mechanism cannot terminate the propagation of Interrupts 
which do correlate with the ISR bit state. 

ISR change timers are dedicated to overcome the problem 
in the Acknowledged Mode. An ISR change timer defines the 
minimum allowed time between any two consecutive changes 
of the ISR bit. This means that the ISR bit value may not be 
changed before the correspondent ISR timer expired. In case of 
an attempt to change the state of an ISR bit while the 
correspondent timer has not expired yet, the bit value should 
not be changed and the received Interrupt code should be 
ignored. Thus, the ISR change timers mechanism partially 
protect the network from distribution of unexpected Interrupt 
requests when the ISR bit is ‘0’ and from the distribution of 
unexpected Interrupt acknowledgments when the ISR bit is ‘1’ 
(in the Acknowledged Mode). 

VI.  TIME ISSUES 

Calculation of the timeout values is important to ensure the 
correctness of the operation of the Distributed Interrupt 
mechanism. This section discuss some calculation rules that 
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should be taken into account while implementing SpaceWire 
devices and configuring the network. 

A. Estimation of the Interrupt code propagation time 

Before discussing timeouts calculation principles it is 
necessary to define the worst case propagation time of an 
Interrupt code over the longest path in the network. The value 
of the worst case propagation time (

maxIPT ) should be 

calculated as the worst case queuing time plus the transmission 
time of Interrupt code over all the switches and links in the 
longest path: 

 
ССLenwtcLenCCQueueIP TPTPTLT ⋅+⋅−+⋅= )1(max

, (1) 

where 
QueueL  is the worst case queue length, LenP is the number 

of links in the longest path, 
wtcT  is the switch propagation time 

and 
СС

T is the transmission time of an Interrupt code over one 

link. The queue length should be defined as the maximum 
number of Interrupt identifiers, actually used in the network, 
i.e. QueueL  has the maximum value of 32. The transmission 

time of an Interrupt code over one link may vary from 
implementation to implementation but typically stands between 
0.3 and 1.5 µs depending on the link bit rate. 

The estimation of the worst case queuing time is based on 
the fact that an Interrupt code propagating through a network 
can be delayed by any other Interrupt code only once. After 
this delay happened for the first time both Interrupt codes will 
be sent in sequence to the next switch. Therefore, any Interrupt 
code may be delayed by 1−QueueL  Interrupt codes. Also, as it is 

assumed that Time-codes are not expected to be sent often, the 
worst case propagation time estimation takes into account that 
an Interrupt code may be delayed by no more that one Time-
code. 

The correctness of Eq. 1 can be proved by means of 
simulation. Firstly, consider a network with mesh topology and 
given that QueueL  has the maximum possible value of 32. The 

resulted value of the worst case propagation time estimated in 
accordance with Eq. 1 is depicted in Fig. 1 as maxT . It is 

noticeable that as the value of the 
СС

T  transmission time 

depends on the link bit rate, the worst case propagation time is 
a function of the bit rate as well. Then, we analysed the worst 
case propagation time in the same network through simulation, 
when all 32 types of Interrupt codes are transmitted with the 
maximum possible rate. The worst case propagation time 

yielded by this simulation is given at the Fig. 1 as max
'T . As a 

result, at any transmission rate the theoretically estimated value 
of the worst case propagation time does not contradict the 
practically calculated value. Moreover, both results are 
relatively close to each other thus proving the precision of the 
proposed estimation approach.  
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Fig. 1.  The worst case propagation time: theoretical and practical calculation 

results 

The worst case propagation time can be decreased at the 
expense of generality. While the specification of the 
Distributed Interrupt mechanism does not define the arbitration 
scheme for Interrupt code of the same type (i.e. among 
different Interrupt requests), implementations are permitted to 
deploy any appropriate arbitration principle. Thus, a solution to 
decrease the worst case propagation time of particular Interrupt 
codes is to use the priority-based arbitration approach when 
targeted Interrupt identifiers are assigned to the highest priority 
levels. As a result, the worst case queue length for such high 
priority level Interrupt codes would be considerably less than 
the maximum number of Interrupt identifiers in the network. In 
turn, this leads to relatively low worst case propagation time 
for these Interrupt codes. 

B. Calculation of the Tg minimum time interval 

In the Acknowledged Mode the Tg minimum time interval 
delays the transmission of an Interrupt request for a period of 
time that is required for the network to become ready to 
propagate this Interrupt request. The network is not ready to 
accept an Interrupt request if the Interrupt acknowledgment on 
the previous Interrupt request is still propagating over the 
network in such a way that a collision between these Interrupt 
request and Interrupt acknowledgment is possible. Thus, the 
duration of the Tg minimum time interval depends basically on 
the network topology and the number of handlers. Below Three 
different cases of the interval calculation are discussed. 

Consider a network with only one handler for an Interrupt 
identifier and no cycles in the topology. When the Interrupt 
source receives an Interrupt acknowledgment on the issued 
Interrupt request, it means that this Interrupt acknowledgment 
has been propagated via the only path between the source and 
the handler. Although it is possible that the propagation of the 
received Interrupt acknowledgment over the whole network 
has not been completed yet, the next Interrupt request will not 
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collide with this acknowledgment on its way to the handler. 
Thus, in this case the next Interrupt request may be issued as 
soon as possible, i.e. the Tg minimum time interval may be 
zeroed. Also, it is noticeable that a collision between an 
Interrupt request and the correspondent Interrupt 
acknowledgment can occur somewhere in the network, but this 
will not affect the operation of the mechanism. 

An example of the discussed case is shown at Fig. 2. In the 
part A of the figure an Interrupt acknowledgment is distributed 
over the network and reaches the source. Then, in the part B 
the source issues the next Interrupt request when the Interrupt 
acknowledgment has not been propagated over the whole 
network due to some reasons. While this Interrupt request 
reaches the handler without problems, it catches up the 
Interrupt acknowledgment at its another propagating path in the 
Switch N-1. As a result, the distribution of both the Interrupt 
request and the Interrupt acknowledgment is terminated. 
However, this situation cannot affect the distribution of the 
next Interrupt requests and Interrupt acknowledgments of this 
particular type as the Switch N-1 does not belong to the only 
path between the source and the handler. 

In the second case consider a network with only one 
handler for an Interrupts with a particular identifier and cycles 
in the topology. When the source of Interrupts with the 
Interrupt identifier receives an Interrupt acknowledgment on 
the issued Interrupt request, it does not guarantee that the 
Interrupt acknowledgment has been propagated already over all 
the possible paths between the source and the handler. 
Therefore, the source must delay transmission of the next 
Interrupt request for the worst propagation time of the Interrupt 
acknowledgment via the longest cycle in the network. While it 
ensures that the next Interrupt request will not collide with the 
Interrupt acknowledgment on its path to the handler, the time 
interval does not protect the network from a collision in some 
part of the network that does not belong to the path between the 
Interrupt source and Interrupt handler, so it isn’t critical for this 
Interrupt correct distribution (as was discussed earlier for the 
first case). 

The lower bound of the Tg minimum time interval defined 
as the worst propagation time of an Interrupt acknowledgment 
via the longest cycle in the network may be decreased at the 
expense of generality. For example, if there are cycles in a 
network, but a particular source and handler are connected by 
only one path (i.e. no cycles between them), the Tg minimum 
time interval in the source may be zeroed as in the first case 
discussed above. However, if another source and handler are 
connected by several paths (i.e. there are cycles between them), 
the correspondent minimum time interval needs to be bounded 
by the worst propagation time of an Interrupt acknowledgment 
via the longest path. Such approach increases complexity of 
Distributed Interrupts configuration in a network, but improves 
its operation time indexes. 

Also, the lower bound of the Tg minimum time interval 
may be decreased at the expense of reliability. Consider a 
network with mesh topology, with the mesh size N×N, where 
N is a relatively high number. In such a network the length of 
the longest cycle is 4N. However, in the absence of errors it is 

impossible that an Interrupt code can propagate over the whole 
longest cycle because it will propagate over shortest cycles 
firstly. Thus, the actual value of the Tg minimum time interval 
may be calculated on the basis of a cycle shorter than 4N. 
However, it could decrease reliability of the mechanism: if 
several faults stop the propagation of an Interrupt code over all 
the shortest cycles, the mechanism will not be able to handle 
the situation correctly. 

The last case for the calculation of the Tg minimum time 
interval is a network with several Interrupt handlers for one 
Interrupt identifier. Regardless of the network topology, in 
such case it is recommended that the duration of the interval 
depends on the worst propagation time of an Interrupt code 
over the longest path in the network and should be calculated 
as: 

 
maxIPTkTg ⋅= , (2) 

where k is a reliability coefficient which should be equal or 
more than 1. The coefficient k is introduced to tolerate a 
situation when the distribution of an Interrupt 
acknowledgments exceed the worst Interrupt code propagation 
time due to unexpected errors. The recommended value of the 
coefficient is 1.2. 

Equation 2 introduces the worst case value for the Tg 
minimum time interval and may be used in any case, to 
simplify the network calculation and configuration process. 

 

 
Fig. 2.  Distribution of Interrupt signals in a network with one handler and no 

cycles 
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C. Calculation of the Th time interval 

The Th time interval delays transmission of an Interrupt 
acknowledgment for a period of time, which is needed to 
ensure that the handler will not receive the acknowledged 
Interrupt request once more. It can happen if the acknowledged 
Interrupt request is still propagating over a part of the network 
from where it can reach the handler again, i.e. over a cycle. 
Three different cases of the Th interval calculation are 
discussed below. 

The first and second cases are appropriate when there is 
only one handler for an Interrupt source with some identifier or 
there could be several handlers, but it is permitted that Interrupt 
requests are transmitted not to all Interrupt handlers. As the 
first case, consider a network with no cycles in the topology. 
When a handler receives an Interrupt request which this 
handler is responsible to process, it means that this Interrupt 
request has already propagated via the only path between the 
source and this handler. Though it is possible that the 
distribution of the Interrupt request over the whole network has 
not been completed yet, the Interrupt acknowledgment will not 
collide with the Interrupt request on its way to the source. 
Thus, in this case the Interrupt acknowledgment may be issued 
as soon as possible, i.e. the Th time interval may be zeroed. 
Again, as in the case of the Tg minimum time interval, zeroing 
the Th time interval makes possible a collision between the 
Interrupt request and the Interrupt acknowledgment somewhere 
in the network, but not in the path between the source and the 
handler. As it is discussed above, such collision would not 
affect correct delivery of the Interrupt codes. 

As the second case consider a network with cycles in the 
topology. When the handler receives an Interrupt request, it 
does not guarantee that the Interrupt request has been 
propagated over all possible paths between the source and the 
handler. Therefore, the handler must delay transmission of the 
correspondent Interrupt acknowledgment for the worst 
propagation time of the Interrupt request delivery via the 
longest path in the network. As in the same case for the Tg, the 
minimum time interval value can be decreased at the expense 
of reliability and/or generality. 

The third case is appropriate when there are several 
Interrupt handlers in the network and it is required that 
Interrupt requests are delivered to all the handlers. To address 
the requirement each handler must delay transmission of the 
Interrupt acknowledgment for the worst propagation time of 
the Interrupt requests propagation over the whole network 
regardless of the network topology: 

 
maxIPTkTh ⋅= , (3) 

where k is a reliability coefficient which should be equal or 
more than 1. Again, the recommended value for the coefficient 
is 1.2. 

D. Reset timers 

Generally, reset timers are used in both the Acknowledged 
and Unacknowledged Modes as a tool to clear the ISRs in 
network switches and nodes and prepare the network for 

distribution of the consecutive Interrupt codes. However, the 
modes deploy reset timers in considerable different ways. 

As in the Acknowledged Mode the primary way to recover 
the network after propagation of an Interrupt request is to send 
the Interrupt acknowledgment, reset timers should be 
configured so that they are expired only when it is definitely 
true that the Interrupt request or the Interrupt acknowledgment 
is lost. For this reason, the timeout for a reset timer in the 
Acknowledged Mode should be not less than the doubled 
Interrupt code worst case propagation time plus the Th time 
interval duration: 

 ThTT IPset +⋅= maxRe 2 , (4) 

 
On the contrary, in the Unacknowledged mode reset timers 

are the only way to clear ISRs after the propagation of an 
Interrupt request. Due to the fact that a reset timer definitely 
expires each time when it is set, the timeouts of reset timers 
clearly affect the rate at which Interrupt requests of a particular 
type can be sent to the network. To ensure that any issued 
Interrupt request will reach an Interrupt handler (in the absence 
of errors) and will not collide with the previous Interrupt 
request with the same identifier, the reset timer timeout should 
be not less than the worst case Interrupt code propagation time, 
which is calculated in accordance with Eq. 1: 

 maxRe IPset TT = , (5) 

In both Acknowledged and Unacknowledged Modes it is 
highly recommended that the duration of reset timeouts in 
nodes is not less than the duration of reset timeouts in 
intermediate switches. 

E. ISR change timer 

ISR change timers are intended to protect the networks with 
circular connections from infinite looping caused by 
occurrence of unexpected Interrupt codes in the Acknowledged 
Mode. The duration of ISR change timeout must not exceed the 
minimum of the Tg and Th time intervals. Otherwise, the ISR 
change timer mechanism would corrupt the distribution of 
Interrupt codes. 

VII.  CONCLUSION 

The SpaceWire Distributed Interrupt mechanism described 
in this paper is intended for transmission of hard real-time 
signals over SpaceWire networks.  

The core principle of the Distributed Interrupt mechanism 
operation consists in broadcast distribution of low size 
Interrupt signals (14 bits), which have a high priority level 
among SpaceWire characters and control codes. The broadcast 
distribution allows simple configuration without specific 
routing tables in switches, and high level of fault tolerance in 
networks with hardware redundancy. The low size and high 
priority of Interrupt codes ensure ultra-low propagation time, 
some microseconds, in SpaceWire networks of any practical 
size. 
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The mechanism offers two distinctive operation modes 
targeted at different applications. In the Acknowledged Mode 
an Interrupt handler that has received an Interrupt request 
generates correspondent Interrupt acknowledgment and the 
Interrupt source will be informed  that the issued request has 
reached at least one handler node and has been accepted for 
processing. The Unacknowledged Mode does not provide the 
service of automatic acknowledgments, but takes advantage in 
higher transmission rate of Interrupt request and smaller 
configuration efforts. 

To increase the reliability of signal delivery the mechanism 
offers several approaches for error protection and recovery. 
Broadcast distribution guarantees that a loss of an Interrupt 
signal will not stop the propagation of the signal in networks 
with redundant paths. Reset timers recover the network for the 
distribution of subsequent Interrupt signals. 

Calculation of the Distributed Interrupt mechanism 
timeouts is a critical task to ensure the proper operation of the 
mechanism. While almost all the timeouts are functions of the 
Interrupt code worst case propagation time, this parameter 
should be estimated as close to its realistic value as possible. 
The computation of the guards times Tg and Th for sources and 
handlers respectively can be made by taking into account the 
network topology and other specific factors. It leads to higher 
performance level, but has relatively high complexity of 
calculation and configuration. Another approach - one-size-
fits-all calculations, has lower configuration complexity, but 
could limit the timing characteristics of the Distributed 

Interrupts operation in a network, first of all – duty cycle of 
Interrupt requests. 

It can be concluded that the Distributed Interrupt 
mechanism satisfies the basic latency and reliability 
requirements and allows integrating critical system control 
traffic into SpaceWire on-board networks. To increase its 
flexibility the mechanism provides a number of different 
modes and configuration methods that cover a wide range of 
use cases. The Distributed Interrupt mechanism has been 
prototyped and investigated, proved its consistency and 
efficiency in implementation and operation. The mechanism is 
implemented in a set of chips “Multiboard” produced by R&D 
Center ELVEES Company and is under implementation in 
several independent design companies now. 
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Abstract— Providing bandwidth efficiency similar to standard 

SpaceWire while using Direct Current (DC)-balanced Data-

Strobe encoding requires use of 10-bit codes that match the size 

of SpaceWire characters. Because of the limited quantity of 10-

bit codes that meet the needs of DC-balanced Data-Strobe 

encoding, appropriate running disparity management is critical 

for achieving the one-zero ratio necessary for successful 

Alternating Current (AC)-coupled operation. The running 

disparity management is complicated by the need to balance both 

the Data and Strobe signals simultaneously. 

The primary goal of the running disparity management is to 

minimize the running disparity of each signal without minimizing 

one at the expense of the other. The characteristics and 

limitations of the available 10-bit codes significantly affect the 

complexity of the methods considered. Two methods have been 

shown to consistently keep the running disparity within bounds. 

One method (Dynamic Priority) attempts to minimize the 

running disparity of the signal (Data or Strobe) with the largest 

running disparity magnitude (the priority signal). If the running 

disparity magnitude of the priority signal cannot be reduced, the 

Dynamic Priority method attempts to minimize the running 

disparity of the non-priority signal. A second method (Minimum 

Sum of Magnitudes) attempts to minimize the running disparity 

of both signals simultaneously by choosing the Data-Strobe code 

pair that produces the smallest sum of running disparity 

magnitudes. If the sums of magnitudes for both code pairs are 

equal, the method chooses the code pair that minimizes the 

running disparity of the signal with the largest running disparity 

magnitude. 

This paper discusses the characteristics and limitations of the 

available 10-bit codes and describes candidate running disparity 

management methods. Simulation results for the candidate 

methods are also presented. 

Index Terms—SpaceWire, Data-Strobe, DC-balance, disparity, 

encoding, decoding. 

I. DC-BALANCED DATA-STROBE ENCODING 

Direct Current (DC)-balanced Data-Strobe encoding [1] is a 

practical character-level encoding method for applications 

requiring galvanic isolation between link endpoints. It offers an 

alternative to standard SpaceWire character encoding that 

supports galvanic isolation using ANSI/TIA/EIA‐644 LVDS 

devices and conventional Alternating Current (AC)-coupling 

circuits.  

The terminology used in this paper is derived from that 

defined by the SpaceWire standard [2]. The term character is 

defined by the SpaceWire standard and includes data characters 

and control characters. The term code is defined as a binary 

value used to represent a character when transmitted on the 

SpaceWire link. In standard SpaceWire, a character and the 

corresponding code are identical. DC-balanced encoding 

represents each character with one or more different code 

values. 

DC-balanced Data-Strobe encoding uses a class of codes 

that simultaneously DC-balance both the Data and Strobe bit 

streams. The code size used directly establishes the resulting 

link overhead. Link overhead is the ratio of the code size to the 

datum size (standard SpaceWire has a link overhead ratio of 

10/8). 

The code size also indirectly affects two characteristics of 

the encoded bit stream: the maximum running disparity and the 

maximum run length. The running disparity is the difference in 

the number of ones and zeroes measured on a continuous basis 

and is a relative indicator of the DC-balance of the signal. The 

maximum run length is the largest number of ones or zeroes in 

a row and establishes the lowest frequency of the encoded bit 

stream (the highest frequency of the encoded bit stream is 

always one-half the baud rate). Standard SpaceWire data 

characters have a maximum run length of nine bits. 

A smaller code size generally offers fewer values that meet 

the needs of DC-balanced Data-Strobe encoding. As a result, it 

is difficult to select values with the small disparity values 

needed to limit the running disparity and the shorter run lengths 

needed to minimize frequency bandwidth. 

Of the available DC-balanced codes, the 10-bit code offers 

the smallest link overhead in comparison to standard 

SpaceWire (within 5%) [1]. The small size of the 10-bit code 

set severely restricts the ability to optimize the disparity and 

run-length characteristics. Because of the limited number of 
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10-bit code values, the only opportunity available for 

optimizing the bit streams is to manage the running disparity. 

The 10-bit DC-balanced code set contains codes with zero 

disparity (an even number of ones and zeros), positive disparity 

(more ones than zeros) and negative disparity (more zeros than 

ones). Unfortunately, there are no 10-bit DC-balanced codes 

that produce zero disparity on both the Data and Strobe signals 

simultaneously. As a result, each SpaceWire character must be 

assigned two 10-bit codes with opposite disparity so that the 

running disparity can be maintained close to zero. Establishing 

the two 10-bit codes with opposite disparity is a trivial exercise 

since the bitwise inverse of any binary value has opposite 

disparity. The term base code is defined as the binary value 

directly mapped to a SpaceWire character. The inverted base 

code is the code with opposite disparity mapped to the same 

SpaceWire character. 

II. SIGNIFICANT PROPERTIES OF DC-BALANCED CODES 

The SpaceWire Strobe encoding function uses the Data 

code bit stream to produce the corresponding Strobe code bit 

stream by Exclusive-OR with an alternating-one-zero pattern 

(clock). This behavior is inherent in Data-Strobe encoding and 

is unchanged when the Data code bit stream is composed of 

DC-balanced codes. 

A 10-bit DC-balanced code value assigned to a SpaceWire 

character (the base code) is paired with an alternate code value 

(the inverted base code) to manage running disparity. Any code 

value can be inverted (ones-complement) to produce a 

corresponding code value with the opposite disparity 

characteristic. The Data-Strobe encoding function can also be 

viewed as pairing each Data code value with an alternate 

Strobe code value. 

Since the Exclusive-OR and Inversion operators are 

associative, there is a defined relationship between the 10-bit 

code values used to represent a specific SpaceWire character in 

the Data and Strobe cases. Figure 1 exhibits these relationships. 

 

 

 
Fig. 1.  Code Pair Relationship Example 

These properties allow a one-to-one assignment of each 

SpaceWire character with a single base-code value, simplifying 

the character encoding implementation. The opposite-disparity 

encoding of the base-code value is easily generated by 

inverting the base-code value. The base-code value (or its 

inverse) is transmitted on the Data signal and the conventional 

Strobe generation mechanism automatically produces the 

appropriate code for transmission on the Strobe signal. 

III. RUNNING DISPARITY MANAGEMENT 

As with 8b10b encoding, DC-balanced Data-Strobe 

encoding manages running disparity to limit the difference in 

the number of ones and zeroes in successive codes. Unlike 

8b10b encoding, the Data-Strobe running disparity must be 

managed for both SpaceWire signals (Data and Strobe) 

simultaneously [1]. The goal is to minimize the running 

disparity of each signal without minimizing one at the expense 

of the other. 

Several running disparity management methods were 

considered. While other methods are possible, the Dynamic 

Priority and the Minimum Sum of Magnitudes methods were 

chosen for extensive evaluation. 

A. Dynamic Priority Method 

The Dynamic Priority method attempts to minimize the 

running disparity of the signal (Data or Strobe) with the largest 

running disparity magnitude (the priority signal). The running 

disparity represents the distance of the signal DC-balance from 

zero and may be positive or negative. By using the magnitude 

of the running disparity, the method can compare the distance 

without the complication of adjusting for signed values. If the 

running disparity magnitude of the priority signal cannot be 

reduced, the method attempts to minimize the running disparity 

of the non-priority signal. The set of rules for minimizing the 

running disparity of both signals with one of the signals having 

priority is shown in Table I. 

B. Minimum Set of Magnitudes Method 

The Minimum Sum of Magnitudes method attempts to 

minimize the running disparity of both signals simultaneously 

by choosing the Data-Strobe code pair that produces the 

smallest sum of running disparity magnitudes. If the sums of 

magnitudes for both disparity code pairs are equal, the method 

chooses the code pair that minimizes the running disparity of 

the signal with the largest running disparity magnitude. The 

terms used in defining the rules for minimizing the running 

disparity of both signals simultaneously are shown in Table II. 

The set of rules is shown in Table III. 
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TABLE I.  RULES FOR DYNAMIC PRIORITY METHOD 

Precedence Rule Condition Rule Conclusion 

First If the base code disparity makes the priority signal running disparity magnitude greater Use the inverted base code 

Second If the base code disparity makes the priority signal running disparity magnitude smaller Use the base code 

Third If the base code disparity makes the non-priority signal running disparity magnitude greater Use the inverted base code 

Fourth Otherwise Use the base code 

TABLE II.  DEFINITIONS OF MINIMUM SUM OF MAGNITUDES TERMS 

Term Definition 

RDDcurrent The current Data running disparity value 

RDScurrent The current Strobe running disparity value 

RDDbase Computed Data running disparity value (base code) 

RDSbase Computed Strobe running disparity value (base code) 

RDDinverted Computed Data running disparity value (inverted base code) 

RDSinverted Computed Strobe running disparity value (inverted base code) 

SumMagbase SumMagbase = |RDDbase| + |RDSbase| 

SumMaginverted SumMaginverted = |RDDinverted| + |RDSinverted| 

TABLE III.  RULES FOR MINIMUM SUM OF MAGNITUDES METHOD 

Precedence Rule Condition Rule Conclusion 

First If SumMagbase is greater than SumMaginverted Use the inverted base code 

Second 

If SumMagbase is equal to SumMaginverted, and  

 If [ |RDDcurrent| > |RDScurrent| and  |RDDbase| > |RDDinverted| ] or  
   [ |RDDcurrent| < |RDScurrent| and  |RDSbase| > |RDSinverted| ] 

Use the inverted base code 

Third Otherwise Use the base code 

 

The running disparity management methods were evaluated 

by implementing model encoders of each.  A 10 million 

character random data set was used to build a histogram of the 

running disparity characteristics of each model. The Dynamic 

Priority method allowed running disparity excursions of ±12 

for the test data set as shown in Fig. 2. Figure 3 shows that the 

Minimum Sum of Magnitudes method is able to maintain the 

running disparity within ±8 for the same test data set. Note that 

the running disparity varies in increments of two because a 

change in the state of a single bit causes the difference between 

the number of one bits and the number of zero bits to change 

by two. 

Another attribute of running disparity that is important to 

assessing the management methods is the dwell time at each 

running disparity value. The histograms in Fig. 4 and Fig. 5 

show that the Dynamic Priority method clustered the dwell 

time around zero with no dwell time greater than fifteen 

characters. The histograms in Fig. 6 and Fig. 7 show that the 

Minimum Sum of Magnitudes method performed similarly 

with no dwell time greater than fourteen characters. 

The Minimum Sum of Magnitudes method clearly provides 

the best performance for the test data set used. Since a random 

data set is unlikely to represent real-world SpaceWire packet 

statistics, the possibility exists of a pathological data set that 

produces a different result. 

 

 

Fig. 2.  Dynamic Priority Excursion Histogram 

 
Fig. 3.  Minimum Sum of Magnitudes Excursion Histogram
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Fig. 4.  Dynamic Priority Data Dwell Time Simulation Histogram 

 
Fig. 5.  Dynamic Priority Strobe Dwell Time Simulation Histogram 
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Fig. 6.  Sum of Magnitudes Data Dwell Time Simulation Histogram 

 
Fig. 7.  Sum of Magnitudes Strobe Dwell Time Simulation Histogram 
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I. IMPLEMENTATION CONCEPTS 

Simple concepts for implementing DC-balanced encoders 

and decoders are shown in Fig. 8 and Fig. 9. The model 

encoder used to evaluate the running disparity management 

methods use the encoder concept shown. Responsibility for the 

running disparity tracking is in the encoder, increasing its 

complexity. Because of the limited number of 10-bit codes 

available for DC-balanced encoding, development of an 

algorithmic method for translating the protocol characters into 

equivalent base codes is unlikely. The encoding lookup table 

shown in the Fig. 8 provides for arbitrary mapping of 

characters to base codes in a straightforward manner.  

The decoder lookup table requires more entries because it 

must decode multiple codes for each protocol character as well 

as detect illegal code values. Appropriate definition of the 

mapping between protocol characters and base codes can 

reduce the number of decoding table entries required. 

Note that the dimensions of the encoding and decoding 

tables are a major factor in establishing the gate count of an 

implementation. In addition, the complexity of the disparity 

tracking function can significantly affect the size of the 

encoder. 

II. SUMMARY 

The feasibility of using a 10-bit DC-balanced code as an 

alternative SpaceWire character-level encoding method has 

been evaluated. The results of that evaluation show that by 

using an appropriate running disparity management method, 

the Data and Strobe signals can be balanced within a bounded 

range. 

This assessment of the 10-bit DC-balanced code is based on 

digital modeling and simulation to determine the performance 

characteristics. Establishing more complete performance 

characteristics will require analog modeling and simulation as 

well as testing of a laboratory implementation. 
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Fig. 8.  Conceptual Encoder Diagram 

 
Fig. 9.  Conceptual Decoder Diagram 
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Abstract—This  paper  outlines  how  we  investigated  a  rare
behaviour  that  was  seen  every  few  hours  in  the  engineering
model of a spacecraft data network, which caused a SpaceWire
packet  to  be  truncated.   This  event  occurred  seemingly  at
random, a few times per day. The cause turned out to be timing-
related,  and  we  identified  an  interval  of  a  few  hundred
nanoseconds in which the system was vulnerable. A non-standard
feature of the 4Links Multi-link SpaceWire Recorder (MSR) and
the standard features of a 4Links Diagnostic SpaceWire Interface
(DSI)  were  used to  determine  these  timings  and to  reproduce
some of them experimentally. 

If one only has access to the links in a SpaceWire network, (i.e.
black-box testing), one has to utilise capable test equipment and
devise  a  sensitive  investigation  strategy  to  maximise  the
knowledge that can be discovered from monitoring the network
in depth. 

We initially built a pipeline of two 10X routers, connected by
SpaceWire,  which we fed from a DSI port  that  generated test
traffic. A second DSI port was used as the data sink at the other
end of the pipeline.  We exercised this pipeline using carefully-
crafted SpaceWire packets and monitored all of the links using
an  experimental  feature  of  the  4Links  MSR.  The  recordings
allowed  us  to  determine  the  buffering  characteristics  of  the
routers. We also enabled timeouts in the routers, and observed
the consequences when the router outputs were stalled for longer
than the timeout period. 

This  paper  describes  the  novel  test  equipment  feature,  the
techniques used to explore the behaviour of the 10X routers in a
laboratory setting, and the precise circumstances of the packet
spillage in a spacecraft’s data network. 

Index Terms— SpaceWire,  4Links  test  equipment,  ESA 10X
router, black-box testing. 

I. INTRODUCTION

When testing a SpaceWire [1] communication network, one
might have complete knowledge of the behaviour of all of the
components  involved,  or  one might  only have access  to the
external connections of these devices - the SpaceWire links. In
the latter case - black-box testing - one has to devise a testing

strategy that maximises the knowledge that can be discovered
from the external observations. 

In  the experiments reported in this paper,  we determined
the buffer sizes at the input and output of the ESA 10X router
[3],  as  well  as  its  behaviour  when  it  spills  packets  after  a
timeout. 

In addition, we observed timeouts on an ESA 10X router in
the engineering model of an ESA spacecraft, and discovered a
situation where packet loss occurred. 

II. STAND-ALONE MEASUREMENTS 

We first  explored the behaviour of  the 10X routers  in a
laboratory  setting.   We  set  up  a  pipeline  from  a  4Links
Diagnostic  SpaceWire  Interface  (DSI),  acting  as  a  traffic
generator, through two 10X routers, to another port on the DSI
that  acted  as  the traffic  sink.   Each  of  the SpaceWire  links
between these devices was passed through a 4Links Multi-link
SpaceWire Recorder (MSR), so that all of the link traffic could
be  recorded  and,  more  importantly,  time-tagged  so  that  the
precise time of transmission of each character on the links was
known.

The hardware configuration is shown in figure 1.

Fig.1. A pipeline through two 10X routers

The 4Links  Diagnostic  SpaceWire  Interface  provides  the
facility  to  vary  its  Flow  Control  Token  (FCT)  generation
algorithm away from the behaviour specified in the SpaceWire
standard.  Normally, this is done to investigate the flow-control
behaviour of a SpaceWire device-under-test.  In this instance,
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the mechanism was used by the receiving DSI to temporarily
stop the advertisement of any flow-control credit to the 10X
routers.  Data characters sent from the DSI into the pipelined
routers were therefore eventually blocked as the routers' input
and output buffers filled up.  The receiving DSI could then be
instructed  to  send  individual  FCTs,  which  each  allowed  a
group  of  eight  characters  to  flow  along  the  pipeline.   By
recording the precise sequence of events as these groups passed
through the routers, the characteristics of the routers could be
derived.

The novel aspect of this work is that an experimental mode
has  been  exploited  in  the  4Links  Multi-link  SpaceWire
Recorder to record time-tags, with a resolution of better than
2ns,  for  all  tokens  on  the  links  being  monitored  (except
NULLs).  The standard MSR will record time-tags at the start
and end of packets, but it does not provide an insight into the
gaps that appear within packets if they are blocked within, say,
a router.  The paper shows output from the prototype analysis
tool that was written to visualise this new data.

Our  final  experiment  in  the  laboratory  was  to  see  what
would happen when a router timed-out a link because it had
become blocked for too long.  We enabled this feature on the
link between the second router and the DSI.  By varying the
transmission time of FCTs from the DSI, a timeout could be
provoked  in  a  controlled  manner,  and  its  effects  could  be
measured.

III. LABORATORY EXPERIMENTS

A. Hardware Arrangement

The work performed in this section of the paper used the
following arrangement of equipment:

• Two 10X routers.
• One 4Links Diagnostic SpaceWire Interface (DSI) to

act as a data source and a data sink for the routers;
• One 4Links Multi-link SpaceWire Recorder (MSR) to

record  traffic  on three  bidirectional  SpaceWire  links
through  the  routers.  A non-standard  MSR recording
program was used - msr2.

• A laptop computer, running Ubuntu Linux, was used to
control the DSI and the MSR.

• A separate desktop PC was used to issue occasional
configuration commands to the 10X routers.

B. Observing the Buffering in the 10X Routers

Inspection of the 10X Router's VHDL source code suggests
that it has a 32-byte receive buffer.  We set out to confirm this.

The only way to obtain a measure of buffering in a pipeline
is to stall the sink end of the pipeline, and count the number of
bytes that can be sent into the pipelined buffers while no output
is consumed.  We were able to do this using the SpWIO feature
that  disables  its  automatic  generation  of  FCTs  in  each  DSI
receiver.  After sending the usual full set of seven FCTs during
link initialisation, it is possible to command the DSI (using its
/f 7. parameter) not to send any more FCTs, except under
subsequent manual control.

Putting all of this together,  and sending a stream of 256
data bytes lets us see what blocks in the routers' buffers:

 
java jar SpWIO.jar /f 7. /d 1 /u 192.168.0.252

@1 7 8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111 112 113 114
115 116 117 118 119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150 151 152 153
154 155 156 157 158 159 160 161 162 163 164 165 166
167 168 169 170 171 172 173 174 175 176 177 178 179
180 181 182 183 184 185 186 187 188 189 190 191 192
193 194 195 196 197 198 199 200 201 202 203 204 205
206 207 208 209 210 211 212 213 214 215 216 217 218
219 220 221 222 223 224 225 226 227 228 229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244
245 246 247 248 249 250 251 252 253 254 255 eop

@8 fct fct fct

Fig.2. Sending packets and FCTs using the SpWIO program

The results of this stimulus, shown in figure 2, may be seen
in the following three plots, which illustrate the same network
activity on different scales.  Notice that activity on  the eight
ports of the MSR is plotted on eight horizontal rows. Each non-
NULL  character  is  represented  with  the  correct  width.  The
links to the DSI connected to the MSR on ports 1 and 8 (see
figure 1) were being run at 10Mb/s, while those connected to
the 10X routers were being run at 100Mb/s. The data stream of
256 bytes plus two path address bytes was long enough to fill
each router buffer  completely,  and allowed  for  more data to
propagate along the pipeline when the DSI at the sink was used
to manually send FCTs.

Figure 3 shows the initial filling of the pipeline with a data
stream that was long enough to block all the way back to the
output of the DSI.

56 bytes were able to flow right along the pipeline to the
receiving DSI port,  from where no FCTs were generated in
return.  35 bytes were buffered in Router B, and 35 bytes were
buffered in Router A.  It is impossible to say how many bytes
were stored in the routers' receive buffers and how many were
in their transmit buffers - but 32 bytes in the receive buffers
(c.f. the four FCTs generated on start-up) and up to four bytes
(a 32-bit word) in the transmit buffers would be plausible.

Due to the blockage at the sink end of the pipeline, the DSI
transmission was stalled after two header bytes plus the first
126 bytes of the packet had been sent.

Figure 4 expands the link's start-up phase.  The DSI sent
seven FCTs to ports 1 and 8, and the 10X routers on these links
sent four in the opposite direction in each case.  Remembering
that  the  DSI  does  not  report  the  FCT  that  is  part  of  the
SpaceWire link start-up state machine, a total of six and three
FCTs, respectively, are shown in this plot.  The 10X Routers
had  already  been  started  before  this  recording,  so  the  flow
control tokens between them are not recorded here.
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Fig.3. Data bytes filling a blocked pipeline

Fig.4. FCTs on link start

Fig.5. Traffic flow in response to single FCTs

Once  the  pipeline  had  become  full,  the  script  twice
instructed the receiving DSI port to transmit a single FCT to
Router B.  In turn, these permitted eight more bytes to be sent
from Router  B  to  the  DSI,  and  an  FCT could also  be  sent
further back along the pipeline from Router B to Router A.
Likewise,  another FCT was sent from Router A back to the
transmitting DSI port.  This is shown in figure 5, and illustrates
the correct flow control behaviour.

C. Observing a link timeout in a 10X Router

In another experiment, router B was set up to spill blocked
packets after a 1.3s timeout.  Figure 6 shows that a  burst of
three FCTs was sent from the DSI back down the pipeline to
Router B.  Each of these  FCTs  caused eight further  bytes  to
flow into the DSI, and an extra FCT to be sent back to Router
A. 

After the initial burst of three FCTs, an extra FCT was sent
(by hand) after a delay that was long enough for the link from
Router B to time out.  It  can be seen that five bytes of data
were  sent  out  of  the  router  before  the  remaining  data  was
spilled and the (expected) EEP was transmitted to the DSI.
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Fig.6. Observing a link timeout

IV. OBSERVING THE 10X ROUTER IN THE FIELD

We used the information reported above to understand our
observations  of  a  10X  router  that  was  running  in  the
engineering model of a spacecraft.

Our goal was to investigate the very occasional loss of an
uplinked telecommand, which occurred seemingly randomly, a
few times per day.  We monitored two SpaceWire links - one
that carried the initial command, and the other that connected
to  the  destination  instrument  -  by  passing  them  through  a
4Links Multi-link SpaceWire Recorder, as shown in figure 7.

Fig.7. Monitoring SpaceWire links through a 10X Router

The 10X router  was  configured  to  disconnect  its  output
links after a period of inactivity (Automatic deactivate driver
mode) and to restart these links when they were required again
(Start on Request mode).

Traffic  within  the  spacecraft  was  scheduled  on  a  cyclic
basis with the majority of activities taking place every eighth of
a  second,  and  with  a  one  second  SpaceWire  timecode
transmission. 

Between  each  of  the  eighth-second bursts  of  SpaceWire
traffic,  the  SpaceWire  output  link  from  the  router  to  the
instrument  was  allowed  to  time-out  and  disconnect.   The
disconnect timeout was set to 0.01024s, and the 10X data sheet
[3]  specifies  a  2s  tolerance  on  this  value.   The  MSR
typically reports the time from the last use of the link to its
disconnection as 0.01028s, once it has detected the time-out via
the receiver state machine.  This minor difference illustrates a
limitation of black-box testing.

All  messages  within  the  part  of  the  spacecraft  that  we
observed were carried in SpaceWire Remote Memory Access
Protocol (RMAP) [2] packets.

Simulated  telecommands  were  injected  into  the  system
every few seconds.

A  standard  Multi-link  SpaceWire  Recorder  data  capture
was performed on these two links over a period of 17.77 hours.
This  created  a  logging  file  of  844.6MB.   Analysis  of  this
logging  file  demonstrated  that  almost  all  of  the  SpaceWire
RMAP packets were successfully passed through the router to
the instrument and their results were returned successfully.

Various behaviours could be observed:
• An RMAP read or write transaction, issued when the

router's output link was active, was always successful.
• An  RMAP  transaction,  started  whilst  the  router's

output link was disconnected, was also reliable - the
link being restarted link before transmission.

• An RMAP transaction issued immediately after a link
had  been  shut  down  and  disconnected,  was  also
successfully transferred.

• However,  over  nearly  18  hours  of  recording,  four
RMAP  packets  (corresponding  to  uplinked
telecommands)  were  observed  to  be  spilled  in  the
router and a truncated EEP packet was generated on
the output  link of  the router.   These  four command
packets  were  all  scheduled  for  transmission  through
the SpaceWire network at the same time in the one-
second schedule, just over 10ms after the last message
and therefore  just  as  the  router  was  timing  out  and
disconnecting its output link.

The  time  between  the  presentation  of  the  telecommand
RMAP packet  to  the router  and any timeout before  onward
transmission  on  the  SpaceWire  link  to  the  instrument  was
calculated  in  each  case.   There  were  13737  telecommand
packets in total.  Of these:

• The vast majority of these packets arrived at, and were
forwarded  by,  the  router  before  the  link  to  the
instrument timed-out and disconnected - see figure 8. 

• 170 more telecommand packets arrived after the output
link  had  disconnected,  and  they  were  successfully
transmitted to the instrument once the link had been
restarted - see figure 9. 

• The remaining  four  telecommand  packets  were  four
out of the seven packets that arrived very close to the
time that the timeout was being triggered - just over
4s  before  the  MSR  time-tagged the  link
disconnection event. 
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124:23:21:54.254 473 494 4s [6]  1>2  Data @0000   90 01 4C 20  4A 10 33 00  00 00 17 D0  00 03 26 A4  (16 bytes)
                                  1>2  EOP at 124:23:21:54.254 489 495 7s (SOP + 16.001us) ~8.0 Mb/s
124:23:21:54.254 476 659 7s [6]  3>4  Data @0000   90 01 4C 20  4A 10 33 00  00 00 17 D0  00 03 26 A4  (16 bytes)
                                  3>4  EOP at 124:23:21:54.254 492 659 7s (SOP + 16.000us) ~8.0 Mb/s
124:23:21:54.254 496 453 1s [6]  3<4  Data @0000   4A 01 0C 00  90 10 33 00  00 03 26 BE  EB 92 00 00 ... (819 bytes)
                                  3<4  EOP at 124:23:21:54.255 315 455 7s (SOP + 819.003us) ~8.0 Mb/s
124:23:21:54.254 499 557 1s [6]  1<2  Data @0000   4A 01 0C 00  90 10 33 00  00 03 26 BE  EB 92 00 00 ... (819 bytes)
                                  1<2  EOP at 124:23:21:54.255 318 563 7s (SOP + 819.007us) ~8.0 Mb/s
124:23:21:54.265 595 643 7s [6]  1>2  Data @0000   90 01 7C 20  4A 00 02 00  00 00 29 01  00 00 02 5C   DC BA 5F  (19 bytes)
                                  1>2  EOP at 124:23:21:54.265 614 645 1s (SOP + 19.001us) ~8.0 Mb/s
124:23:21:54.265 599 886 4s [6]  3>4  Disconnect
124:23:21:54.265 601 310 4s [6]  3<4  Disconnect
124:23:21:54.275 896 467 7s [6]  3>4  Data @0000   90 01 7C 20  4A  (5 bytes)
                                  3>4  EEP at 124:23:21:54.275 901 467 7s
124:23:21:54.286 182 486 4s [6]  3>4  Disconnect
124:23:21:54.286 183 886 4s [6]  3<4  Disconnect

125:03:17:06.629 437 995 7s [6]  1>2  Data @0000   90 01 4C 20  4A 10 33 00  00 00 13 20  00 03 20 2D  (16 bytes)
                                  1>2  EOP at 125:03:17:06.629 453 995 7s (SOP + 16.000us) ~8.0 Mb/s
125:03:17:06.629 441 138 4s [6]  3>4  Data @0000   90 01 4C 20  4A 10 33 00  00 00 13 20  00 03 20 2D  (16 bytes)
                                  3>4  EOP at 125:03:17:06.629 457 138 4s (SOP + 16.000us) ~8.0 Mb/s
125:03:17:06.629 460 891 7s [6]  3<4  Data @0000   4A 01 0C 00  90 10 33 00  00 03 20 5A  A4 F1 0F FF ... (813 bytes)
                                  3<4  EOP at 125:03:17:06.630 273 895 7s (SOP + 813.004us) ~8.0 Mb/s
125:03:17:06.629 464 235 7s [6]  1<2  Data @0000   4A 01 0C 00  90 10 33 00  00 03 20 5A  A4 F1 0F FF ... (813 bytes)
                                  1<2  EOP at 125:03:17:06.630 277 243 7s (SOP + 813.008us) ~8.0 Mb/s
125:03:17:06.640 547 345 1s [6]  1>2  Data @0000   90 01 7C 20  4A 00 02 00  00 00 29 01  00 00 02 5C   DC BA 5F  (19 bytes)
                                  1>2  EOP at 125:03:17:06.640 566 346 4s (SOP + 19.001us) ~8.0 Mb/s
125:03:17:06.640 551 566 4s [6]  3>4  Disconnect
125:03:17:06.640 552 998 4s [6]  3<4  Disconnect
125:03:17:06.640 576 246 4s [6]  3>4  Data @0000   90 01 7C 20  4A 00 02 00  00 00 29 01  00 00 02 5C   DC BA 5F  (19 bytes)
                                  3>4  EOP at 125:03:17:06.640 595 246 4s (SOP + 19.000us) ~8.0 Mb/s
125:03:17:06.640 599 435 7s [6]  3<4  Data @0000   4A 01 3C 00  90 00 02 7F  (8 bytes)
                                  3<4  EOP at 125:03:17:06.640 607 435 7s (SOP + 8.000us) ~8.0 Mb/s
125:03:17:06.640 602 543 7s [6]  1<2  Data @0000   4A 01 3C 00  90 00 02 7F  (8 bytes)
                                  1<2  EOP at 125:03:17:06.640 610 543 7s (SOP + 8.000us) ~8.0 Mb/s
125:03:17:06.650 883 070 4s [6]  3>4  Disconnect
125:03:17:06.650 884 390 4s [6]  3<4  Disconnect

124:23:21:49.254 383 070 4s [6]  1>2  Data @0000   90 01 4C 20  4A 10 33 00  00 00 17 D0  00 03 26 A4  (16 bytes)
                                  1>2  EOP at 124:23:21:49.254 399 071 7s (SOP + 16.001us) ~8.0 Mb/s
124:23:21:49.254 386 342 4s [6]  3>4  Data @0000   90 01 4C 20  4A 10 33 00  00 00 17 D0  00 03 26 A4  (16 bytes)
                                  3>4  EOP at 124:23:21:49.254 402 342 4s (SOP + 16.000us) ~8.0 Mb/s
124:23:21:49.254 406 114 4s [6]  3<4  Data @0000   4A 01 0C 00  90 10 33 00  00 03 26 BE  EB 6A 00 00 ... (819 bytes)
                                  3<4  EOP at 124:23:21:49.255 225 114 4s (SOP + 819.000us) ~8.0 Mb/s
124:23:21:49.254 409 439 7s [6]  1<2  Data @0000   4A 01 0C 00  90 10 33 00  00 03 26 BE  EB 6A 00 00 ... (819 bytes)
                                  1<2  EOP at 124:23:21:49.255 228 447 7s (SOP + 819.008us) ~8.0 Mb/s
124:23:21:49.265 489 621 1s [6]  1>2  Data @0000   90 01 7C 20  4A 00 02 00  00 00 29 00  00 00 02 D0   DC BA 5F  (19 bytes)
                                  1>2  EOP at 124:23:21:49.265 508 622 4s (SOP + 19.001us) ~8.0 Mb/s
124:23:21:49.265 493 251 7s [6]  3>4  Data @0000   90 01 7C 20  4A 00 02 00  00 00 29 00  00 00 02 D0   DC BA 5F  (19 bytes)
                                  3>4  EOP at 124:23:21:49.265 512 251 7s (SOP + 19.000us) ~8.0 Mb/s
124:23:21:49.265 515 959 7s [6]  3<4  Data @0000   4A 01 3C 00  90 00 02 7F  (8 bytes)
                                  3<4  EOP at 124:23:21:49.265 523 959 7s (SOP + 8.000us) ~8.0 Mb/s
124:23:21:49.265 519 349 1s [6]  1<2  Data @0000   4A 01 3C 00  90 00 02 7F  (8 bytes)
                                  1<2  EOP at 124:23:21:49.265 527 349 1s (SOP + 8.000us) ~8.0 Mb/s
124:23:21:49.275 806 678 4s [6]  3>4  Disconnect
124:23:21:49.275 808 062 4s [6]  3<4  Disconnect

Fig.8. The 19-byte command is immediately sent to the router's output port

Fig.9. The 19-byte command is transmitted when the link restarts

Fig.10. The 19-byte command is spilled as the output link is disconnected

The packets affected had the three longest times and
the  seventh-longest  time  between  the  arrival  of  the
packets and the disconnection of the outgoing link at
the router, so  why all  seven  were not affected is not
clear. However, the arrival time of these seven packets
all  fell  within  150ns  of  each  other,  relative  to  the
following  link  disconnection.  Once  the  router
committed to shutting down its output link, it appears
to have treated the arriving packet as if it was blocked,
rather than simply pausing while the link restarted

again.  Thus, the four failing packets were truncated by
the router  and spilled when it restarted its output link
about  10ms  after  the  timeout,  and  only  their  five
leading bytes, plus an EEP, were eventually sent to the
instrument (where they were discarded as incomplete).
See figure 10 for these timings.  Notice that the normal
link restart, shown in figure 9, occurs about 25s after
the packet arrives  (as specified in [1], figure 8-2), not
10ms as for the erroneous case.
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The five-character output packet with the EEP termination  is
identical  in nature to the truncated packets  generated by the
10X router in the laboratory experiments described earlier.  It
is therefore likely that the 10X router, if it receives a packet at
almost exactly the time when it decides to disconnect one of its
output links,  treats  it  as  blocked rather than buffering it  for
transmission when the link is restarted.  This vulnerable arrival
period appears to be around 150ns in duration, or less than two
bit intervals at 10Mb/s.

There is not a good correlation in the differences of times
from  the  last  use  of  the  outgoing  SpaceWire  link  to  the
instrument and the arrival time of the next telecommand packet
as a predictor for this failing behaviour - the 2s tolerance on
the timeout blurs this measure.

V. RESULTS

Analysis of our measurements shows that the 10X router
appears  to have a 32-byte input buffer,  and that  up to three
further bytes are stored in the router's switching fabric and its
output buffers when the output link is blocked. Flow control
tokens were propagated properly by the routers throughout.

When used in a real system, with link disconnection after
an idle period, packet loss was observed if the packet arrived at
the 10X router in a predictable very brief interval before a link
disconnection.   This  was  sufficiently  disruptive  that  the
spacecraft's timing schedule had to be redesigned, calling into
question the benefit of this operating mode.

VI. CONCLUSIONS

Using  test  equipment  with  very  fine-grained  time-tag
recording  capabilities  allows  a  precise  understanding  of  the
behaviour  of  SpaceWire  devices  to  be  determined.   These
results  were  fed  into  the  development  stages  of  an  ESA
spacecraft  mission,  where  they  helped  to  resolve  some
problems with the configuration of a 10X router.
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Abstract—SpaceWire is a bus standard for high speed data 

transmission in aerospace. With the complexity of application it 

is very important to guarantee the reliability and stability of the 

transmission system. Since the system exhibits both probabilistic 

and nondeterministic behavior, this paper applies probabilistic 

model checking to make quantitative formal analysis for 

SpaceWire. We model the process of the link initialization and 

link maintenance of the protocol with probabilistic model 

checking. Sender model, receiver model and channel model are 

set up respectively. Owing to that the packets may be lost during 

transmission, the probability of losing the packet is considered in 

channel model, which is more close to the reality. The models are 

encoded as a Markov decision process (MDP) for analysis by the 

probabilistic model checker PRISM.  The paper verifies key 

properties in Probabilistic Computation Tree Logic (PCTL), 

including the maximum probability of the successful initialization 

in both directions within T time, and the maximum probability of 

maintaining link during data transmission under constraints. A 

systematic level model is built and the probability of losing 

packet with constraints is evaluated. The quantitative verification 

results provide a useful reference for the design, implementation 

and application of SpaceWire. 
Index Terms—SpaceWire, Probabilistic Model checking, 

Markov Decision process, PRISM 

I. INTRODUCTION 

The European Space Agency proposes SpaceWire bus 

standard based on IEEE1355-1995 and IEEE1596.3 (LVDS). 

SpaceWire provides a unified high-speed data processing 

infrastructure for connecting together high data-rate sensors 

and downlink telemetry subsystem [1]. In recent years 

SpaceWire bus technology is mainly used in aerospace field. It 

requires the internal communication network is capable of high 

speed, reliability and resistance to radiation. As the 

environment of SpaceWire’s application is harsh, it is very 

important to guarantee the reliability. It is significant to verify 

the correctness of SpaceWire design [2]. 

Nowdays, most researchers use testing and simulation to 

analyze SpaceWire. For example, Harbin Institute of 

Technology simulates every functional module of SpaceWire 

by constructing test bench [3]. ASA/Goddard Space Flight 

Center provides the Total Verification System (TVS) to test 

SpaceWire [4]. Such traditional research methods have some 

limitations. On the one hand, the traditional verification 

methods can’t cover all paths of execution for a large and 

complex system. On the other hand, the traditional verification 

methods are often used to test the known types of fault and 

difficult to find subtle fault [5]. Formal verification method is 

proposed to model mathematically, and then using strict 

mathematical reasoning proves the correctness of the design. 

There are two fundamental techniques in formal verification: 

model checking and theorem proving [6]. Li Li-ming etc. 

verify equivalence of the DS code design and specification of 

SpaceWire bus physical level by theorem proving [7]. Beijing 

Engineering Research Center of High Reliable Embedded 

System etc. propose model checking to verify the SpaceWire 

error detection mechanism [8]. However, model checking and 

theorem proving can only have qualitative analysis on 

SpaceWire.   

In order to systematically validate SpaceWire protocol 

under uncertain environment, this paper proposes probabilistic 

model checking to build formal model and make verification. 

Probabilistic model checking, an automatic verification 

technique for the systems that exhibit random behavior, can be 

applied to the analysis, design and verification of such 

protocols. The basic idea is to construct a mathematical model 

that captures the system’s behavior, and then use it to enable a 

range of exhaustive and quantitative analyses of properties. 

Like traditional model checking, this technique involves 

constructing, from a description in some high-level formalism, 

a finite-state model of a real-life system, but additionally 

including information about the likelihood and timing of 

transitions between states occurring [9, 10, 11]. 

This paper is organized as follows: Section II introduces the 

exchange level of SpaceWire. Section III is probabilistic model 

checking method. It contains a brief description of MDP and 
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PCTL. Section IV describes formal modelling of SpaceWire. 

Section V presents several properties in PCTL for verification. 

The last section is a conclusion to the paper. 

II. INTRODUCTION OF THE EXCHANGE LEVEL OF SPACEWIRE 

The exchange level is responsible for making a connection 

across a link and for managing the flow of data across the link. 

The exchange level contains mainly sending module, receiving 

module, control module. Sending module is responsible for 

encoding data and transmitting it using the DS encoding 

technique. Receiving module is responsible for receiving 

NULL,FCT and Time-Code and decoding the DS signals (Din 

and Sin) to produce a sequence of N-Chars(data, EOP, EEP) 

that are passed on to the host system. The main function of 

control module is to control conversion between multiple states. 

Task of exchange lever is divided into two stages: link 

initialization and normal operation. Initialization is described in 

Fig.1. (a), normal operation is described in Fig.1. (b). 
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Fig. 1.  Link initialization and normal operation 

Link initialization: link A and link B remains in the 

ErrorReset state for approximately 6.4 µs and then moves to 

the ErrorWait state. Link A and link B can’t send and receive 

any characters, when they are in the ErrorReset state. In the 

ErrorWait state link A and B can’t send any characters, but link 

A and B can receive NULLs. The link interface remains in the 

ErrorWait state for 12.8 µs and then moves into the Ready state. 

The link interface moves from the Ready state to the Started 

state as soon as the link is enabled. In the Started state the link 

A and B start sending NULLs. It remains in this state until the 

link A and B detects that a NULL is received over the link or 

until a connection timeout expires. The connection timeout is 

set to a nominal 12.8 µs. If a NULL is received then the link 

interface moves to the Connecting state. If no NULL is 

received within 12.8 µs it moves to the ErrorReset state. In the 

latter case the link interface goes through the reset sequence 

(ErrorReset, ErrorWait, Ready) and attempts to make a 

connection again a short time later. In the Connecting state the 

link interface sends some FCTs and waits for the reception of 

an FCT. If an FCT is received the link interface moves on to 

the Run state. If an FCT is not received within 12.8 µs then 

link connection was not made properly, so the link interface 

returns to the ErrorReset state. The link interface then goes 

through the reset sequence (ErrorReset, ErrorWait, Ready) and 

attempts to make a connection again a short time later. 

Link normal operation: When the link enters the Run state 

it starts normal operation, sending and receiving data and 

control characters. These characters are NULLs, FCTs, Time-

Codes, N-chars. 

III. PROBABILISTIC MODEL CHECKING 

A. Probabilistic Model 

Probabilistic model checking is based on the construction 

and analysis of a probabilistic model. It has been applied to a 

variety of different types of model, such as Markov Decision 

Processes (MDPs). MDPs are widely used to model systems 

that exhibit both probabilistic and nondeterministic behavior. 

Probability is employed to quantify aspects of system behavior 

where probability distributions are known. Nondeterminism is 

used to model unknown environments [12]. Since the behavior 

of SpaceWire is stochastic, we build formal model based on 

MDP. Properties are then expressed using Probabilistic 

Computation Tree Logic (PCTL) [13]. 

Definition1. A labeled Markov decision process is a tuple 

( , , , )M S S Steps L


  

 S is the finite set of states 

 S S is the initial state 

 ( ): 2
Act Dist SSteps S  is the transition probability function 

where Act is a set of actions and Dist(S) is the set of 

discrete probability distributions over the set S  

 : 2
APL S  is a labelling with atomic propositions 

In an MDP, several actions may be available in a given 

state, each corresponding to a probability distribution. The 

behavior of an MDP M is as follows. First, a choice between 

one or more actions is made nondeterministically; secondly, for 

the chosen action, a successor state is chosen randomly, 

according to the transition probability function.  

B. Probabilistic Computation Tree Logic 

Probabilistic Computation Tree Logic (PCTL) is an 

extension of the non-probabilistic Computation Tree Logic 

(CTL) [14,15]. 

Definition2. The syntax of PCTL is given by: let a be an 

atomic proposition, used to identify states of interest, 

[0,1]p is a probability. The symbols X and U represent the 

usual operators for next and until.  , , ,     ，m . 

state formulas:
 

:: true | | | | [ ]
p

a p        

path formulas: 

:: | |mX UU        

56



 

 

Definition3. The semantics of PCTL formulae is defined: 

A state sS satisfies  , denoted |s  ,if the following holds: 

| [ ] ( )
p s

s pp p


    

| [ ] ( )k
r s C ks rCR E X


   

| [ ] ( )r s Fs rR F E X


    

IV. FORMAL MODELLING OF SPACEWIRE 

In order to verify systematic properties and analyze the 

effect of environment on SpaceWire, the paper models the 

process of the link initialization and link maintenance of the 

protocol based on MDP. Modelling structure of SpaceWire is 

shown in figure 2. The models are sending model, receiving 

model and channel model. SpaceWire provides a full-duplex 

communication network, so we build two channel models: 

sending channel and receiving channel.  

sender
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channel

send0

receiver

sending 

channel

rec0

rec
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reset reset0

 

Fig. 2.  Model Structure  
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Fig. 3.  The model of sender 

Figure 3 is sender model and describes the process of the 

link initialization and normal operation. The model commences 

in the location Reset. X of the model is clock variable. The link 

waits approximately 6.4µs in the location Reset before the 

transitions from Reset to Wait. After 12.8µs the link of the 

model moves to the location Start directly. In Start, the link 

can send NULLs and remains 12.8µs at most. The transition is 

labelled with the event send to inform the sending channel that 

the link will send NULLs. The link may receive a NULL by 

means of the event rec within 12.8µs. If the link receives a 

NULL within 12.8µs, it will move to the location Bridge. If the 

link doesn’t receive a NULL after 12.8µs, it will move to the 

location Reset and attempt to make a connection again. The 

location Bridge is a committed location, and therefore must be 

left immediately. The link sends a reset event to inform 

sending channel to clear the sending buffer from the location 

Bridge to the location Connect. In Connect the link can send 

FCTs and NULLs and remains 12.8µs at most. If the link 

doesn’t receive a FCT after 12.8µs, it will move to the location 

Reset to restart a connection. When the link receives a FCT 

within 12.8µs, it will move to the location Run. The link 

initialization is successful when the receiver model also gets to 

the location Run.  

After Run the link will reach normal operation. The model 

describes the process that the link sends packets from the 

location Run0 to Run1. We make link send 2 FCTs in the 

location Run0 so that we can make formal verification for the 

process of the link normal operation. In order to indicate the 

link is still active the link shall send NULL in location Run1. 

Reset

y<=64

Wait

y<=128

y=64

y:=0

                

y=128

y:=0

send0

Start

y<=128

y=128

y:=0

rec0

y:=0

Bridge

y<=0

Connect

y<=128
Run

true

Run2

true

reset0

y=0

reset0
y=0 send0 

send0 

j=2

Run1

true rec0

y:=0

y=128

y:=0

 

Fig. 4.  The model of receiver 

Figure 4 is receiver model and describes the process that 

the process of the link initialization and normal operation. The 

process of this model is similar to figure 3. Here we don’t 

describe this figure in detail. The send0 event informs the 

receiving channel the link will reply NULLs and FCTs in the 

location Start and Connect. The link will inform the sending 

channel to clear receiving buffer by reset0 event. When the 

sender model and receiver model gets to the location Run, both 

ends of the link initialization is successful and the link starts 

normal operation. The model presents the process that the link 
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receives the packets from the location Run1 to the location 

Run2. We can check the properties of link normal operation by 

the transition from the location Run1 to the location Run2.  The 

link will move to the location Run2 from the location Run1 if 

the link receives 2 N-Chars. The link shall send NULL to 

indicate the link is still active in location Run2. 
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n:=n+1
(2) send n=3 (3) reset
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j=3,j:=3
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Fig. 5.  channel 

The packets may be lost during transmission .The channel 

model sets probability of losing packets .We make the 

assumption that the probability of losing packets is  0,1p . 

Figure 5(a) describes the process that the sender sends packets 

to receiver through the sending channel. We create a sending 

queue and a receiving queue in the sending channel model. The 

size of the sending and receiving queue is three. The box 

labelled with four transitions which surrounds the model 

denotes that these transitions are available in all of the 

locations of the model. Transition (1) describes that if the 

sending queue is not full, the sending channel receives a send 

event from sender model and adds the corresponding packet to 

the sending queue. Transition (2) describes that if the sending 

queue is full, the sending channel loses the packets. Transition 

(3) describes that the sending queue is cleared by a reset event 

from the sender model and setting variable n to zero. Transition 

(4) describes that the receiving queue is cleared by a reset0 

event from the receiver model and setting variable j to zero.   

The sending channel is sending packets to the receiver from 

the location Free to Busy. There are three transitions in Busy. 

The receiving queue is full by setting variable j to three and the 

packets are lost. The receiving queue is not full if variable j is 

less than three. The sending channel adds the packet to the 

receiver with the probability 1-p. The packet is lost with the 

probability p by the sending channel. The sending channel is 

free from the location Lost and Get to Free. The sending 

channel adds the packet to the receiver model by event rec0 

from the location Get to Free. 

Figure 5(b) describes the process that the receiver sends 

packets to the sender through the receiving channel. The 

transition will happen from the location Free to Busy If the 

receiving channel receives event send0 from the receiver. The 

packet is lost by the receiving channel with the probability p 

from the location Busy to Lost. The packet is received by the 

sender with the probability1- p. The receiving channel informs 

the sender that the packet is received by the event rec from the 

location Get to Free. 

V. PROBABILISTIC ANALYSIS AND VERIFICATION 

PRISM [16] provides model checking for several types of 

probabilistic models: discrete-time Markov chains and Markov 

decision processes. PRISM uses a uniform modelling language 

for all the probabilistic models that it supports. This is a textual 

language [17]. This paper uses PRISM to make formal 

verification. The properties are represented by formulae in the 

probabilistic logic PCTL. We now report on the probabilistic 

model checking results. 

Prop.1: When the link initialization is successful at first try, 

the maximum probability is shown as Fig 6 in which the 

probability of channel losing packet is different. In PCTL the 

property is expressed by: Pmax=? [F s=7&r=7&times=1]. 

 

Fig. 6.  result of property 1 

The horizontal axis represents the probability of channel 

losing packet. When the link initialization is successful at first 

try, the maximum probability is represented in vertical axis. It 

indicates that the higher the probability of losing packet is, the 

lower the maximum probability is in Fig 6. As the link can 

continue to send NULLs and FCTs within 12.8µs in the state of 

Started and Connecting during initialization, the maximum 

probability is still high when the probability of losing packet is 

increasing.  

Prop.2: The minimum time of link initialization is 

presented in Fig 7.In PCTL the property is expressed by: 

Rmin=? [F s=7&r=7]. 
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Fig. 7.  result of property 2 

Fig 7 shows the minimum expected reward to initialize 

successfully. The result shows that it will take at least 51 time 

units to initialize successfully. The actual time is 4 times as 

much as the model’s time, so it spends at least 204 time units 

(20.4µs) to initialize. It has 64 time units (6.4µs) and 128 time 

units (12.8µs) delay in the states of ErrorReset and ErrorWait. 

Then it takes 12 time units (12µs) to send a NULL and an FCT. 

Prop.3: When the link initialization is successful, the 

maximum probability within T time is shown in Fig8. In PCTL 

the property is expressed by: Pmax=? [F s=7&r=7&t<T]. 

 

Fig. 8.  result of property 3 

There are four curves in the graph. The light green curve 

shows the verification results when T equals 54. The red curve 

is the results of which the time T is 57. When the time T is 60 

and 63, the verification results are green curve and blue curve. 

For the same probability of losing packet p, the result that T 

equals 63 is bigger than the others’ result. The reason is that 

the link can send more NULLs and FCTs when the time T 

increases. According to the result of verification in the graph, 

we can limit time for the link initialization. 

Prop.4: When the link starts normal operation, the 

maximum probability within T time is shown in Fig 9. In 

PCTL the property is expressed by: Rmin=? [F 

s=10&r=9&t<T]. 

 

Fig. 9.  result of property 4 

With the increasing of time T the maximum probability is 

higher at the same value of p. Combining Fig 8 and Fig 9 it 

shows that the maximum probability of Fig 9 is lower than Fig 

8 at the same value of p and T. The reason is that link 

initialization is first reached before link normal operation. The 

blue curve in which T is equal to 63 is almost same with the 

green curve in which T equals 60. We can infer that the curve 

will be stable after the condition in which T is more than 63. 

VI. CONCLUSION 

This paper applies probabilistic model checking to make 

quantitative formal verification for the exchange level design 

of SpaceWire. Firstly, the exchange level of SpaceWire is 

modeled abstractly on the basis of MDP. Sender model, 

receiver model and channel model are included. Then the paper 

verifies key properties of SpaceWire by PCTL. The properties 

are related to the maximum probability in the condition of 

which link initialization is successful and the link reaches the 

normal operation. The quantitative analysis for SpaceWire is 

carried out by probabilistic model checking and the results of 

quantitative verification can provide a useful reference for the 

design, implementation and application of SpaceWire. 
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Abstract— The SpaceWire Physical Layer Tester (SPLT) is a 

device designed to support margin testing of the physical level of 

SpaceWire devices. This paper gives an overview of some useful 

tests that can be performed with the STAR-Dundee SPLT, whose 

hardware was introduced at the 2011 SpaceWire Conference [1]. 

The software used to control the SPLT to conduct margin and 

production tests is also introduced. 

 

The SPLT's unique Low Voltage Differential Signalling 

(LVDS) transmitters can be configured through software to 

simulate various forms of signal degradation. 

The platform software can perform margin testing on 

individual characteristics of the LVDS transmitters.  A start 

point is set for the desired parameter (for example Voltage 

swing) and fixed values for all other transmitter characteristics 

are configured.  The test parameter is then progressively 

degraded by the software until the SpaceWire link disconnects.  

Performing margin testing on all of the variables will give an 

envelope outside of which the system will cease to function.  

Margin test data may be used to define a set of production 

parameters under which a Unit Under Test (UUT) is expected to 

operate.  This data is fed into a production test feature of the 

software platform for testing and validation of flight hardware.  

The production test feature manually, or automatically, explores 

the UUT's performance at the extremes of the production 

parameters and prints out a results sheet detailing the tests 

performed, and any failures that have occurred. 

The SPLT also features high speed analogue buffers on either 

end of the LVDS receiver termination resistors.  Measurements 

are presented of the tests outlined above using an oscilloscope 

interfaced through these buffers.  The eye pattern is observed 

and verified using masks on oscilloscope software. 

Index Terms—Physical Layer, Software, Margin, Production, 

Test, LVDS, Eye Pattern, SpaceWire 

I. INTRODUCTION 

The SpaceWire Physical Layer Tester is a new test unit 

from STAR-Dundee that supports margin testing of the 

physical layer of SpaceWire. It is able to operate in two 

principal modes: unit test mode and system test mode. 

In unit test mode the SPLT is connected to the unit under 

test and sources the SpaceWire packets used during the testing. 

The SPLT is able to manipulate the physical level signals, 

modifying the data to strobe skew, the LVDS positive and 

negative signal skew, the LVDS differential signal level and 

the LVDS common mode skew. It can also add controlled jitter 

to the LVDS signals. The unit under test (UUT) receives the 

aberrated LVDS signals and will operate normally until they 

become too severe. At this point the UUT will receive and 

detect errors on the line and disconnect the SpaceWire link. 

This disconnection is detected by the SPLT and used to 

determine the margin of operation 

 In system test mode the SPLT is placed in the SpaceWire 

link between two units and both units are tested at the same 

time. Each unit sends packets to the other unit. The SPLT 

modifies the physical level signals to assess the margins of the 

system.  

The SPLT has specialised LVDS drivers which are used to 

measurably control the offset, swing, slew, skew and jitter 

characteristics of its transmitted SpaceWire signals.  A UUT 

will disconnect the link when the SpaceWire signal received 

from the SPLT is sufficiently deteriorated to prevent recovery 

of its bit stream.  The envelope of aberrations under which the 

UUT is able to sustain a SpaceWire link can then be 

determined, for example the amount of data to strobe skew that 

can be sustained when all the other LVDS signal parameters 

are nominal. 

Application software provided with the SPLT  supports 

both margin testing and production testing. These separate 

functions make it easy to determine the operational margins of 

a UUT and to then define on-going test criteria to ensure that 

these margins are met during production. 

The SPLT software also provides an application 

programming interface (API) to allow users to integrate SPLT 

functionality into their own applications.  

II. MARGIN TESTING 

The margin testing software can be used to determine the 

amount of signal degradation that a UUT can cope with. The 

user can set the initial amount of degradation to be applied to 

the signal for various different types of signal aberration. The 

software will then automatically increase the amount of 

degradation that is applied to the signal for a chosen type of 

aberration and the test will stop as soon as a failure is detected. 
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Fig. 1.  Initial SpaceWire Margin Tester screen. 

In Fig. 1. the SpaceWire Margin Tester software is shown 

in its default state where all aberrations are set to their nominal 

values. The type of aberration that is to be automatically 

altered is selected using the associated radio button. 

Meanwhile, the static values of the other aberrations can be set 

manually. This allows for each aberration to be tested in 

isolation whilst keeping other variables at a constant level. 

 

 

Fig. 2.  Failure of margin testing on Data to Strobe Skew. 

The automatic margin testing feature constantly degrades 

the signal by increasing the amount of aberration that is applied 

until either the link fails, or else continues to run under 

maximum aberration. In the example shown in  Fig. 2. the test 

has failed after the Data to Strobe Skew was increased to 11.05 

ns. The testing immediately stops at this point so that the 

failure parameters can be noted. Failed tests are indicated by a 

red exclamation mark icon. The aberration value may then be 

set to the value prior to where the failure last occurred before 

the other types of aberration are tested. 

 

 

Fig. 3.  The Data to Strobe Skew test completed successfully. 

If a link continues to run under maximum aberration 

(shown in Fig. 3. ) a green tick icon is shown alongside the 

associated slider. Each of the aberrations can be applied one 

after the other so that the full spectrum is tested and the 

acceptable margin of operation can be determined. 

 By default, aberrations will be applied to analogue 

port 1 on the SPLT. As shown in Fig. 3. this can be changed to 

port 2 or both ports using the tabbed display.  

 

The SPLT hardware supports various types of Jitter 

including triangular, square and sawtooth and Gaussian. It is 

possible to configure the Jitter parameters in the software. The 

level of which is then controlled by the associated slider in the 

margin tester screen. 

Each SPLT unit is calibrated to the optimal settings during 

production. However, depending on various factors such as 

cable length and ambient temperature, the device may need to 

be recalibrated by the user to ensure that the most accurate 

levels of aberration are being output by the hardware. The 

software supports a guided user calibration using a few simple 

measurements that can be carried out at any time with the use 

of a high speed oscilloscope. 

III. PRODUCTION TESTING 

In addition to the margin testing software, production 

testing software is also being developed for the SPLT. This 

software is complementary to the margin tester software and 

will allow for acceptable limits of signal degradation to be 

defined, giving the user full manual control over the 

aberrations.  

The margin testing software is the first port of call in 

exploring the physical layer of a SpaceWire system as it can 

quickly establish the operational limits of a UUT. The results 

of margin tests can then be used to define production testing 

criteria. 

The production testing software is used to evaluate a 

production unit against a set of static values. A test against 

these acceptable limits can be run manually or as part of an 

automated verification process. The results of the test will then 

be logged in a report. 
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IV. RESULTS 

The SPLT was set up as shown in Fig. 4. A 50 cm 

SpaceWire cable was attached between ports 1 and 2 of the 

device.  Aberrations were applied to the output of port 2, with 

their effect captured by an oscilloscope connected to the 

buffers on port 1. 

SpW Router

Host PC

SpW

SPLT
Control

SpW
Validation
Software

Delay Lines

Analogue
Aberration

Buffers Oscilloscope

SpW 2 SpW 1

SPLT

SpW

Port 2 Port 1
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Fig. 4.  Setting up the SPLT to test its own SpaceWire ports. 

The SpaceWire Router was configured to set port 2 to 

“start” state, such that the SpaceWire link would automatically 

attempt to restart following a link disconnect.  The tests were 

then performed with the link running and transmitting Nulls. 

In all traces, unless otherwise stated, the timebase is at 10 

ns per division, and voltages at 500 mV per division.  The 

traces from top to bottom are D+, D−, S+ and S− 

A. Margin testing Data-Strobe skew 

The Data-Strobe skew was progressively degraded by 

progressively delaying the data differential pair from 0ns (no 

aberration) until link disconnect at 4ns.  The results are shown 

in Fig. 5.  

 

 

 

Fig. 5.  Data-Strobe skew test at 1, 3 and 4 ns (top to bottom) of delayed data. 

The final image in Fig. 5. is zoomed out to show the link 

trying to re-establish a connection at the 10Mbit/s standard.  A 

connection is briefly made, until a parity error due to the skew 

aberration causes an exchange of silence before a similar 

pattern repeats itself. 

B. Margin testing in-pair skew 

The test in section IV.A was repeated, but this time only the 

positive end of the Data signal was delayed, whilst the Strobe 

was unchanged.  The results are shown in Fig. 6.  
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Fig. 6.  In-pair skew test at 0, 2 and 4 ns (top to bottom) of delayed Data+. 

The link in Fig. 6. eventually disconnects at 4 ns of skew.  

A single trace is shown where the link speed switches from the 

10 Mbit/s startup speed to the 200Mbit/s configured speed.  

The link soon fails, and reconnection is repeatedly attempted. 

C. Margin testing jitter 

A triangular pattern was applied to the delay lines such that 

the stobe delay ramped up to a maximum value in 10 ps steps, 

before ramping back down to a minimum value in 10 ps steps.  

This gives a jitter characteristic of a burst of “short” bits, 

followed by a burst of “long” bits, which are 10 ps shorter and 

longer than the link transmit rate, respectively.  The major 

effect of this is that the skew rapidly transitions linearly 

between the two endpoints.  The results are shown in Fig. 7.  

 

 

 

 

Fig. 7.  Jitter triangular pattern on the strobe with 0, 2 and 5 ns of jitter applied 

from top to bottom.  

Fig. 7. Shows the signal’s progressive deterioration as the 

increasing jitter causes the eye of the signal to narrow.  The eye 

is only just visible at 500 ns as the link is pushed to the edge of 

its margins.  The eye eventually closed to cause the link to  

disconnect at 6 ns of triangular jitter. 

 

 

The SPLT was then configured to drive 3 ns of Sawtooth 

Jitter.  In this mode, the Strobe was configured to count up 

from zero to 3 ns of delay synchronously to the transmit clock.  
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The Data was configured to a constant skew of 1.5 ns.  Traces 

of this setup are shown in Fig. 8. and Fig. 9.  

 

 

Fig. 8.  3ns Sawtooth Jitter with persistence on. 

 

Fig. 9.  Single oscilloscope trace of 3ns Sawtooth Jitter. 

In Sawtooth jitter mode with the parameters configured in 

this test, the Strobe moves from 1.5 ns leading the Data to 1.5 

ns lagging the Data.  It does this by increasing the bit period by 

10 ps compared to the Data bit period.  When the Strobe 

reaches this limit, a single bit of period 3ns shorter than the 

Data bit period is injected to return the Strobe to lead the Data 

signal by 1.5 ns.  A trigger on this short bit period was used to 

show the shortened bit in the middle of the traces in Fig. 8.  and 

Fig. 9.  

 

The SpaceWire link was seen to periodically disconnect 

throughout this test every few seconds as the link was pushed 

to the limit of its margins at 300 ns of sawtooth jitter.  

Comparison of this value to the 500 ns of triangular jitter that 

the link was able to sustain in Fig. 7. shows that sawtooth jitter 

is more detrimental to the link operation than triangular jitter. 

D. Margin testing swing 

The swing on the Data signal was reduced in steps down to 

a value of 35 mV, where the link disconnected.  The 

progressively aberrated waveforms are shown in Fig. 10.  

 

 

 

 

Fig. 10.  Reducing swing through 620, 310 and 155 mV  from top to bottom.  

The eye of the received waveform closes as the swing is 

reduced.  Once the swing is reduced below 150 mV, it becomes 

very close to the 100 mV minimum swing specified in the 

LVDS receivers’ specifications.  Link disconnects start to 

become increasingly regular as this value is approached. 

 

E. Margin testing offset 

The offset of the Data signal was reduced from 2 Volts 

down to zero volts.  Oscilloscope screen captures of this test 

are shown in Fig. 11.  
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Fig. 11.  Reducing the common mode through 1.83, 1.22 and 0.61 Volts. 

 

The link was sustained without any disconnects across this 

range of tests.  The LVDS receivers’ specifications stated an 

input common mode range of 0.3 to 2.35 Volts.  This is still a 

useful test to perform as it confirms the validity of the 

datasheets’ quoted values. 

F. Margin testing slew 

The SPLT features three different sizes of capacitor which 

can be independently switched onto each of the drivers to 

achieve different slew rates depending on the combination of 

capacitors selected.  A test was run with slew loads ranging 

from 0 pF up to the full 116 pF from all 3 capacitors switched 

in.  For the cable used in this test, this caused the 90% - 10% 

rise and fall times to increase from approximately 1 ns up to 6 

ns.  The screenshots of this test are shown in Fig. 12.  

 

 

 

 
Fig. 12.  Increasing the slew capacitance through 0, 48 and 116 pF, shown 

from top to bottom.  The vertical scale is set to 100 mV / division 

and the horizontal scale to 5 ns / division. 

 

No disconnections occurred during throughout this test.  It 

can be clearly seen from Fig. 12. that, whilst the signal has 

been progressively degraded at the corners, there is still a clear 

eye opening allowing for the bit stream to be successfully 

received.  

 

Slew was then progressively introduced in-pair to the 

negative end of the Strobe line, whilst the positive end was 

maintained at minimum slew (all slew capacitors disabled). 

A number of oscilloscope screenshots from this test are 

shown in Fig. 13.  
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Fig. 13.  Increasing the in-pair slew capacitance through 0, 48 and 116 pF, 

shown from top to bottom.  The vertical scale is set to 100 mV / 

division and the horizontal scale to 5 ns / division. 

 

As with the previous slew test, no disconnections occurred 

at maximum slew settings.  The eye of the signal is still open, 

allowing for the bit stream to be successfully recovered. 

 

Whilst no disconnects were observed with maximum slew 

in this test, slew can cause a link to fail when combined with 

aberrations which would have previously caused no link 

disconnects. 

 

 

G. Tests with Data 

A number of test data packets were transmitted at 200 

Mbit/s, with high levels of aberration configured in each test.  

The following oscilloscope screenshots show the results of 

these tests. 

 
Fig. 14.  Transmitting a data packet with 3ns skew caused by Strobe delay. 

Notice the almost simultaneous transition of the Data and Strobe 

lines occurring three divisions from the centre of the trace. 

 

 
Fig. 15.  Sawtooth Jitter causes 2ns shorter bit every 5th bit on strobe.  The 

strobe bit pattern therefore consists of four bits extended by 0.5 ns 

and one bit shortened by 2 ns. 

 

 
Fig. 16.  Transmitting data with the Strobe swing reduced to 75 mV.  This 

link continues to run despite the 100 mV minimum swing specified 

in the LVDS receiver’s datasheet. 
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Fig. 17.  Transmitting data with the Strobe offset to 2700 mV.  Notice how 

the signal is clipped at such high offsets; the strobe’s swing was 
configured to the same level as the data.  The link continues to run, 

despite the 2350 mV operating limit specified in the datasheet. 

 

 
Fig. 18.  Transmitting data with full 116 pF of slew 

 

In all of the above tests, the link was left to run for several 

minutes, an no disconnects were observed. 

H. Combined aberrations 

Any number of the above aberrations can be combined in 

any combination to define an envelope in which a link can 

operate.  The following aberrations were configured on the 

SPLT whilst the link was transmitting data: 

 

 Swing 100 mV 

 Offset 2700 mV 

 Slew  116 pF 

 

An oscilloscope screenshot of these conditions is shown in 

Fig. 19.  

 
Fig. 19.  Combining swing, offset and slew aberrations onto the Strobe 

signal with a SpaceWire link transmitting data. 

 

Fig. 19. shows the oscilloscope measurement of these 

combined aberrations.  The offset is set so high, that the signal 

is somewhat clipped at the top.  The link disconnected every 

few seconds under these aberrations; but a significant amount 

of data could still be transmitted between these disconnects.  

The disconnects are largely attributed to the high offset, which 

at 2700 mV, is 350 mV higher than the operating limit of the 

LVDS receivers’ specification (but still well within the 

absolute maximum!). 

 

A number of combined aberrations could be used for 

production testing to validate that a link can operate under a 

number of harsh corners of the envelope which a fully 

functional production unit could be expected to withstand.  A 

manufacturing defect which might not be detectable under a 

standard LVDS test could then cause the link to fail when 

subjected to such an envelope of aberrations from the SPLT. 

 

V. CONCLUSION 

This paper has described the SPLT hardware and 

introduced the application software that has been developed to 

simplify the process of physical layer testing. 

A number of tests performed in the resuts section have 

yielded fully operating SpaceWire links; but analysis of the 

oscilloscope screenshots show how poor the LVDS signal is.  

This demonstrates how a SpaceWire device can appear to be 

fully functional when it is powered up and successfully 

transferring data with other SpaceWire components.  Using the 

Physical Layer Tester’s analogue buffers, it is possible to 

unobtrusively measure the received waveform and validate that 

a piece of equipment is operating correctly at the Physical 

layer. 

Likewise, when receiving SpaceWire data, a link can seem 

perfectly functional.  The SPLT can be used to subject the 

SpaceWire link receiver to an envelope of harsh aberrations 

that should be able to sustain an active link, based on 

measurements from previous margin testing of equipment.  A 

manufacturing defect, or damage to the unit that does not 
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disrupt a link under standard LVDS parameters could cause the 

link to fail under these harsh tests. 

 

In Summary, the SPLT is an essential quality control tool 

for manufacturers of SpaceWire equipment.  It is also a 

powerful validation tool for end users of SpaceWire 

equipment. 
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Abstract—SpaceWire is a serial link Standard for on-board 

network applications. A design of the standard at the exchange 

level was implemented in the previous work by our research 

group. Due to the special demand of higher reliability, it is 

necessary to test and verify its correctness. This paper presents a 

formal modeling and verification method of the SpaceWire 

implementation resorting to Uppaal, a model checker based on 

timed automata theory. In this work, we focus on the connection 

process across a link, which is one of the primary missions of the 

exchange level. We extract the timed automata models for the 

two ends of the link. Each end of the link is formalized as a 

network of timed automata including the LocalHost, the Timer, 

the StateMachine, the Transmitter and the Receiver. In the paper, 

the SpaceWire safety requirements are specified as computation-

al tree logic (CTL) properties. We find out some detail errors of 

the original implementation by checking if the link interface is 

deadlock-free or not. It is also verified that the link connection 

can be made successfully conforming to the specification. The 

experimental results demonstrate the effectiveness of the 

approach presented here. 

 

Key Words—SpaceWire, Formal Verification, Model Checking, 

Timed Automata, Uppaal.  

I. INTRODUCTION  

SpaceWire [1] is a serial link standard for onboard network 

applications, which is put forward by the European Space 

Agency (ESC for short) in 2003. It provides a full-duplex, 

bidirectional, serial point-to-point, high speed data link. Data 

can be transferred at a different data signaling rate in the both 

directions, which ranges from 2 to 400 Mb/s [2]. Due to the 

broad prospects of space applications, it has been attracting 

more and more attention from the space agencies and 

companies all over the world. Lots of work has been done and 

variable designs and implementations come forward. 

Considering the special demand of higher reliability and the 

possible misunderstanding of designers or programmers, it is 

quite necessary to test and verify the correctness of SpaceWire 

designs and implementations.  

Formal verification [3] shows great prospects, compared to 

the incompletion of traditional verification methods, like test 

and simulation. It is done by proving a formal proof on an 

abstract mathematical model of the target system. Many 

powerful mathematical objects are used to model systems, such 

as finite state machine, Petri nets, timed automata, hybrid 

automata, and Hoare logic and so on [4]. Model checking [5] 

[6], one of the formal verification approaches, is put forward 

by Edmund Melson Clarke, Ernest Allen Emerson, etc., who 

together won the 2007 Turing Award. The main idea of model 

checking is: through extracting the model of the target system, 

to exhaustively and automatically check whether it meets some 

given specifications. It has been increasingly applied to both 

hardware and software. Many tools are developed for model 

checking, like SPIN [7], SMV [8], Uppaal [9], etc. Uppaal will 

be introduced here, which is jointly developed by Uppsala 

University and Aalborg University. It is a model checker based 

on the theory of timed automata. In view of its special 

advantage to models involved with time, it suits modeling and 

verifications for real-time systems. The timed automata models 

of a system can be established in the editor of Uppaal GUI. A 

simulator can help to check whether the models meet the 

expectation. At last, we can verify in the verifier the 

requirement specifications, which are expressed in 

computational tree logic (CTL for short). If the given result of 

a property turns out to be satisfied, it indicates that the system 

meets that specification. Otherwise, a counterexample will be 

fed back [10]. 

This paper proposes an approach of model checking to 

verify our design of the SpaceWire exchange level [11], 

resorting to the tool Uppaal. The timed automata theory in 

Uppaal is introduced in section II. Section III makes a brief 

introduction to SpaceWire link. Its models of timed automata 

are illustrated in section IV, and verification is done in section 

V. Conclusion comes at last. 

II. TIMED AUTOMATA IN UPPAAL 

Timed automata theory is first introduced by Rajeev Alur 

and David L. Dill in 1990 [12]. A timed automaton is a finite 

state Buchi automaton extended with a set of real value 

variables in Uppaal.  
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To define its syntax and semantics, the following notations 

are used: C is a set of clocks and F(C) is the set of conjunctions 

over simple conditions of the form     or      , where 

                            . Let   be the set of 

all clock valuations, where a clock valuation is a function 

       . Let   ( )    for all    . We adopt the 

definition of timed automaton in [10][13]. 

Definition 1 (Timed Automaton) 

A timed automaton is a six-tuple               , where 

 L is a set of locations, 

      is the initial location, 

   is the set of clock variables, 

   is a set of actions and co-actions, 

        ( )       is a set of edges between 

locations with an action, a guard and a set of clocks to 

be reset, 

      ( ) assigns invariants to locations. 

Definition 2 (Semantics of Timed Automaton) 

A timed automaton                  can be 

semantically defined as a labeled transition system 

        , where 

        is the set of states, 

    (     ) is the initial state, 

     (     )    is the transition relation such 

that: 

 (   )
 
 (     )              if 

            satisfies  ( ) 

 (   )
 
 (     )  if    (          )  

             [   ]       

    ( ) , where [   ]  denotes the 

clock valuation which maps each clock 

in   to 0 and agrees with   over     

A network of timed automata is often comprised of several 

timed automata over a common set of clocks and actions. 

These timed automata synchronize each other through pairs of 

channels of the form a! and a?.  

III. SPACEWIRE INTERFACE 

In a SpaceWire network, units of nodes and routers are 

interconnected through bidirectional, full-duplex, point-to-

point data links. At the exchange level of SpaceWire, the 

interfaces of both ends across the link are designed for making 

a connection and managing the flow of data. Our design 

includes modules of Controller, Transmitter, Receiver, Timer, 

CreditCounter, BaudrateCounter, Recovery, and ErrorNotifica-

tion. In this paper, Controller(StateMachine), Transmitter, 

Receiver, Timer, only the primary ones, will be modeled and 

analyzed, purposively and for simplicity. The following Fig. 1 

displays the simplified SpaceWire link interface block diagram.  

The StateMachine, as the center of control, controls the 

overall operation of the interface. It is designed as a finite state 

machine consisting of several states. After a system reset signal, 

it starts to work. It controls the affair states of Transmitter and 

Receiver via signals, Reset, enableTx, and enableRx. When 

assterting signals of sendNULL, sendFCT, sendTimeCode, 

sendNChar at some specific moments, it directs the Transmitter 

to send corresponding characters. Also the Receiver will 

inform the StateMachine when receiving a(an) NULL/FCT/Ti-

meCode/NChar. Timer keeps time for StateMachine and 

provides two periodic signals of After64 and After128. 

Transmitter

Receiver

StateMachine

Timer

LocalHost

Reset

LinkEnabled

After128

After64

sendNChar
sendTimeCode
sendFCT

sendNULL

enableRx

enableTx

Reset

Sout

Din

gotNULL
gotFCT

gotTimeCode

TimerReset

Reset

DisconErr
gotNChar

Dout

Sin

 
Fig. 1.  A simple example of link interface block diagram 

Before successfully establishing a connection across a link, 

both ends of the link will go through ErrorReset state, 

ErrorWait state, Ready state, Started state, Connecting state, 

until the state Run. A typical example of initialization sequence 

is illustrated in Fig. 2. After a delay of 6.4us in ErrorReset and 

a 12.8us one, the state machine of one end goes into the Started 

state. Entering that state, its Transmitter becomes enabled and 

begins to send NULLs to the other end. It will keep sending 

until the moment an FCT arrives, when it then moves into the 

Connecting state. In that state, FCTs are allowed to be 

transmitted. Once an FCT is received in the state Connecting, 

the state machine shall enter the state Run. So far a NULL 

handshake and an FCT one have taken place, which make sure 

of the bidirectional communication. The link initialization 

succeeds. Further details will be presented in the timed 

automaton model of StateMachine below. 

 
Fig. 2.   An example of typical initialization sequence[cite] 
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IV. MODELS OF TIMED AUTOMATA 

Let id, an integer variable, be the identity of each end. All 

the models in this paper shall be set the parameter id in order to 

be identified. We can suppose that end A is marked with id==0 

and end B with id==1. The unit of time of 100ns-long is used 

here. Thus the delays of 6.4us and 12.8us can equal to 64 time 

units and 128 ones, respectively. Since the Transmitter shall 

operate at a data signaling rate of (10 1) Mb/s, it takes one 

time unit to send a bit.  

In accordance with the VHDL codes of implementation, the 

models of timed automata are extracted here including 

LocalHost, StateMachine, Transmitter, Receiver, and Timer, as 

shown below. 

A. LocalHost 

The simplest case of the local system is modeled here in 

Fig. 3. The system may send a Reset signal to start the link any 

time. Once a Reset signal beamed, an clock variable x starts to 

keep track of time, performed by a function TimeStart() as 

TABLE 1 shows. Also a LinkEnabled signal is assumed to be 

asserted if needed. 

TABLE I.  FUNCTIONS DEFINITION 

//LocalHost 

void TimeStart(){ 

// bool s, true only if at least one end has been reset; 

    if(!s)  x=0;    

 } 

//global declaration 

void reset(int id){ 

    firstNULL_gone[id]=0; 

    firstNULL_received[id]=0; 

    numberofFCT[id]=0; 

} 

 
Fig. 3.  Timed Automaton of LocalHost 

B. Timer 

Timer is a quite significant module for SpaceWire. It 

provides a timer of 64 and one of 128, which control the state 

transition of link interface, make sure not to wait forever in any 

state. Figure 4 illustrates the implementation. In the timed 

automaton, the initial location has an invariant, clk<=64, where 

clk is a local clock. A bool variable trigger denotes the timer to 

be triggered. Replying the channels Reset! and TimerReset!, 

the clock clk is reset to 0, and trigger is updated to be false, 

signifying the timer of 64 is ready to start. After time of 64 is 

up, it emits a channel After64! and updates clk to 0 and trigger 

to 1. 64 time units later, a signal of After128 will be sent out. 

After that, a new cycle runs. 

 
Fig. 4.  Timed Automaton of Timer 

C. StateMachine 

The Fig. 4 illustrates the timed automaton for the 

StateMachine at a link end. Responding to Reset! from the 

LocalHost, it stays in ErrorReset for 64 time units. When the 

delay elapses, it unconditionally enters ErrorWait, with 

enableRx! sent to Receiver and TimerReset to Timer. When 

firstNULL_received is true, the StateMachine will go back to 

ErrorWait from ErrorWait, if any channel, DisconErr?, 

gotFCT?, gotTimeCode?, gotNChar?, is activated by Receiver. 

Otherwise, it will enter the state Ready after a delay of 128. As 

the state ErrorWait does, channels of DisconErr?, gotFCT?, 

gotTimeCode? and gotNChar? can lead to reset the link. If the 

link is enabled, it moves to the Started location and commands 

to keep sending NULLs since the Transmitter is enabled here. 

Also the Timer gets reset for a trigger of 128 time units. The 

StateMachine is expecting the reception a NULL, whereas 

FCTs or TimeCodes or NChars is not allowed to be received 

unless the first NULL has arrived in Started state. Having 

received a NULL and with at least a NULL gone, the state 

Connecting will come, where FCTs and NULLs are both 

permitted to be transmitted. Once receiving an FCT, the 

StateMachine leaves for the Run location and the link 

initialization is made. Normal operations are allowed across the 

link, unless an error occurs or link is disabled. The characters 

that are allowed to be transmitted in every state have different 

priority levels, as TimeCode > FCT > NChar > NULL. 

Characters of higher priority will be transmitted first. We 

declare for the priorities: chan priority sendNULL<sendNChar 

<sendFCT<sendTimeCode. 
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Fig. 5.  Timed Automaton of StateMachine 

D. Transmitter 

We have a high level model of Transmitter as shown in Fig. 

6, owing to the specific task of verification discussed in this 

paper. There are 6 locations: an initial one, an urgent one, and 

four for sending a type of characters, like TimeCodes, NULLs, 

FCTs, and NChars. If enabled, the Transmitter sends 

corresponding characters submitted to the StateMachine’s 

instruction. For instance, while a synchronization channel 

sendNULL comes, it enters the load_NULL location and 

commences to send a NULL. A NULL control code contains a 

ESC of 4 bits and a following FCT of 4bits. Thus a local clock 

clk is involved. The invariant of clk<=8 is added to the location 

load_NULL, which indicates that time spent sending a NULL. 

If clk reaches to 8, it sends a synchronization signal 

receiveNULL to Receiver at the other end of the link. Here, the 

propagation of the SpaceWire link is ignored. In the similar 

way, FCTs/TimeCodes/NChar are transmitted. And that will 

separately take 4/14/10 time units. A Reset signal can be valid 

at any location. 

 
Fig. 6.  Timed Automaton of Transmitter 

E. Receiver 

The Receiver is responsible for decoding the DS signals 

and passing a sequence of NChars received on to the host 

system. It also informs the StateMachine of the receptions of 

characters. As shown in the Fig. 7, there are three prime 

locations(not committed ones): an initial one, two enabled with 

any bit received or not, en_nobit, en_bit. In the location 

en_nobit, a disconnection error is not activated yet, while it 

will be detected in the location en_bit. On receiving the first bit, 

it switches into the en_bit location. The signal channel is not 

introduced alone here. Owing to the need of disconnection 

error detection, we combine the channel and receiver into a 

high level extracted model. A particular channel is involved, 

with three situations: 1) codes may be received normally; 2) 

codes may be received incompletely; 3) the whole character 

may get lost in the channel. Due to that three cases, when 

synchronized by receiveNULL? (receiveFCT?, receiveNChar?, 

receiveTimeCode?) in the location en_nobit, it may switch into 

en_bit emitting an edge with gotNULL!, or not because of the 

part reception of codes. It may also do nothing at all since 

characters are lost. So does the location en_bit. In addition, it 

has an invariant clk<9, which is introduced for the detection of 

disconnection error. If clk>8 (roughly 850ns specified in the 

Standard) becomes true, a disconnection error occurs, of which 

will be informed StateMachine. 

 

Fig. 7.  Timed Automaton of Receiver 

 

V. VERIFICATION 

Uppaal uses a simplified version of CTL to express the 

requirement specification. Path formulae and state formulae are 

supported.  
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TABLE II.  PROPERTIES IN UPPAAL 

property expression meaning 

Reachability E<> p p is satisfied in reachable states 

Safety 
A[] p , 

E[] p 
something bad never happens 

Liveness 
A<> p, 

p --> q 
p is eventually satisfied 

 

In this paper, a network of timed automata is established, 

consisting of such 5 ones belonging to end A as LocalHost[0], 

Timer[0], StateMachine[0], Transmitter[0], Receiver[0], and 5 

to end B, such as LocalHost[1], Timer[1], StateMachine[1], 

Transmitter[1], Receiver[1]. And several properties are verified 

below. 

1) The system should be deadlock-free. 

A[] not deadlock 

It turns out that the property is not satisfied. The verifyta in 

Uppaal presents a counterexample illustrated in Fig. 8. It is 

shown that end A began to send a NULL entering the Start 

state while end B still stayed in the ErrorWait state. However, 

end B didn’t receive the intact character. The Receiver at end B 

transited to the en_bit location where detection of 

disconnection error was activated. After more than 8 time units, 

a disconnection error should have occurred.  

 

 

Fig. 8.  A counterexample for Property 1). 

From the timed automaton of StateMachine in Fig. 5, we 

can see the edge labeled with the channel DisconErr[1]? is not 

enabled since the guard firstNULL_received[1] didn’t satisfy. 

TABLE III shows a small part of original VHDL codes of 

the StateMachine, where the state transition is described in the 

ErrorWait state.  

TABLE III.  PART OF CODES IN VHDL OF STATEMACHINE 

CASE CurrentState IS 

  
WHEN ErrorWait => IF After128 = '1' THEN 

       NextState <= Ready; 

ELSE 

       NextState <= ErrorWait;   

       IF FirstNULLreceived_internal = '1' THEN 

           IF RX_Error = '1' OR RX_GotSomethingWrong = 

'1' OR DisconnectionError = '1' THEN 

                 NextState <= ErrorReset; 

            END IF; 

        END IF; 

END IF; 

  
END CASE; 

 

Referring to clause 8.5.2.3 e in [], however, it is said below:  

If, while in the ErrorWait state, a disconnection error is 

detected, or if after the gotNULL condition is set, a parity error 

or escape error occurs, or any character other than a NULL is 

received, then the state machine shall move back to the 

ErrorReset state. 

We can learn that the error results from blocking the 

disconnection error with the gotNULL condition in the original 

design. Hence a revised version is displayed as follows. 

Furthermore, a corresponding timed automaton is modeled to 

be checked.  

TABLE IV.  CODES REVISED 

CASE CurrentState IS 

  
WHEN ErrorWait => IF After128 = '1' THEN 

       NextState <= Ready; 

ELSE 

       NextState <= ErrorWait;   

           IF DisconnectionError = '1' OR 

(FirstNULLreceived_internal = '1' AND (RX_Error  

                = '1' OR RX_GotSomethingWrong = '1')) THEN 

                 NextState <= ErrorReset; 

       END IF; 

END IF; 

  
END CASE; 

The same error also occurs in the Ready state and the 

Started state. Similar modifications are made to the timed 

automaton model of StateMachine. And the deadlock is 

resolved in these three states. 

 

2) The link connection can be made successfully. 

E<>StateMachine(0).Run&&StateMachine(1).Run 

That property is one of the most significant requirements 

for SpaceWire link. Both ends enter the Run state, which 

means that link connection has been made and both link 

characters and normal characters can flow freely in both 
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directions across the link. The property is checked to be 

satisfied. Uppaal also generates the path to it, which is same as 

the initialization sequence in Fig. 2. In addition, the time cost 

in that given path ranges from 204 to 268. The minimum time 

of 204 can be the time taken to transfer a NULL and an FCT, 

besides the delay of 64 in the ErrorReset state and 128 in the 

ErrorWait state during the whole initialization. In fact, 204 is 

the most perfect minimum time, the ideal one, due to the 

ignorance of all the delays occurring in the program and in the 

SpaceWire channel. Even though the transmitters at both ends 

transmit a NULL of 8 bits at the same time, they will send the 

second NULL before informed of the reception of a NULL 

from each other. Thus two NULLs and a FCT at least shall be 

transferred during initialization in reality, which indicates that 

at least 212 time units (21.2 us equaled) will be taken.  

VI. CONCLUSION 

This paper has proposed an approach of model checking to 

verify our design of the SpaceWire link interface, resorting to 

the model checker Uppaal. Both end A and end B across the 

SpaceWire link are modeled as a network of timed automata. 

Each end is comprised of LocalHost, Timer, StateMachine, 

Transmitter and Receiver. By verifying the models extracted 

from the VHDL codes, a few potential errors are detected, 

which are caused by the designer’s misunderstanding about the 

constraint of a disconnection error. The results of verification 

demonstrate the effectiveness of this approach.  
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Abstract—There is a need for high-performance digital 

signal processing systems for spacecraft applications. The 

problem is that commercial DSP processors are not 

radiation tolerant and even when they can tolerate a 

reasonable total radiation dose, they are subject to single 

event upsets (SEUs). STAR-Dundee is working with 

Astrium to provide a solution to this problem. A 

commercial DSP processor is controlled by a radiation 

tolerant FPGA to detect and recover from SEUs. Operating 

in a dual redundant configuration the High Processing 

Power Digital Signal Processor (HPPDSP) unit is able to 

meet demanding signal processing applications in support 

of space missions. To configure and control the HPPDSP 

and to get data in and out of the DSP signal processor a 

combination of SpaceWire [1] and SpaceFibre [2] 

interfaces are provided. 

This paper introduces the HPPDSP, outline its overall 

architecture, and describe the SpaceWire and SpaceFibre 

interfaces provided. 

 
Index Terms—SpaceWire, SpaceFibre, digital signal processing, 

spacecraft onboard processing 

I. INTRODUCTION 

Commercial DSP processors generally have high 

processing power which is needed by future Space missions 

that require very large data processing throughput. 

The HPPDSP unit contains a commercial DSP processor 

connected to memory and an FPGA that provides fault 

detection and memory management services, and all the 

input/output functions for the unit. Three SpaceFibre links are 

provided along with two SpaceWire interfaces. General 

purpose input/output signals, status display, high-speed ADC, 

and an interface to a boot FLASH PROM are also provided. 

The SpaceFibre interfaces provide the high-speed data 

input/output to the DSP processor. A DMA controller is 

provided to read and write data directly to processor memory. 

Each SpaceFibre interface has multiple virtual channels to 

support various independent data streams. One virtual channel 

on each SpaceFibre port is connected to an RMAP target to 

support configuration and control of the HPPDSP and sharing 

of critical information about detected faults. 

The two external SpaceWire interfaces are connected to an 

internal SpaceWire router which has two internal ports 

dedicated to data transfer and one acting as an RMAP target 

providing similar capability to the RMAP targets attached to 

SpaceFibre. 

Configured in dual redundancy, two HPPDSP units are 

paired to work together, one as prime and the other one as 

redundant. The pair consists of two identical copies of the 

hardware. When the prime unit fails, the redundant unit can 

take over. 

II. BLOCK DIAGRAM 

The block diagram of a HPPDSP unit is shown in Fig. 1. 
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Fig. 1.  Block Diagram of a HPPDSP Unit 
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The commercial DSP processor is TI TMS320C6727B [3], 

which is Texas Instruments' high-performance 32-/64-bit 

floating-point digital signal processors. It has on-chip RAM 

and ROM as unified program/data memory, and for external 

memory it has External Memory Interface (EMIF) which 

supports a single bank of SDRAM and a single bank of 

asynchronous memory. The Universal Host-Port Interface 

(UHPI) is a parallel interface through which an external host, 

i.e. Control FPGA, can access memories on the DSP. The 

Control FPGA is a Virtex-4 device. 

The DSP can boot either directly from a FLASH-based 

boot PROM, or over a SpaceWire/SpaceFibre interface 

accessing other resources on a network. The PROM stores the 

boot and DSP program data, which can be uploaded from a 

SpaceWire/SpaceFibre network. A simple Error Detection and 

Correction (EDAC) technique is utilised to protect data in the 

PROM. These functionalities are covered by the Boot 

Management module. 

For fast access to program and data, a 32-bit wide large 

SDRAM memory block is attached to the EMIF interface. An 

EDAC function is also included, inside Memory Management 

module, to protect data integrity in the SDRAM memory, 

which is susceptible to SEU events. The Memory Management 

also controls which SDRAM regions are allowed for a task to 

access. The Memory Management module has control over the 

DMA Bus B, from which it can access DSP memory via a 

DMA controller. It also can access the DSP peripheral Bus, 

which allows the DSP processor to access various memory 

mapped registers, along with Slave Access and Checker 

modules. The Slave Access and Checker Modules are used to 

exchange information and share memory data between the 

primary HPPDSP unit and the redundant HPPDSP unit when 

necessary. Both the Slave Access and Checker modules have 

access to an RMAP Initiator attached to SpaceFibre 

Master/Slave interface, so can start a RMAP transaction to the 

other unit of the Master/Slave pair. 

SpaceFibre interface 1 and SpaceFibre interface 2, each 

have four Virtual Channels (VCs). VC0, connected to a RMAP 

Target accessing the Configuration Bus, is used to 

configure/control all modules attached to this Bus, which 

includes configuring the SpFi and SpW operating parameters. 

The rest of VCs, from VC1 to VC3, are connected to DMA 

Bus A for DMA data in-to/out-of DSP memory via the DMA 

controller. These two SpaceFibre interfaces can be configured 

to work as a prime/redundant pair to achieve dual redundancy.  

The SpaceFibre Master/Slave interface has eight VCs. VC0 

is used for configuration/control purposes. The rest of the VCs, 

from VC1 to VC7, are connected to DMA Bus A for sending a 

copy of any incoming IO data stream to the slave HPPDSP 

unit. 

All these SpaceFibre interfaces use STAR-Dundee 

SpaceFibre Codec IP, which has direct interface to connect 

with an external serialiser/de-serialiser (SerDes) device, i.e. TI 

TLK2711[4] in this design.  

There is a five port SpaceWire Router on the Control 

FPGA, with two external SpaceWire ports and three internal 

ports. Two of the internal ports are connected to DMA Bus A 

for DMA data in-to/out-of DSP memory, and the other internal 

port is connected to an RMAP Target accessing the 

Configuration Bus so that it can configure or control modules 

attached to this Bus. 

There are many occasions where the Control FPGA needs 

to interrupt the DSP processor, for instance when a data error is 

detected by the EDAC circuit for SDRAM data and the error is 

not a one-bit error i.e. not self-correctable. All interrupts are 

gathered from their sources and then an interrupt signal is 

connected to a pin of UHPI interface which can be configured 

as an interrupt input pin to the DSP processor. 

 

III. SPACEWIRE INTERFACE 

A five port SpaceWire router is provided on the HPPDSP 

unit. It has two SpaceWire ports (ports 1 and 2), two ports 

connected to the DMA Bus A inside the Control FPGA (ports 3 

and 4) and a configuration port (port 0) connected to the 

Configuration bus inside the Control FPGA. If nominal and 

redundant ports are required the two SpaceWire ports may each 

be given a nominal and redundant external LVDS 

driver/receiver. The SpaceWire Router is illustrated in Fig. 2. 

 

Fig. 2.  SpaceWire Router Block Diagram 

The two SpaceWire interfaces are connected to a routing 

switch as ports 1 and 2. Ports 3 and 4 are attached to pairs of 

VCBs which are connected to the DMA Bus A. Port 0 is 

attached to an RMAP Target attached to the Configuration 

Bus. Configuration of the SpaceWire interfaces (e.g. link 

speed) and router (e.g. routing tables) is performed over the 

Configuration Bus. They can therefore be configured by any of 

the SpaceFibre or SpaceWire interfaces. 

IV. SPACEFIBRE INTERFACE 

There are three SpaceFibre interfaces on the HPPDSP. Two 

of them, SpFi 1 and SpFi 2, are for connecting to instruments 

or other HPPDSP units operating in parallel. Each of these 

SpaceFibre interfaces has three VCs that can be used for data 

transfer to/from DSP memory. These VCs are connected to the 

DMA Bus A. A fourth VC is used for configuration/control 

purposes and is connected to an RMAP Target that is attached 

to the configuration bus. The VC attached to the RMAP Target 
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provide a means of configuring the HPPDSP system remotely 

over SpaceFibre.  

The SpaceFibre interfaces use external SerDes devices (TI 

TLK2711) which are available in space qualified version.  

A block diagram of the SpaceFibre interfaces is given in 

Fig. 3. 

 

 

Fig. 3.  SpaceFibre Interface Block Diagram 

The DMA Bus interface connects the DMA Bus A to the 

input and output VCBs in the SpaceFibre interface. When 

writing to a SpaceFibre interface the output VCBs are 

addressed. When reading the input VCBs are addressed. The 

output VCBs are multiplexed by the MUX into a single stream 

of SpaceFibre data frames into the SpaceFibre CODEC. The 

SpaceFibre CODEC encodes the data frames, adding any link 

control characters that are required and passes the resulting 

symbol stream to the external SerDes for 8B/10B encoding and 

transmission. Symbols received from the SerDes device are 

passed to the SpaceFibre CODEC and the data frames are 

extracted and passed to the DEMUX for writing into the 

appropriate input VCB. The data in the input VCBs are taken 

out when the DMA Controller reads the VCB. 

There is an input and output pair of VCBs that are not 

attached to the DMA Bus A. These are connected to an RMAP 

Target and used for configuring and controlling the HPPDSP 

unit. 

SpFi 1 and SpFi 2 each have four pairs of VCBs (three 

attached to the DMA Bus A and one pair to an RMAP Target) 

and SpFi M/S has eight pairs (seven attached to the DMA Bus 

A and one pair to an RMAP Target). 

 

V. DMA CONTROLLER DESIGN 

The DMA Controller takes DMA requests from DMA Bus 

B, for a small amount of data access at any memory location. 

The DMA Controller also manages transfer of data from 

the SpaceFibre, SpaceWire, to and from DSP memory. It does 

this under control of the DSP i.e. the DSP processor determines 

where in DSP memory the data is to be placed and how much 

data is to be read in a burst. 

In a Master HPPDSP unit, the DMA Controller copies the 

data being read to the SpaceFibre master/slave interface. This 

is done at the same time as the data is being read out of one of 

the interface by the DMA controller by providing a concurrent 

write strobe and IO write address that specifies where the data 

is to be copied to. In this way the data is read from one of the 

interfaces, written to DSP memory and concurrently written to 

the SpaceFibre master/slave interface for transferring to the 

slave HPPDSP. 

For Slave unit, the DMA Controller accesses the 

SpaceFibre master/slave interface in place of the SpaceFibre, 

and SpaceWire interfaces. It DMAs data from VCBs in the 

SpaceFibre master/slave interface as if it were coming from 

VCBs in the SpaceFibre, SpaceWire interface. For slave unit, if 

the DSP processor requests to write data to a SpaceFibre or 

SpaceWire interface via the DMA Controller it simply discards 

the information. 

The DMA Controller contains several channels each 

channel may be programmed by the DSP processor to perform 

the required data transfer. 

VI. APPLICATIONS 

One of the possible target applications can be processing 

image data, for instance image compression, where image data 

arriving over a SpaceFibre link is streamed into the DSP 

memory and then processed by the DSP processor. Once 

processed the image processing results are transferred out using 

another SpaceFibre or SpaceWire interface, depending on the 

data rate required. 

VII. CONCLUSIONS 

The HPPDSP is an experimental DSP processing system 

for spaceflight applications with both SpaceFibre and 

SpaceWire interfaces. Currently the prototype board is 

developed and tested, and the design of the Control FPGA is 

nearly finished. Once the hardware design is complete software 

will be developed by Astrium and the entire system tested. 
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Abstract— We have investigated a method to guarantee the 

real-time properties of SpaceWire based on SpaceWire-D, and 

proposed an extended protocol. The proposed protocol has wider 

applicability and a higher transfer rate than SpaceWire-D. In 

addition we have developed a software platform incorporating 

the proposed protocol to enable application software that uses the 

protocol to be developed with greater ease. 

First, this paper describes the proposed protocol for 

guaranteeing the real-time properties of SpaceWire and then 

presents the software platform that implements the protocol. 

The proposed protocol is an extension of SpaceWire-D and 

incorporates the following features/concepts: subnet concept, 

flexible time slotting, network operation mode concept, split 

RMAP transaction, accommodation of any upper layer protocol, 
and optional FDIR mechanisms. 

The developed software platform consists of an embedded real-

time operating system (RTOS), called the TOPPERS/HRP2 
kernel, and middleware that implements the proposed protocol. 

The TOPPERS/HRP2 kernel is an open-source RTOS based on 

the ITRON specification, an RTOS API specification that is 

widely used in Japan. Key features of the TOPPERS/HRP2 

kernel include its small footprint, real-time properties, high-level 

reliability and ability to support the protection mechanisms for 
memory access and object access. 

The middleware running on the RTOS supports RMAP 

initiator functions, RMAP target functions, and other basic 

functions supporting SpaceWire. The RMAP initiator functions 

are responsible for sending RMAP commands in according with 

the predefined schedule table. Therefore, application software 

running on the middleware can initiate an RMAP transaction at 
arbitrary times. 

The developed software platform helps application developers 

carry out software development without having to become 

involved in the complex time management process of SpaceWire 
packets, RMAP transactions. 

In addition to this middleware, we have also studied worst-case 

latency (WCL) analysis and real-time scheduling of RMAP 

transactions for SpaceWire-D. These will be reported separately 
by Yang Chen et al. (this conference). 

 

Index Terms— SpaceWire-D, time slot, middleware, real-

time kernel, schedule table. 

I. INTRODUCTION 

SpaceWire as a network standard for spacecraft has begun 

to be adopted for use on scientific satellites. In order to apply 

SpaceWire to spacecraft other than satellites and to areas other 

than space, there is considered to be a need for techniques that 

have the ability to guarantee worst-case latency (WCL) for 

packet delivery over SpaceWire. 

SpaceWire-D has been proposed as a method of real-time 

properties guarantee of SpaceWire. 

In order to ensure real-time properties using existing 

SpaceWire nodes and routers, the network is time-divided into 

units called time slots in SpaceWire-D, and the basic approach 

is to have one RMAP packet transfer in each time slot. This 

approach ensures that it is easy to guarantee real-time 
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properties, however, there is a problem in that the effective 

transmission rate becomes lower. It was reported in [5] that the 

effective transmission rate when transferring data by the 

RMAP packet using a command consisting of 256 bytes and 4 

bytes on SpaceWire-D will be approximately 15% of the 

SpaceWire link rate. 

Furthermore, this paper assumes (that the node receiving 

the RMAP command starts transmittings the RMAP reply 

within 5μs) that the RMAP target is implemented in hardware. 
If the RMAP target is implemented in software, the effective 

transfer rate is significantly lower to the degree that it is no 

longer practical. 

In order to widen the application scope of SpaceWire, we 

have examined methods to guarantee its real-time properties. 

Regarding the study into guaranteeing real-time properties, we 

started from the requirements for the SpaceWire network. Even 

in the satellite network, each system – bus control, mission 

control and the attitude control system – has quite different 

network requirements. In addition, considering application to 

other spacecraft and non-space fields, network requirements 

become more diverse. 

In cooperation with JAXA, Japan’s Nagoya University has 

set up a study group to guarantee the real-time properties of 

SpaceWire, and called for participation from companies that 

develop spacecraft. In this study group, we collected 

requirements for the SpaceWire network and have examined 
real-time assurances based on it. In line with the basic 

approach of SpaceWire-D – and to study improvements aimed 

at extending the scope – we have produced guidelines for 

methods that guarantee the real-time properties of SpaceWire 

[4]. 

In this paper, we describe middleware (hereinafter referred 

to as SpaceWire middleware) that runs SpaceWire control 

software that was developed based on SpaceWire real-time 

guarantee method guidelines created by the study group using 

real-time OS(RTOS), and RTOS that controls SpaceWire 

middleware. We also describes a software platform that 

consists of tools used to assign time slots that are determined in 

advance utilizing static SpaceWire packets. 

The paper is organized as follows: In Chapter 2, we 

describe proposal protocols aimed at extending SpaceWire-D, 

and SpaceWire real-time properties guarantee methods 

guidelines. In Chapter 3, we describe relevant components and 
a software platform developed by applying the guidelines of 

the real-time properties guarantee method. In Chapter 4, we 

describe the operation of the software test platform. Finally, 

Chapter 5 summarizes the paper. 

II. PROPOSED PROTOCOL EXTENDS SPACEWIRE-D 

SpaceWire middleware has been used in the 

implementation process based on the proposed protocol that 

extends the functionality of the part from SpaceWire-D.  This 

chapter describes the part that extends from SpaceWire-D in 

the proposed protocol. The schedule information decision tool 

will be stated in each component of the software platform in 

Chapter 3. 

A. Network operation mode 

When using SpaceWire in spacecraft, we shall support a 

change of operation mode in a spacecraft and a switch of traffic 

route during a failure depending on the importance of the 

mission. The concept of “Network operation mode” is 

introduced to support a change of operation mode and a switch 

of route in the proposed protocol. However, another method is 

assumed to be provided so that the current network operation 

mode can be transmitted to all routers and nodes. 

B. Subnet 

SpaceWire-D did not describe SpaceWire networks that 

consist of a number of nodes. As the proposed protocol defines 

the SpaceWire network, it was decided to provide a constraint 

that is divided into multiple closed networks that do not share a 

network link between each network operation mode. Multiple 

closed networks that do not share a network link between each 

network operation modes are called subnets. 

The following example is considered one way to use a 

subnet. SpaceWire network is divided into multiple subnets by 

the functional unit node shown in Fig. 1. 

 

Fig. 1.  Example of subnets (function) 

Otherwise it has been divided into subnets as redundant 

paths between the nodes in Fig. 2. When it cannot 

communicate between nodes in subnet1, it will be able to 

communicate to switch to the subnet 2. 

 

Fig. 2.  Example of subnets (redundancy) 

Different subnets can share the routers and nodes, but they 

cannot share links. However, it is assumed that no interfaces 

may occur during packet transfer of another link. If a packet 

transfer of another link causes an interface, this interface needs 
to be considered during calculation of packet transfer latency 

as well as the potential of this interface to divide time slots. 

When using the proposed protocol, packet transfer must finish 
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within each closed subnet; then it will be able to calculate the 

allocation of time slots for the packet transfer per subnet. 

C. Flexible time slot 

Time slots are specified to be divided in the SpaceWire 

time code in SpaceWire-D. However, it is difficult to 

implement SpaceWire-D protocol stacks in software in the case 

where SpaceWire networks are configured within a short time 

span by time slot.  Therefore, even if time code used by the 

entire network is short, the time slots definition needs to be 

more flexible so that software can accommodate the time slot 

used in SpaceWire-D. In this proposed protocol, it is suggested 

that a way to address the above problems is to extend the time 

slot as follows. 

If the time value contained in the time code is a multiple of 

2n (where, n = 0 to 6, and value n depends on each subnet), this 

time code is referred to as the “Time code that separates time 

slot.” An interval from “Time code that separates time slot” to 

the next “Time code that separates time slot” is called the 
“Time slot.” When the number of time slot is 2m, the time slot 

number is caluculated according to as the following equation. 

TimeSlots ＝（TimeCode /２n）mod2m             (1) 

The length and number of time slots are determined for 

each subnet. Basically, the time slots are separated by all time 

codes, and 64 time slots are used. In addition, n=0 and m=6 are 

used. Any time code other than “time code that separates time 

slots” is ignored by the proposal protocol. When the time code 

cycle is shortened, usage of link bandwidth is reduced even if 

the latency is increased. In this case, an effective strategy is to 

increase the usage of link bandwidth by increasing the length 

of time slot used in the proposal protocol.  

 
Fig. 3.  Example of flexible time slot 

D. Transfer packet type 

SpaceWire-D can be transfered only if RMAP packet, the 

proposal protocol, cannot be limited to the RMAP packet. If 

we know the destination nodes and the size of any packet, it 

can be applied to a packet other than RMAP.  

E. Split RMAP Transaction 

In SpaceWire-D schedule, the RMAP reply packet is to be 

sent in the same time slot as the RMAP command packet.[3] 

However, if the target node is implemented in software, a long 

period of time is required before a RMAP reply packet is sent, 

and network usage as a whole is reduced because the latency is 

reduced. As part of the proposed protocol, it was suggested that 

the node could transmit RMAP reply packet by using a time 

slot that is different to the time slot received from the RMAP 

command packet. This is called “Split RMAP Transaction.” If 
using the Split RMAP Transaction, it is necessary to determine 

in advance - in the initiator and target nodes - not only the 

RMAP command packet but also the time slot number of the 

RMAP reply packet. 

TABLE I.  EXAMPLE OF SCHEDULE INFORMATION 

Time 

slot 

number 

Packet 

type 

Target 

node 

list 

Slot 

number 

of RMAP 

command  

Total 

packet 

size 

Total 

RMAP 

reply 

size  

0 RMAP 

command 

("write" 

command 

without 

verify) 

11, 12, 

13, 14 

0 1024 20 

Others 15  2000  

6 Others 10 6 －  

8 RMAP 

command 

("read" 

command) 

11, 12, 

13, 14 

9 40 1024 

10 Others 17  2000  

12 RAMP 

Reply 

10 11 －  

… … … … … … 

 

III. COMPONENTS OF THE SOFTWARE PLATFORM 

In order to ensure the real-time properties guarantee of 

SpaceWire, it is necessary to not only provide the proposed 

protocol, but to also provide a solution that make it easy to use 

the proposal protocol. We consider it necessary to include the 

following as a component of the software platform where the 

SpaceWire real-time properties guarantee can be ensured. 

1)  SpaceWire schedule information decision tools 
Used to determine the scheduling table for the appropriate 

time slot assigned to SpaceWire network consisting of multiple 

nodes. 

2) SpaceWire middleware 
Implementes the proposed protocols based on SpaceWire-D, 

and performs communication control based on the schedule 

information assigned by SpaceWire schedule information 

decision tools. 

3) Embedded system Real-Time OS 
A real-time kernel with high response performance that can 

run SpaceWire middleware and communications applications, 

the processing mission of software. We have developed a real-

time OS - the TOPPERS/HRP2 kernel - in this study. 
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Fig. 4.  System diagram of SpaceWire software platform 

B. TOPPERS/HRP2 kernel 

Detection of the time code is becoming a very important 

step in managing the time slot because of the neccessity to send 

SpaceWire packets according to the timing of predetermined 

time slots. This is because the time at which to send a packet 

that the user assigned to the time slot after the time code was 

detected is directly linked to the performance of real-time OS. 

We have subsequently developed the TOPPERS/HRP2 

kernel (HRP2 kernel: High Reliable system Profile kernel 

version 2), a real-time OS for embedded systems. Based on the 

μITRON specification that has become the de facto standard, 

the HRP2 kernel is a real-time OS the user adds a functions to 

in order to apply to areas where high-level reliability is also 

required to develop embedded software; for use in areas such 
as the space and medical fields. Features of the HRP2 kernel 

are as follows: 

1) Source code is easy to read and change 
The HRP2 kernel was produced in part to enable greater 

readability of source code or modifications. However, we have 

not adopted inefficient algorithms in order to pursue ease of 

readability. It enables efficient implementation of the algorithm 

even for complex structures, such as when using a heap. 

2) Easy porting to another target CPU 
As many parts of the HRP2 kernel have been written in C 

language and there is a clear separation of the target-dependent 

and non-dependent parts, this structure makes it easy to 

facilitate the porting to other targets. While interrupt 

processing is a very important in terms of improving run-time 

performance, the difference between proccessors is large and 

easily masks the differences between processors. 

We define the "TOPPERS standard interrupt processing 

model", and have adopted an interrupt process to absorb the 

difference interrupt with other processors while at the same 

time; maintaining balance between the run-time performances 

in the HRP2 kernel. The real-time kernel, which is the base of 

the HRP2 kernel has been porting for the main CPU used by 

embedded system. 

3) High performance and small footprint 
The kernel, the majority of which was written in C 

language, exhibits high execution performance and low 

memory use. As a matter of policy and to reduce the amount of 

memory used, in the HRP2 kernel, the kernel maintains the 

resources statically in advance, a process called static 

configuration. Embedded systems, which perform 

predetermined processing, differ between general computers 

and personal computers, and response performance is required 
for processing. Therefore while the amount of resources used, 

in applications (tasks, semaphores, etc.) can be determined for 

each application, it is possible to maintain the resources of the 

kernel in advance during the application development stage. 

Advantages of static configuration are as follows: 

a) High response time when using kernel resources 

Dynamic configuration requires preparation in order to use 

in run-time, in addition to resource preparation. It eliminates 

the need for a preparatory process through adoption of a static 

configuration. 

b) Store configuration information into ROM region 

Often, many application areas in embedded systems have 

greater capacity in the built-in ROM than in the RAM. 
Configuration information can be stored in the ROM by 

performing a static configuration, and it is expected to have an 

effect on reducing RAM consumption. 

c) Memory protection function to perform static memory 

allocation 

In recent years, embedded systems have become 

increasingly complex, and as such, high-level reliability is 

required. General computers typically have a memory 

protection function that prevents unauthorized access to the 

memory in order to ensure the reliability of complicated 
systems. Similarly, it may be necessary for embedded systems 

have memory protection even in areas where high-level 

reliability is required. The HRP2 kernel has a memory 

protection feature that prevents access other than that permitted 

to enable access to the memory area where a task is carried out. 

The HRP2 kernel can statically allocate code and data section 

areas that need to set the same access authority to a continuous 

address, and can detect illegal memory access that is occurring 

during execution of the embedded system. By using the HRP2 

kernel, the application developer does not need to know the 

specific memory address and size to set in MMU/MPU. 

Application developers can determine attribute settings of 

memory protection in unites of section and object file. 

4) Additional features functions of the high-level reliability 
The HRP2 kernel has the following additional function in 

addition to the memory protection function in the kernel of 

μITRON specification: 

 Object Access feature 

 Mutex function 

 Overrun handler function 

5) Easy to deploy open source license for embedded systems 
The HRP2 kernel has been released as open source, 

however, applying licenses such as GNU to embedded systems 

after modification will be a higher hurdle. The HRP2 kernel 

developers are applying for an open source license called 

“TOPPERS license” to make it easier to introduce when using 

in an embedded system. In particular, a license should notify 
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the secretariat running a project that they are using the source 

code. This is called "Report wear." [7] 

In this way, the HRP2 kernel was developed in mind to be 

utilized in highly reliable embedded systems. The previous 

version of the HRP2 kernel has a proven track record, and 

produce such as the TOPPERS/HRP kernel have been loaded 

on board the H-IIB rocket, which is used for launching 

satellites in Japan. 

C. SpaceWire middleware 

1) The role of SpaceWire middleware regarding real-time 

property guarantee 
SpaceWire middleware has two primary roles. First, to 

forward the packet according to a predefined schedule. 

Application programs should no longer have to process packet 

transfer schedules. SpaceWire middleware also provides 

support so as not to affect the entire network, even if there is a 

problem in the application program. Second, when multiple 

applications are running on SpaceWire middleware, it does not 

use the time slots of other applications. Therefore, we decided 

to introduce a communication path - called a channel - in order 

to implement a SpaceWire middleware. 

2) Channel 
Channel is a logical communication from an application on 

a source/initiator node to a destination/target node. One end of 
the channel is called the communication end point. A channel 

is referred to as a communication path connecting a 

communication endpoint in source/initiator node and a 

communication end point on multiple destination/target nodes.  

 

Fig. 5.  Example of channel in SpaceWire network 

One application can open multiple channels because a 

channel can be established for each communication purposes. 

It can also include more than one route to the same 

destination/target node. 

The purpose of introducing the channel is to distinguish the 

time slot each application is using SpaceWire middleware 
when multiple applications are running in the node. Decision 

tools, which will be described later in the schedule information, 

are also used as a description unit of the communication 

request. 

The following three items are determined by the channel: 

 Protocol type 

 Source/Initiator node 

 List of destination/target nodes 

The reason why there is a list of destination nodes, is 

because the logical topology of a star shape is considered from 

multiple nodes, and the prospect of the application improves 

since a channel is open for each application, and packet can be 

collected from multiple nodes in one channel. Although the 

method of time slot allocation becomes difficult due to the 

existence of multiple destination nodes, it does not affect run-

time processing since the time slot allocation is completed at 

the application development.  

The contents added with the channel number information to 

each entry of the schedule information are as follows. 

TABLE II.  EXAMPLE OF SCHEDULE INFORMATION (WITH CHANNEL ID) 

Time 

slot 

number 

Ch. 

ID 

Packet 

type 

Target 

node 

list 

Slot 

number 

of RMAP 

command  

Total 

packet 

size 

Total 

RMAP 

reply 

size  

0 1 RMAP 

command 

("write" 

command 

without 

verify) 

11, 12, 

13, 14 

0 1024 20 

4 Others 15  2000  

6 2 Others 10 6 －  

8 1 RMAP 

command 

("read" 

command) 

11, 12, 

13, 14 

9 40 1024 

10 5 Others 17  2000  

12 3 RAMP 

Reply 

10 11 －  

… … … … … … … 

 

3) Main function 

a) Summary of common function 

The number of network operation modes and time slot for 

each SpaceWire node port, which is a common feature that sets 

the basic parameters related to the proposed protocol, is set. It 

also has the ability to change the network operation mode. 

Because the protocol agreement network operation mode 

between nodes are not currently standardized, the network 

operation mode for the middleware is obtained from the 

application. 

b) Summary of RMAP initiator function 

RMAP initiator is a function that is primarily able to 

generate (during system design) static end points. 

Communication end points have a one-to-one correspondence 

with the channel, and any command of RMAP 

Write/Read/Read-Modify-Write can be issued for one 

communication end point. In addition it has the ability to issue 

the RMAP transaction for communication end points. This 

function can send a RMAP Write/Read/Read-Modify-Write 

command and receive the reply packet. This function describes 

the following information for each entry in the schedule 

information: 

 SpaceWire port ID 

 Network operation mode number 

 Time slot number 

 Channel ID 

 Command type 

 Total size of the packet 

 Time slots number receiving RMAP reply 

Source / Initiator node

Destination
/Target node

Channel  
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 Total size of RMAP reply packet 

The issuance of RMAP transaction supports both the blocking 

and non-blocking types. It also has a function that initializes 

the communication endpoint and refers to the state of the 

communication end points and transactions. 

c) Summary of RMAP target function 

This function can register how to handle each range of 

RMAP addresses that are accessible from other nodes. Users 

are usually able to choose whether to access the memory or 

register the callback function of the application, and leave the 

process to the application. The RMAP target processing 

function according to the command type, and in the case of 

memory access, returns a RMAP reply packet. Regarding 

RMAP memory access, the RMAP target function carries out 

processing according to the command type and returns a reply 

packet. The RMAP reply packet returns the response in the 

time slot determined according to the schedule information. 

This information is described for each schedule information 

entry RMAP target as it is in the RMAP initiator function.  

D. Schedule Information decision tools 

When SpaceWire middleware is used experimentally or the 

network topology is simple, schedule information can be 

created and used manually.  

However, since the actual SpaceWire network has 

redundant paths and the communication requirements of the 

application become complex, it is difficult to execute 

verification even when it is created manually. Therefore, a tool 

that detects redundant paths from the network topology and 

allocates time slots automatically from the communication 

requirement of the application will be needed. 

We have studied and developed algorithms to determine the 

schedule information of allocating time slots of the 

communication path and communication packets based on the 

network topology and communication requirements. This paper 

describes the network topology that inputs information into a 
tool as well as communication requirements. The algorithm to 

determine the schedule information has been omitted [6]. 

1) Network Topology 

a) Subnet 

A subnet is a unit used to divide networks that do not share 

a SpaceWire link for each network operation mode, and is used 

to configure the network topology according to the proposed 

protocol. It is necessary to describe the communication request 

for each subnet in the case when describing the different 

communication requests on the same node, however we will 

not cover in this paper. A subnet consists of each component of 
nodes, routers and links, and parameters of the subnet. The 

parameter requires the following information: 

 

 

 

 

 

 

TABLE III.  SUBNET PARAMETER 

Parameter name Description 

Network operation mode Since subnets are required for network 
operation mode, they defines network 
operation mode. The schedule 
information decision tool performs the 
calculation for each network operation 
mode. 

FDIR period FDIR is not set as a latency margin of 
time slots when determining the 
allocation of a time slot. 
FDIR is not necessary in the case of 
successful communication. However, it 
is necessary for recovering the entire 
subnet when a packet that does not 
match SpaceWire-D comes into the 

subnet. It is presumed that the value of 
an FDIR period is given; it is not 
calculated by the schedule information 
decision tool. Described as a period of 
time until error recovery FDIR from 
error detection. 

Time slot Time slot duration and the number of 
time slots in one cycle, and the number 

of time codes separating the time slot is 
set as a parameter of the time slot. 

b) Node 

Node is a SpaceWire device with an endpoint port of the 
channel and can be described in communication requirements 

for the source/initiator node and destination/target node. Node 

parameters are as follows: 

TABLE IV.  NODE PARAMETER 

Parameter name Description 

Maximum sending 
delay time 

Maximum delay time from when a packet 
node recognizes the time slots to the time 
when the packet assigned in the time slot 

begins transmission. This parameter becomes 
effective for a source/initiator node. Although 
it is currently set as a parameter fixed in the 
node, it is considered that it will provide 
mode appropriate values when dividing the 
parameter for each port. 

Maximum 
receiving delay 

time 
 

Maximum delay time from when the node 
starts receiving a packet until when it starts 

sending a reply packet. This parameter sets a 
conservative value because it is fixed in the 
node. It is presumed in future that a more 
appropriate value will be expected by setting 
the constitution of a port and receiver, a 
command packet type and packet length, and 
the memory access processing time of the 
node. 

Port 
 

A port number, logical address and a key that 
is unique to each node can be set in the port. 
Because the channel ties between logical 
addresses of the node, the logical address is 
always given to the node. 
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c) Router 

In the proposed protocol, the SpaceWire router is a device 

used to wormhole route packet. Since a packet flowing in the 

time slot with the subnet does not prevent wormhole routing, 

propagation delay time can be set as a parameter in the router. 

d) Link 

A link is a line segment to link between nodes and routes, 

and ports of the node and router. Link ID as a parameter of the 

link, link speed, link propagation delay time and endpoint 

information of the node and router can be set as a parameter. 

 The network topology can be described in XML from the 

information. 

 
Fig. 6.  Example of network topology description 

2) Communication requirements definition 
The purpose of the communication requirements definition 

is to describe the requirements for a communication packet 

from the application developer's perspective. Communication 

requirements can be seen as a list of the information in relation 

to the channel in network operation mode in a subnet. The 

elements consisting of the channel and its parameter are 

described in this paper. 

a) Source node 

This is source/initiator node and only once source node 

exists in the channel.  

b) Destination nodes 

These are the destination/target nodes, and one or more 

destination nodes can be described in the channel. 

c) Packet information 

This describes the information packet used in the channel. 

The following information is required when determining the 

schedule information. 

 

 

 

 

 

 

 

 

 

TABLE V.  PACKET INFORMATION PARAMETER 

Parameter 

name 

Description 

Type Packet type 

CargoSize Cargo maximum size used by the channel 

Period Number allocated in 1 cycle time slot by this channel. 

Cf. If the cycle in the network topology is 64 and the 

period is set as 64, it means this channel is required to 

be used for each time slots.  

Reply When there is a reply to RMAP command, this 

information is described because the calculation for 

the processing time of the reply packet is required. 

Verify This information is described because the 

calculation for the delay of the maximum 
receiving delay time is required when the target 
node is used to verify processing. 

Reply 

Interval 

This can be specified when responding to a reply 

packet with a time slot other than the time slot 

receiving the reply packet. It is effective whten the 

target node is implemented with software or a node 

that has slow processing time. It is also a parameter 

used to implement a Split RMAP transaction of the 

proposal protocol.  

Jitter Jitter can be used when time slot allocation with 

optional communication can be implemented by 

shifting the allocated time slots only at the time slot 

allocating a channel according to the communication 

cycle interval. It is only valid in the case of search 

algorithms able to can handle jitter. 

 

The communication requirements definition can describe as 

following: 

 
Fig. 7.  Example of communication requirement description 

IV. OPERATION TEST 

In this study, implementation of a software platform was 

executed. An operation test using actual equipment was 

executed to determine whether applications created on top of 

the software platform work correctly in the examined proposed 

protocol. The following results were reported: 

A. Test contents 

SpaceWire network topology and communication 

requirements are described in XML format, the schedule 

<SpaceWireChannelsInfo> 

<Channel Id="TEST1"> 

<Source Id="SpaceCardA-memory" /> 

<Destination Id="SpaceCardB-memory" Redundancy="1"> 

<Path Id="SpaceCardA-memory-to-SpaceCardB-memory"> 

<Link Id="SpaceCardA-memory-0-to-SpaceCardA-SOISOC-5" /> 

<Link Id="SpaceCardA-SOISOC-3-to-SpaceCardA-FPGA-1" /> 

<Link Id="SpaceCardB-SOISOC-5-to-SpaceCardB-memory-0" /> 

</Path> 

</Destination> 

<Packet Id="TEST1_RMAP-R" Type="RMAP-R" Reply="True" 

 Cargosize="1000" Period="2" ReplyInterval="0" Jitter="0"  

Requirement="Constraint" /> 

<Packet Id="TEST1_RMAP-W" Type="RMAP-W" Reply="True"  

Cargosize="1000" Period="2" ReplyInterval="0" Jitter="0"  

Requirement="Constraint" /> 

</Channel> 

</SpaceWireChannelsInfo> 

<?xml version="1.0" encoding="UTF-8"?> 

<SpaceWireNetworkTopology> 

<Subnet> 

<FDIR IntervalTime="5" /> 

<Timeslot Number="64" SlotTime="15625" TimecodeInTimeSlot="1" /> 

<Router Id="SpaceCardA-SOISOC" NetworkPropagationDelay="2"> 

<Port Number="1" /> 

<Port Number="2" /> 

</ Router> 

<Node Id="SpaceCardA-memory" MaxSendDelayTime="5" 

 MaxReceiveDelayTime="15" NetworkPropagationDelay="2"> 

<Port Number="0" LogicalAddress="0x50" Key="0x50" /> 

</Node> 

<Link Id="SpaceCardA-SOISOC-1-to-SpW-GbW-1" Speed="10" 

   NetworkPropagationDelay="0"> 

 <Endpoint1 Id="SpaceCardA-SOISOC" Port="1" /> 

 <Endpoint2 Id="SpW-GbE" Port="1" /> 

</Link> 
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information decision tool analyzes paths, and the allocation of 

time slot is implemented. 

 Prepare the test scenarios for SpaceWire Traffic 

Generator to generate pseudo traffic by the allocated 

time slot. 

 Embed the results of the time slot allocation of 

source/initiator node into the configured application. 

 Implement communication between initiator/target 

nodes, connect the equipment, and send packets and 

time code from Traffic Generator. 

 Analyze the RMAP packet information between 

initiator/target nodes using SpaceWire Link Analyzer. 

B. Test results 

It was confirmed that initiator/target nodes send and receive 
RMAP command reply packets with using the assigned time 

slot. 

We confirmed that the packets cannot be transmitted in the 
time slot assigned by the initiator/target node when packets in 

the schedule information not assumed by the Traffic Generator 

are transferred, SpaceWire middleware detects associated 

errors and alerts the application software. 

 

Fig. 8.  Test environment of software platform 

V. CONCLUSION 

SpaceWire software platform, which is the proposal 

protocol, has been put together as a guideline based on 

SpaceWire-D. Furthermore, a software platform that satisfies 

the proposal protocol has been developed, operation tests have 

been executed, and communication that guarantees the real-

time properties of SpaceWire has been confirmed. 

In future, we expect to examine the scheduling algorithm 

used in the schedule information decision tool, and porting 

SpaceWire middleware to other target boards and OS. Because 

input information about the schedule information decision tool 

is in text base format, it is expected to be effective in 

confirming the network topology that becomes complex when 

it is possible to present descriptions and displays in a graphical 

environment. 
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Abstract—Challenges for SpaceWire implementation within 

Microsemi RTAX FPGAs are especially the clock recovery of a 

SpaceWire link. With the UT200spWPHY from Aeroflex a space 

suitable device is provided for external clock recovery. For the 

Payload Data Handling Unit (PDHU) on the ESA ExoMars 

mission we have developed a SpaceWire core with interface to 

the SpaceWire PHY. The core shows significant improvements in 

terms of resource utilization, complexity, implementation effort 

and performance. Additionally, we have encountered the need 

for SpaceWire cores with enhanced protocol processing. 

SpaceWire supports the implementation of variety protocols, 

which provides a high flexibility. Dependent on the mission, 

protocols change and therefore adaption to mission specific 

requirements is needed. This has led us to develop an advanced 

SpaceWire core with integrated programmable protocol 

processing. As most programmable machines, they have a high 

risk to be non-deterministic because usually they represent 

processors with infinite states. In these systems it is hard to 

achieve the complete verification and validation coverage. 

Therefore, we have chosen a programmable stack machine 

approach, which is deterministic and provides easy validation. 

Index Terms—SpaceWire core, Aeroflex UT200spPHY, 

programmable protocol processing 

I. SPACEWIRE CORE WITH EXTERNAL CLOCK RECOVERY 

Currently, we are developing for the ESA ExoMars mission 

the Payload Data Handling Unit (PDHU). The main objective 

of the PDHU is payload data management with PUS13 

support. Data storage is performed in a 1TBit Flash based mass 

memory. The PDHU comprises 4 SpaceWire links to the 

instruments, operating at 167 Mbps raw data rate with a net 

data rate to the PDHU of 100 Mbps. The target device 

architecture for the SpaceWire cores is a Microsemi RTAX 

FPGA. Within these devices the most challenging part of a 

SpaceWire implementation is the clock recovery. 

SpaceWire uses Data-Strobe (DS) encoding and the clock 

can be recovered by simply XORing the Data and Strobe 

signal. An example for an RTAX clock recovery 

implementation circuit is depicted in Figure I-1. 

 

 

DFD

XOR
CLK
BUF

DF

DF
S

DF

 

Figure I-1: RTAX DS Clock Recovery 

The clock recovery requires a clock path with a delay larger 

than the data path to prevent Flip Flop setup time violation. On 

the other hand, the delay difference must not get near to the bit 

period because otherwise a hold time violation would occur. 

Implementing the clock recovery in an FPGA is difficult 

because the tools usually do not perform well to handle a clock 

path with an XOR in it because both D and S have to be treated 

as clocks. Careful manual timing analysis is required and for 

high data rates even manual placing of critical FPGA 

primitives. Furthermore, these timing requirements have to be 

guaranteed over the full temperature and voltage range, and 

even have to consider device degradation and radiation effects 

e.g. total dose. 

 The UT200SpWPHY implements this critical circuit and 

provides a simple single data rate, two bit with clock interface 

to the FPGA, as depicted in Figure I-2. 

PHY FPGA

RxClk

RxDR

RxDF

 

Figure I-2: PHY RX interface to FPGA 

The RxDR signal represents the on the rising edge (even) 

received bit. And the RxDF signal represents the on the falling 

edge (odd) received bit. This scheme has several advantages 

for a SpW RTAX implementation with:  
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I. Synchronous Clock to Data relation results in a 

simpler SpW Receiver implementation  

II. No time consuming manual timing checks which 

results in a robust FPGA design. 

III. Supports data rates beyond an FPGA only approach. 

 

 

We have developed a SpW Core with interface to the 

UT200SpWPHY. The layout results are depicted in Table I-1 

and Table I-2: 

 

Resource Used Total (%) 

Sequential 297 2,76 

Combinational 485 2,26 

RAMs 1 1,5 

Table I-1: SpW RTAX 2000S resource utilization 

Clock Source Frequency (MHz) 

RxClk (from PHY) 145 

Clk (Core Clk) 102 

Table I-2: SpW RTAX performance 

The RxClk of 145 MHz provides a raw link data rate from 

the transmitting end of 290 Mbps, due to the two bit transfer. 

However, the limiting factor is the transmitter Clk which is 

equal to the maximum SpW Core frequency of 100 MHz. 

Consequently, a maximum transmitter raw data rate of 100 

Mbps can be achieved. This provides a maximum full-duplex 

data rate (data and FCTs only) of 70 Mbps for the transmitter 

and 228 Mbps for the receiver (net). It has to be considered that 

the maximum data rate of the SpW PHY is limited to 200Mbps 

(raw). For ExoMars only a unidirectional data transfer from 

instrument to PDHU has to be supported. In this case the 

PDHU SpW transmitter provides only the flow-control 

characters to instrument. Receiver and transmitter are allowed 

to operate at different signalling rates. The transmitter can run 

by a factor up to 20 slower than receiver in a unidirectional 

setup without wasting bandwidth. This is because only one 

FCT (Flow Control Token) from transmitter has to be sent 

every 8 Data Character. For ExoMars the Core Clk frequency 

is 40 Mhz and an overall unidirectional data rate of up to 320 

Mbps can be supported. Considering a full-duplex operation, 

the ExoMars setup achieves data rates of: 26Mbps transmitter 

and 127 Mbps receiver (net). 

The Aeroflex UT200SpWPHY provides significant 

improvements for a SpW RTAX implementation in terms of 

performance, resource utilization and implementation effort. 

 

II. SPW CORE WITH PROGRAMMABLE PROTOCOL PROCESSING  

SpaceWire supports a variety of protocols. Instruments 

with SpaceWire and CCSDS compliant protocols are capable 

to transfer within the packet structure Housekeeping (HK) data 

and e.g. image data. These packets must be checked for 

accuracy and furthermore the data has to be demultiplexed 

into: HK data for e.g. status of the instrument and e.g. image 

data. Furthermore, the SpW Remote Memory Access Protocol 

(RMAP) provides means to access memory or registers directly 

of a SpW node [3]. Since the protocol and data content changes 

from mission to mission, a dedicated decoder or protocol 

handler has to be implemented for each mission specific 

requirement. An improvement is to implement programmable 

protocol processing for this task. The disadvantage is that 

programmable processing is mostly related to CPUs. CPUs are 

highly flexible but have also a high risk to be unpredictable. A 

CPU with heap, stack, interrupts and cache maybe represented 

as a state machine with infinitive states. Furthermore, the 

translation of source code into CPU instructions (compiler) 

with optimization stages implies also high risk for non-

determinism. This approach requires high validation effort for 

both: CPU (hardware) and software. CPUs have furthermore 

high resource utilization requirements. Therefore, we have 

evaluated different architectures to find an appropriate 

candidate which provides: 

 

I. Low resource utilization, low complexity. 

II. High data throughput. 

III. Determinism and robustness. 

IV. Easy to program 

V. Linear deterministic program flow. 

VI. Small resource requirements for programs. 

 

Within this context we were looking for a simple stack 

machine with Forth support. The Forth language has several 

advantages like its simple compiler and is especially very 

compact in terms of code size. We found the J1 Forth CPU 

developed by James Bowman [4]. The J1 has been developed 

to process video streams in Xilinx Spartan-3E FPGAs and is 

implemented with less than 200 lines of Verilog. The internal 

states of the CPU consist of: (i) a 33 deep data stack of 16 bit 

width (ii) a 32 deep return stack of 16 bit width and (iii) 13 bit 

program counter. No other states exist in the J1; neither 

condition flags, modes or extra registers. This low complexity 

leads to a low state set and is therefore ideal for a robust 

deterministic design. The J1 is subdivided into five categories 

of instructions with (i) literal, (ii) jump, (iii) call and (iv) ALU 

which are implemented in an unencoded hardwired layout. The 

ALU supports overall 16 operation codes which comprise e.g. 

add, and, or, shift and stack operations. Instruction fetch and 

decode is performed in parallel due to the non-dependency of 

ALU codes and instruction codes. Programming the J1 is very 

simple. A set of Basewords is available which are written in 

Assembler. These Basewords are direct ALU operations with 

e.g. add and stack pointer manipulation and represent the 

supported Forth words. All additional user defined functions 

are implemented in a Dictionary which comprises e.g. loop or 

if comparison statements which are build-up from the available 

Baseword set. The compiler has therefore a low complexity 

and only maps the hardwired ALU operations from the 

Baseword set into any user defined program sequence and 

calculates the offsets for jump conditions. This simplicity of 

the compiler also carries out a linear and deterministic program 

flow. 
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The J1 has been developed for Xilinx and dual-port RAM. 

Xilinx RAM provides the capability to initialize its content 

within the FPGA configuration stream. This is used in the J1 

for loading the program code. Forth stores variables usually 

within the program code, there are no separate memory section 

for program and data. RAM is a costly resource in an RTAX 

device due to the low availability. Additional, a RTAX device 

does not provide the initialization of RAM with a predefined 

configuration.  

We have therefore modified the J1 to a RTAX suitable design: 

A minor task was the translation from Verilog to VHDL which 

is more commonly used in Europe. The memory areas for 

program code and variables have been separated. As 

replacement for local variables the return stack can be used or, 

if necessary, an additional RAM can be added. The compiler 

has been modified to store the variables consecutive in the 

RAM area. The program code is represented by a ROM which 

is implemented as combinational logic. This can be become 

costly in terms of resource utilization and depends highly on 

the program code size. But this has also the advantage for 

secure sensitive applications, because the program code itself 

cannot be read-out and is hardwired in the RTAX anti-fuse 

device. To support an external ROM we have modified the J1 

to support hand-shaking mechanism. This provides the ability 

to connect to common bus interfaces e.g. AMBA or Wishbone, 

and external memory devices e.g. ROM or EEPROM. 

We have implemented the modified J1 into a Microsemi 

ProASIC3E in a basic hardware setup with a Wishbone bus 

and a UART interface to test its functionality. First results 

showed the correct behaviour of the core and also 100 % code 

coverage during simulation could be easily achieved. In the 

ProASIC3E the system runs at 40 MHz. The core has been 

synthesized for an RTAX2000S and the results are depicted in 

Table II-1.  

 

Resource Used Total (%) 

Sequential 290 1 

Combinational 116 1 

RAMs (optinonal) 1 1,5 

Table II-1. J1 RTAX implementation (without ROM) 

The depicted resource utilizations are without any 

combinational ROM implementation. The core itself achieves 

then an operating frequency of 100 MHz. As mentioned before, 

the operating frequency depends highly on the program code 

size if it is implemented as combinational ROM. Therefore, we 

are working on a cascaded ROM implementation to improve 

the overall performance.  

The next step will be to add a SpaceWire core to the J1 and 

implement a protocol handler e.g. RMAP for a common space 

application. RMAP is especially suitable for an implementation 

because of its relatively low-level complexity. The J1 could be 

connected to the SpaceWire input/output ports and perform all 

necessary processing with packet data integrity checks for the 

verified option, acknowledge codes and error codes processing 

and the actual data transfer to destination. The J1 architecture 

provides means to extend the available ALU operation code 

set. This could be used to implement CRC calculation directly 

within the CPU. Overall we think the J1 RTAX 

implementation provides an efficient and robust solution to 

implement SpaceWire protocol and data handling within an 

space suitable device. 

 

III. CONCLUSION 

The Aeroflex UT200SpWPHY provides significant 

improvements for a SpW RTAX implementation in terms of 

performance, resource utilization and especially 

implementation effort. SpW cores with integrated protocol 

processing based on stack machines provide high flexibility, 

fast adaption to mission specific protocols and non-complex 

validation. Within this scope we have presented a Forth 

programmable stack machine based on a modified J1 which 

can be implemented into a Microsemi RTAX device. The stack 

machine has low complexity, low resource utilization 

requirements and is easy to program. Especially the low 

complexity provides deterministic design which has several 

advantages for the verification and validation. The stack 

machine provides an efficient and robust solution to implement 

SpaceWire protocol and data handling within a space suitable 

design. The verification of the stack machine has been 

completed and we plan now to connect it to a SpW core and 

implement a protocol handler e.g. RMAP. 
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Abstract— The 18x SpaceWire router is a new 18 port stand-

alone router component currently being specified by Aeroflex 

Gaisler. Today there is no component available on the world 

market exhibiting more than eight SpaceWire ports. The goal 

with this new development is to provide this missing key 

component to the ever increasing number of customers requiring 

manifold ports.  

The 18x router is based on the GRSPWROUTER configurable 

SpaceWire IP core developed by Aeroflex Gaisler.  The IP core 

has been configured to provide 16 SpaceWire ports with on-chip 

LVDS transceivers and two SpaceWire ports with LVTTL 

signals supporting off-chip LVDS devices.  

The device includes support for the incoming SpaceWire 

standard revision 1 (ECSS-E-ST-50-12C Rev. 1), the SpaceWire-

D protocol and the SpaceWire Plug-and-Play protocol currently 

being developed for ECSS.  

Index Terms—SpaceWire, Networking, Spacecraft Electronics 

I. INTRODUCTION 

Currently there is no SpaceWire router component on the 

market with more than 8 SpaceWire ports. Both ESA and 

several companies in the space industry have indicated 16 as 

the most viable number of SpaceWire ports for routers in the 

near future. Aeroflex Gaisler intends to provide this key 

component with a new 18 port SpaceWire router ASIC. The 

design is be based on the GRSPWROUTER configurable 

SpaceWire router IP core [1]. This core supports three different 

port types: SpaceWire ports, AMBA ports and FIFO ports. 

These will be further explained later in the IP core section. 

During the development phase, two configurations of the IP 

core were identified as potential candidates for the final ASIC: 

one with 16 SpaceWire ports with on-chip LVDS transceivers 

and two additional SpaceWire ports or two FIFO ports; and the 

other with 16 SpaceWire ports and two internal AMBA ports  

connected to a PCI interface. Both were evaluated in detail to 

determine which one would eventually be used for 

manufacturing. The final choice was driven by the number of 

available pins in the package that was selected, a 256 pin 

ceramic quad flat package.  

Other considerations that were taken into account were 

such as whether to include support for the incoming revision 1 

of the SpaceWire standard (ECSS-E-ST-50-12C Rev. 1), the 

new SpaceWire-D and Plug-and-Play protocols. The problem 

has been the lack of a firm schedule for finalization of these 

standards. In fact, none of the standards have been completed 

at the time of tape out.  

However, Aeroflex Gaisler is actively involved in the 

revision 1 work and has also been reviewing and discussing the 

two other protocols with the developers. In this way the risk 

implementing something that will later on changes in the 

protocols have been mitigated. 

II. ROUTER IP CORE PROPERTIES 

The GRSPWROUTER IP core is the central component in 

both of the suggested configurations. It supports from 2 to 31 

ports of three different types: SpaceWire, AMBA and FIFO. 

The SpaceWire ports are normal SpaceWire links and will 

support at least 200 Mbit/s. FIFO ports provide 9-bit parallel 

interfaces with control signals in each direction (read/write) 

which can be used to interface external units or to cascade two 

or more 18x routers without any glue logic. The AMBA ports 

interface to an AMBA AHB bus using DMA on the bus. All 

three port types connect to the core router switch matrix using 

identical FIFO based interfaces. There is no way to distinguish 

the three ports on the SpaceWire packet level and upwards.  

The configurability provided by the IP core makes it usable 

in many different applications. It has already been used in 

several standard rad-hard components on Actel RTAX2000SL 

and RT ProASIC3 FPGAs and is also used in the Next 

Generation MicroProcessor (NGMP) system-on-chip activity 

funded by the European Space Agency. 
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Fig. 1.  GRSPWROUTER IP core overview 

All mandatory features currently in the ECSS SpaceWire 

standard are supported by the core as well as some additional 

key functions not being available in other implementations e.g. 

packet distribution. 

III. OVERALL FUNCTIONALITY 

This section lists the key features that were common to the 

two potential configurations of the router presented earlier. The 

list consists of features available in the router IP core as well as 

external auxiliary interfaces.  

The base consists of the 16 SpaceWire ports with on-chip 

LVDS transceivers. Each router port, regardless of type, is 

equipped with a timer which can be enabled/disabled. It is used 

to prevent deadlocks resulting from stalling source or 

destination nodes which could lock a port indefinitely. This 

feature might be introduced in the upcoming revision 1 of the 

SpaceWire standard but is already available in this design. 

All addressing modes mentioned in the standard are fully 

supported. Physical and logical addresses can be individually 

enabled to use group adaptive routing or packet distribution to 

any number of physical ports available in the router. The 

addressing is setup using a routing and port setup table.  

The addressing tables and port FIFOs in the router consist 

of a considerable amount of memory which can experience 

SEUs and the contents can thus be corrupted. All memory is 

protected by hardened flip-flops, simplifying the design.  

All configuration and status access are handled through 

configuration port 0 which is accessed using the RMAP 

protocol from any of the other ports. The allowed ports for 

configuration accesses can be restricted if needed using several 

configuration options. 

For diagnostic and test purposes UART and JTAG 

interfaces are provided. These low pin count interfaces are 

suitable in the small package that will be used (see below) but 

at the same time have sufficient bandwidth for the amount of 

status and configuration in the router internals. As this method 

is available most of the router configuration options have been 

set to known good values after the reset which can then be 

changed using these interfaces.  

IV. FINAL CONFIGURATION 

The final configuration that has been selected for the ASIC 

consist of the base mentioned in the previous section with 16 

SpaceWire ports with on-chip LVDS transceivers and in 

addition two SpaceWire ports with support for external LVDS 

transceivers.. The only difference between the two different 

SpaceWire port types is the I/O type of the pads.  
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The major design choice for this configuration was whether 

to include two FIFO ports or two SpaceWire ports. The 

selection of the two additional SpaceWire ports was motivated 

by the pin count of the selected package, as well as the fact 

more and more processor devices have built-in SpaceWire 

ports (of the with LVTTL signaling) and therefore parallel 

FIFO ports would not be readily used without the need for an 

FPGA device between the router and the processor. It is also 

not that difficult to include SpaceWire link in FPGAs, 

considering the large variety of SpaceWire IP cores available 

(see discussion further down).  

 The target package for the router is a simple to handle low-

pin ceramic quad flat package which is quite limiting and does 

require reducing the amount of configuration pins even more 

than previously mentioned to fit two FIFO ports. Choosing two 

additional SpaceWire ports instead saves up to 36 pins without 

reducing flexibility of the ASIC.  

One of the applications of the FIFO ports is to cascade one 

or more routers without any glue logic. For this purpose the 

SpaceWire ports will work equally well and would in fact 

simplify matters. In most cases cascading would be done on a 

printed circuit board and it is well understood how to route 

SpaceWire signals on such a board. The FIFO interfaces are 

most useful when connecting directly to external processors 

and memories. To use a SpaceWire link instead would require 

the insertion of glue-logic providing a complete SpaceWire 

codec which would typically be done using a FPGA which 

increases design complexity considerably. It is however 

anticipated that the need to interface to external processors 

using parallel interfaces will be less required in the future since 

most processors will be equipped with SpaceWire interfaces. 

V. SPACEWIRE STANDARD REVISION 1 SUPPORT 

An upcoming revision 1 of the SpaceWire standard is 

planned for the near future which contains some changes 

affecting the router ASIC development. Some additions result 

in old devices potentially not being forward compatible. It has 

to be carefully considered if and how these new features are 

implemented. The final details of the updates have not been 

decided yet and there is no date set for when this will be ready 

so there is a considerable risk in implementing these new 

features before the standard is finalized.  

 

 

 

Fig. 2.  18x SpaceWire router ASIC overview 
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Three changes have been identified as having technical 

impact. The first one is the addition of timers in routers. This 

will probably be optional in the standard and not restricting the 

implementation details to any larger extent. The 

GRSPWROUTER IP core already contains a timer feature as 

previously mentioned which makes it probable that no changes 

will be needed to the core.  

The second change is a modification of the link interface 

FSM. Two requirements have been identified that potentially 

can cause the codec to make unwanted transitions. These are 

unlikely corner cases and very few if any problems have been 

seen in practice. This will probably not affect backward 

compatibility with old codecs and so the risk is estimated to be 

very low to include these fixes in the router. Tests will be made 

during validation on FPGA that no disturbances occur with 

older devices.  

The final and most complicated change is the addition of an 

interrupt code. It uses one of the reserved control bit 

combinations of time-codes and it must therefore be made sure 

that it cannot interfere with the normal time-code facilities.  

Existing devices might not be forward compatible with 

revision 1 compliant devices due to the interrupt code. Some 

issues with these new codes are still under discussion, but the 

basic specification has been included in the standard. This is 

indentified as the part of revision 1 causing the highest 

implementation risk if included in the router ASIC. The desired 

way to go is that the router is flexible enough to allow ports' 

handling of the new code to be configured individually. In this 

way the router can be used as a device enabling old and new 

equipment to be used in the same SpaceWire network. 

VI. SPACEWIRE-D SUPPORT 

There is a new protocol emerging called SpaceWire-D 

where D stands for deterministic. This is anticipated to be 

widely used in the future to provide deterministic and low-

latency transfer of control and command information while still 

preserving the high bandwidth of SpaceWire. It basically 

consists of a time-slotting table replicated in each unit (node or 

router) in the SpaceWire network. Therefore a router needs to 

have support for SpaceWire-D if it is used in a network 

utilizing that protocol.  

The SpaceWire router ASIC implements the following 

SpaceWire-D support.. 

Monitoring of received packet length has been 

implemented, with the maximum packet length and enable 

being programmable per port. In the case the length of a 

received packet exceeds the aforementioned maximum length, 

the packet will be truncated and an EEP will be inserted to the 

destination port. The source port spills the incoming packet up 

to and including the next EOP/EEP. The maximum length is 

possible to configure up to the maximum length of an RMAP 

packet thus 2
25

 bytes. 

Monitoring of packet reception while receiving a Time-

Code has been implemented, enable being programmable per 

port. In the case a packet is being received while a filtered 

Time-Code is received as per above, the packet will be 

truncated and an EEP shall be inserted (in the same way as for 

packet length truncation). Note that also Distributed Interrupts 

can be used for truncating packets, being programmable in the 

router. 

VII. SPACEWIRE PLUG-AND-PLAY SUPPORT 

The SpaceWire router ASIC implements basic support for 

SpaceWire Plug-and-Play, which covers device identification 

and support for network discovery. The function can be 

disabled by means of a configuration pin. 

VIII. SPACEWIRE IN-SYSTEM TEST 

A built-in self-test is provided for the verification of the 

SpaceWire router and codec functionality. The SpaceWire In-

System Test (SIST) protocol provides a means for verifying 

larger part of the designs' functionality without the need to 

generate high speed test patterns and observe results at high 

frequencies. 

The internal SIST module is connected to the router via a 

dedicated FIFO port. The FIFO port is one of the standard 

ports of the GRSPWROUTER IP. The other side of the SIST 

module is connected to the AMBA APB bus, which is only 

accessible through the JTAG and UART (debug-) interfaces. 

Thus is it is not possible to configure the SIST module via a 

SpaceWire link. 

The SIST module can generate and send SpaceWire 

packets via the FIFO port. It can also receive SpaceWire 

packets via the FIFO port and check there contents. The 

packets are generated deterministically and can therefore also 

be easily checked on reception. 

 

The packet format is similar to the commands defined for 

the RMAP protocol (ECSS-E-ST-50-52C): 

 SpW Address (0 to 31 bytes) 

 Logical Address (1 byte) 

 Protocol ID (1 byte) 

 Transaction Identifier (2 bytes) (i.e. seed) 

 Data Length (3 bytes) 

 Header CRC (1 byte as per ECSS-E-ST-50-52C, covering 

header from Logical Address, inclusive) 

 Data (0 to 16 MiB-1) (data is a pseudo-random generated 

bit string based on the seed) 

 Data CRC (1 byte as per ECSS-E-ST-50-52C, covering all 

Data bytes) 

 End-Of-Packet 

 

Packets of up to 2
24

 bytes can be generated and checked. 

Sequences of up to 2
16

 packets can be generated, or auto repeat 

can be enabled. The data is generated by means of a 16-bit 

wide LFSR, with a programmable polynomial. The stated of 

the LFSR (a.k.a. seed) at the beginning of the data in the packet 

is transmitted as part of the packet header, allowing each 

packet to be checked independently. The seed can also be used 

to detect dropped packets. The length of the packet data field is 

sent in the packet header. The only managed parameter is the 

polynomial; everything else can be derived from the packet 

header. 
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Packets are automatically generated in an initiator, the 

contents of a packet is deterministic. Packets are automatically 

checked in a target when received, providing statistics. The 

initiator and target are normally the same end-point in a 

SpaceWire network, but may be different. 

It is possible to combine the SIST functionality with the 

internal loop-back function, or with external cables looping 

back the SpaceWire signals per port or between pair of ports. 

The SIST module also allows direct data read and write to 

the FIFO port, as well as sending and receiving signaling codes 

(time-codes and distributed interrupts). 

The packet follows the "SpaceWire protocol identification - 

ECSS‐E‐ST‐50‐51C" format. The SpW Address bytes 

can be used for path addressing or regional local addressing in 

a SpaceWire network. 

The SIST functionality is protected by means of a protected 

general on/off register (protection done by expected fixed 

pattern in data). It is not accessible through SpaceWire RMAP 

or SpaceWire PnP accesses to configuration port 0. The SIST 

module can also be clock-gated to save power (default at reset) 

via JTAG and UART interfaces. 

IX. POWER-SAVING 

The SpaceWire router ASIC incorporate the following 

power saving functions: 

 Disabling of unused on-chip LVDS receivers/transmitter 

 Disabling of unused off-chip LVDS receivers/transmitter 

or repeater devices 

 

The existing power-down functionality provided for the 

LVDS I/O cells in the DARE+ library is being utilized.  

Signals for disabling the off-chip LVDS devices are shared 

with the external pins provided by a General Purpose I/O Port. 

It is possible to control up to 18 external LVDS devices, with 

one external pin per devices. The control of the external pins is 

made directly from a ports enable bit in the SpaceWire router 

configuration registers. 

SpaceWire ports that are not in use (i.e. disabled) in the 

router are also placed in low-power mode by gating the 

incoming clocks. 

X. TECHNOLOGY 

The 18x SpaceWire router ASIC will be manufactured in 

the 180nm UMC CMOS technology, based on the DARE+ 

(Design against Radiation Effects) library from IMEC (BE). 

The technology is radiation hard, with at least 300 krad(Si) 

TID tolerance, high SEL tolerance and SEU hardened flip-

flops. 

XI. PROTOTYPING 

Prototypes for evaluation of the router are already available 

and are based on a Xilinx Virtex 4 FPGA with an 

accompanying evaluation board compatible with RASTA. The 

board provides the possibility to interface both through FIFO 

ports and the PCI interface depending on the configuration 

(although a final selection how has been made). All features 

planned for the ASIC are included and run at full-speed. 

 

 
 

Fig. 3.  Prototyping board 

XII. STATUS AND CONCLUSION 

The new SpaceWire router ASIC design has at the time of 

writing been submitted to ASIC layout.  

The first ASIC prototypes are expected to go into 

production in June 2013, with validated parts being available 

for potential customers in early 2014. 
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Abstract— The AT6981 is a new generation of processing 
component designed for critical spaceflight applications, which 
combines a high-performance SPARC® V8 radiation hard 
processor, with enough on-chip memory for many aerospace 
applications and state-of-the-art SpaceWire networking 
technology from STAR-Dundee. The AT6981 is implemented in 
Atmel 90nm rad-hard technology, enabling at least 200 MHz 
operating speed for the processor with power consumption levels 
around 1W*. The device is ITAR-free being manufactured in a 
commercial foundry. This paper describes this new processor 
prototypes of which will be available in late 2013. 

I. INTRODUCTION 

Building upon the company’s thirty years of innovation in 
the aerospace market, Atmel will introduce the AT6981 in 
2013 a new SPARC® V8 rad-hard processor integrating 
advanced SpaceWire technology [1] and a SpaceWire router 
with 8 external SpaceWire ports each supporting link speeds up 
to 200 Mbit/s. The AT6981 has been developed in 
collaboration with STAR-Dundee based on their SpaceWire 
engine IP. The AT6981 runs at 200 MHz with a target for low 
power consumption around 1W*. Atmel will present this new 
standard space processor during the 2013 International 
SpaceWire Conference at the same time as the presentation of 
the STAR-Dundee SpaceWire engine [2]. 

II. ATMEL’S UNRIVALLED FLIGHT HERITAGE 

Over the last 16 years, Atmel has steadily built a space 
microprocessor strategy based on the SPARC architecture. 
With worldwide sales of over 3000 flight models featuring the 
Atmel TSC695F and already over 600 flight models with the 
Atmel AT697F, Atmel’s SPARC processor roadmap has an 
unrivalled flight heritage. The upcoming AT6981 rad-hard 
SPARC V8 processor benefits from this solid experience. 

III. AT6981 SHORT DESCRIPTION 

The AT6981 is based on the rad-hard LEON2FT processor, 
it integrates all commonly-used space peripherals including 
1553, CAN, SPI, UART, DSU and Ethernet. The device 
embeds a fully-compliant IEEE754 FPU without truncation as 

well as an MMU native to the SPARC processor. The SoC 
integration is done in 90nm rad-hard Atmel technology, 
enabling at least 200 MHz operating speed for the processor 
with power consumption level around 1W*. Atmel has 
leveraged its significant rad-hard experience to develop 
dedicated rad-hard libraries for fabrication in a 90nm 
commercial foundry, thus securing a multi-source supply chain 
and insuring an ITAR-free product design. Atmel continues to 
offer best-in-class power-to-performance ratios that offer more 
possibilities for space applications by reducing costs, sizes and 
embedded power supply. 

The AT6981 embeds three SpaceWire engines allowing the 
concurrent transmission of three SpaceWire packets and at the 
same time concurrent reception of three SpaceWire packets. 
These state-of-the-art SpaceWire engines offload the 
communication tasks from the processor. They each support 
the SpaceWire Remote Memory Access Protocol (RMAP) [3] 
as both an Initiator and Target device and support other 
protocols with a selective DMA controller. SpaceWire Plug-
and-Play [4] and SpaceWire-D [5] protocols are supported and 
full time-code support is included. The embedded SpaceWire 
router has 12 ports: eight external SpaceWire ports, three ports 
to the SpaceWire engines and a configuration port. LVDS 
drivers are included on chip for the SpaceWire interfaces. The 
AT6981 benefits from the close collaboration between STAR-
Dundee and Atmel on the design to achieve an embedded 
system with high processing power and excellent interfacing 
capabilities. 

The AT6981 will be available in 256 MQFP and in 349 
LGA ceramic packages. 

All embedded IPs belong to Atmel’s proprietary portfolio 
dedicated to aerospace applications that includes IP such as 
SpaceWire and 1553. Just as the SpaceWire IP was developed 
in partnership with STAR-Dundee, the 1553 IP was developed 
with Maya Technologies and has been proven in-flight in space 
applications.    
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IV. AT6981 KEY FEATURES 

In addition to a powerful SPARC V8 processor core with a 
high level of integration and performance, the AT6981 embeds 
a 1-Mbyte hardened SRAM memory with EDAC for PCB area 
savings and fast access at full CPU speed. It also features 
SRAM and DDR1 interfaces as external memory. The overall 
power consumption of the device with embedded memory is 
targeted around 2W worst case. 

In order to facilitate analog-to-digital operations and 
provide an even higher level of integration, the AT6981 
embeds a dedicated waveform generation (PWM) unit for 
analog control/command, as well as several ADC/DAC 
interfaces for analog acquisition/conversion. Those functions 
are really useful for engine control management and for 
measurements control. PWM unit is programmable and 
ADC/DAC digital interface is done in the same way as the 
AT7913 device. Having this digital part integrated in the SoC 
reduces the need to use external an FPGA in order to connect 
analog ADC or DAC.  

The AT6981 is the newest device in the Atmel SPARC V8 
portfolio. Compared to the AT697F and the AT7913 RTC, the 
AT6981 offers more performance with an operating speed of 
200MHz and a higher level of system-on-chip integration with 
embedded memory, SpaceWire router, 1553 and Ethernet. 

The AT6981 is a rad-hard by design processor that will be 
space-qualified and will support: 

 Total dose of 300Krads (Si) according to the MIL-STD883 
method 1019  

• SEU error rate better than 1 E-5 error/device/day  
• No Single Event Latch up below a LET threshold of 70 

MeV.cm²/mg  

V. AT6981 ARCHITECTURE 

The architecture of the AT6981 device is illustrated in 
Figure 1. 

Figure 1 AT6981 Architecture 
 

The AT6981 comprises a SPARC® V8 processor, several 
banks of memory, comprehensive SpaceWire network 
capability and various other interfaces. More details on the 
main AT6981 features are provided in the following 
subsections: 

A. Processor 
AT6981 CPU core is a Sparc V8 running at 200 MHz, it 

uses the LEON2FT core from ESA. This core is already 
embedded in several space missions with the AT697F from 
ATMEL. Native MMU of the SparcV8 architecture is activated 
and a powerful FPU is added which gives to AT6981 the best 
processing performances on the market today. This one CPU 
core device allows an easy and safe migration of the software 
from AT697F without compromise performances. AT6981 
benefits from all development tools available for LEON core as 
it offers a standard DSU interface for trace and debug.  

 
 

B. Hmatrix 
The AT6981 bus architecture is unique on space market. 

This device takes benefit from Atmel strong IP portfolio and 
powerful architecture coming for the commercial 
microcontroller business where Atmel is one of the leaders 
today. 

The AT6981 System on Chip is built around a HMatrix bus 
which is multi AHB compliant and brings some AHB 
arbitration mechanisms to support multi threading. By this well 
proven Atmel technology, conflicts management for concurrent 
access is becoming much easier, even completely transparent 
for the CPU core running software. 

For example, you can manage in parallel all those activities 
without loading the main CPU core: 

• Run three Space Wire 200Mbit/s transfer 
• Run two 1553 communication flow 
• Run two high speed CAN transfer  
• Run a MAC Ethernet 100Mbit/s connection 
• Run a SPI or TWI session as well 

 
Each peripheral is connected to its own protected memory 

area and can take benefit from the 200MHz x 32bits AHB bus 
bandwidth without disturbing CPU internal operations.  During 
full speed transfer session, processor is never interrupted and 
has a fully deterministic behavior to manage control of all 
operations. 

This architecture, which provides up to 6.4 Gbit/s 
bandwidth, is ready for targeted future evolution like 
SpaceFibre, Gbit Ethernet and multi-core. It will enable a 
smooth transition for coming product derivatives of this high 
speed SPARC® V8 architecture. 

C. SpaceWire 
The AT6981 includes three SpaceWire engines each of 

which has dedicated RMAP target and initiator hardware 
which offloads RMAP packet generation and checking from 
the processor. The RMAP target can be configured to allow a 
remote unit to read and write memory locations inside the 
processor memory space without interrupting the host 
software. The RMAP initiator facilitates access to remote 
memory spaces through RMAP protocol commands and 
offloads the generation of multiple transactions and the reply 
packet checking from the processor.  
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From Hmatrix, a multi-channel DMA packet transmission 
and reception controller is available to the processor to send 
and receive data through a SpaceWire router. The DMA 
channels are optimized to support high throughput of 
SpaceWire packets with minimal interruption of the processor. 
Generation and checking of CRC-8 and CRC-16 checksums 
are supported by the DMA channels. 

Packets are routed to the SpaceWire network through a 
SpaceWire router with eight external SpaceWire ports. This 
allows the AT6891 to connect to many peripherals and also act 
as a routing device. Protocol support is provided for the 
SpaceWire-D deterministic data delivery protocol [5], the 
SpaceWire plug and play protocol [4], multiple time-code 
counters and distributed interrupt time-codes [6]. 

D. Low power consumption 
AT6981 is a low power consumption device with dedicated 

mechanism in order to adapt the power consumption to the 
level of application complexity. Those mechanisms are: 

• GEN clock programmable block delivering clock for 
each IPs and peripherals. Clock speed can be changed 
and gated 

• Dedicated reset per IPs in order to reinitialize them 
locally after the clock coming ON. 

E. Rad Hard by design 
All internal memories have a dedicated scrubber with 

internal EDAC in order to manage auto correction.  
This scrubber is fully programmable on period of the 

scrubbing cycle and the protected RAM array.  It is an 
additional value to the external EDAC capability provided with 
the 1Mbytes of on chip available high speed SRAM to allow 
customer own correction management.  

All Memory blocks are designed in a way to never have 
any adjacent bits for a same word. This technique simplifies 
strongly the error management activities which allow using 
only a simple EDAC for data single event protection. By this 
way it’s not needed to implement an heavy TMR mechanisms 
to protect register files which trigger some potential 
performances limitation.  

TMR mechanisms are implemented on all logic of the 
design with also an SET filtering method. 

Rad hard libraries on this proposed 90nm technology are 
developed by Atmel in France based on all well proven 
libraries from Atmel commercial products. AT6981 benefits 
from the strong 30 years’ experience of Atmel France in rad 
hardening techniques. 

VI. DETAILED BLOCK DIAGRAM 

A more detailed block diagram of the AT6981 is provided 
in Figure 2. 

The AHB H-Matrix is at the heart of the AT6981 device 
connecting the processor, memory banks, SpaceWire engines 
and other IO functions. Several internal RAM blocks are 
provided to support concurrent memory accesses by the 
processor and IO facilities.  

The three SpaceWire engines, Ethernet, CAN and MILSTD 
1553 interfaces are all connected as master devices to the H-
Matrix allowing them to read and write to the memory using 
distributed DMA capability. 

The lower speed peripheral devices including SPI, TWI, 
UART, timers, watchdog timers, PMW, ADC interface, DAC 
interface, parallel input/output and interrupts, are connected via 
an APB bus and peripheral bridge to the H-Matrix. 

Various forms of external memory (PROM, SRAM, 
SDRAM and DDR) can be attached directly to the AT6981 
devices, providing ready of expansion of the internal memory 
when required. 

 
 

Figure 2 Detailed Block Diagram of AT6981 
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VII. AT6981 SOFTWARE, TOOLS AND SERVICES 

With the AT6981, Atmel will offer an ecosystem of 
software and tools that will be used by Atmel for the full 
chipset validation and qualification. This guarantees the best 
starting point for development. A full package that includes a 
hardware reference board with associated software drivers in 
addition to a Software Development Environment (SDE) for 
debug and trace will be proposed to customers. The SDE is 
provided by STAR-Dundee and supports the well-known DSU 
interface. 

The set of embedded software drivers is the same that the 
one which is provided with each Atmel component. It’s a 
highly modular package which includes a hardware abstraction 
layer to simplify hardware changes, limiting the impact on 
software and reducing efforts for later upgrade. 
 

 

Figure 3 AT6981 Delivery Package  
By taking advantage of the hardware and software building 

blocks available with the AT6981, our customer is able to 
manage his own system design, improve targeted application 
time-to-market and be compatible with many other services 
that will be proposed by Atmel and partners. 

VIII. AT6981 SCHEDULE  

The AT6981 is in its final stages of development and first 
samples will be available in Q4 2013. Flight models are 
targeted to be fully space-qualified in 2014. QMLQ & QMLV 
qualtity grades will be proposed for flight models. Early 
development starting in Q3 2013 can be based on the 
simulation model or on the FPGA set-up provided by Atmel. 

IX. CONCLUSIONS 

The AT6981 device is the first product of the partnership 
between STAR-Dundee and Atmel, enabling integration of 
state-of-the-art SpaceWire technology into Atmel products.   

Providing integration of more peripherals and memory 
blocks around the SPARC V8 processor core enables size, 
weight and cost improvements for today’s space applications: 
on-board computing, telemetry/telecommand, remote terminal 
units, sensors, instruments and payloads. In addition its high 
level of system integration, the AT6981 offers more powerful 
processing with 200MHz and embedded fast memory to 
complement the higher bandwidth capabilities of peripherals 
with SpaceWire 200Mbit/s. 

The AT6981 architecture based on Rad Hard 90nm is the 
starting point for further evolution; evolution through higher 
performance by replacing SpaceWire by a SpaceFibre IP, by 
Gbit Ethernet and by adding an additional CPU and/or DSP 
core, evolution through more flexibility by adding a 
programmable area inside the SoC in order to allow better 
customization for the targeted space applications; and 
evolution through dedicated design by considering this 
architecture and IP cores as a starting point for your own ASIC 
design.  
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Abstract— The SpaceWire Standard ECSS-E-ST-50-12C calls 
for a Low Voltage Differential Signaling (LVDS) physical layer 
as defined in ANSI/TIA/EIA-644, Electrical Characteristics of 
Low Voltage Differential Signaling Interface Circuits.  Extensive 
reliability studies by Aeroflex Colorado Springs catalog the 
effects of operation outside the recommended operating 
conditions on Aeroflex cold-spare LVDS drivers, receivers, and 
SpaceWire devices built on the Aeroflex 0.25µm technology node.  
These reliability studies focus on a hypothetical failure where the 
LVDS I/O voltage and switching frequency exceed the 
ABSOLUTE MAXIMUM RATINGS defined in the Aeroflex 
Datasheet and corresponding Defense Logic Agency (DLA) 
Standard Microcircuit Drawing. 
 
This paper describes the operation and reliability effects on the 
3.3V LVDS drivers, receivers, and SpaceWire devices with cold 
spare buffers, focusing on current and voltage excursions during 
overshoot/undershoot events on the LVDS I/O.   Hot Carrier 
Injection, Electromigration, and oxide wear out are also 
examined. 
 

I. LVDS OPERATION  

LVDS is a method used to transmit and receive hundreds of 
megabits per second over differential media using a low 
voltage signal swing (~350mV).   LVDS communications are 
performed by a driver and a receiver.  The driver accepts a 
standard Complementary Metal Oxide Semiconductor 
(CMOS) signal and outputs a constant current, differential, 
signal.  The LVDS receiver senses the differential voltage 
across a 100Ω termination resistor and outputs a standard 
CMOS signal equivalent to the supply voltage. The 
differential aspect of LVDS allows systems to run at high data 
rates, with low switching power, high noise immunity, and 
relatively wide common mode range. 
 
The LVDS driver works by using NMOS Field Effect 
Transistors (FETs) to control the direction of the constant 
3.5mA current source through the termination resistor.  The 
driver current, flowing through the 100Ω termination resistor 
placed across the differential inputs of the receiver, generates 
a +/-350mV I-R drop which is sensed as a logic high/low by 

the receiver.  The LVDS receiver has very high DC input 
impedance, virtually all of the driver’s current flows, in a 
loop, from the source terminal through the 100Ω termination 
resistor and back into the sinking terminal. As the current flow 
direction through the termination resistor changes, a logic 1 or 
logic 0 state is created at the receiver output. 
 

 
 
Figure 1. Simplified LVDS Output Driver Schematic  
 
 
Faults in SpaceWire systems can be caused by many factors 
including, but not limited to, system requirements, poor 
termination, edge rate of the signal, environmental effects, and 
human error.  The three fault scenarios examined in this paper 
are: undervoltage on LVDS I/O, overvoltage on LVDS I/O, 
and switching frequency, above 200MHz (400Mbps) 
specification of 0.25µm LVDS/SpW devices. 
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II. AEROFLEX 0.25µM LVDS AND SPACEWIRE TECHNOLOGY 

NODE 

 
The LVDS drivers and receivers used in all the devices listed 
in Table 1 are very similar in structure and layout. 
 

Table 1. Aeroflex Colorado Springs devices built on 
0.25µm technology node 
 
Aeroflex Part Number SMD Number 

UT54LVDS031LV/E 5962-98651 
UT54LVDS032LV/E 5962-98652 
UT54LVDS032LVT 5962-04201
UT200SpWPHY01 5962-06232 
UT200SpW4RTR 5962-08244 

 
Aeroflex Colorado Springs defines “operating life” as an 
average failure rate over the 15 year operating life as less than 
10 FITs (i.e. 1x10-9 hr-1) total for all wear out mechanisms at 
the worst case operating conditions for each mechanism.  The 
reliability models involve understanding the physics of failure 
of the mechanisms that concern the 0.25µm CMOS 
technology.  These include reliability with respect to gate 
dielectrics and reliability related to metallization.  Other 
reliability concerns, including environment, ESD, latch-up, 
and radiation are considered the principally package or design 
related and are discussed in particular product qualification 
plans.   
 
Gate dielectric reliability is the dominant concern for CMOS 
technology.  This includes breakdown and charge trapping 
mechanisms such as hot carrier.  Metallization concerns center 
on electromigration.  To calculate the combined effect of all 
these concerns, a series model is used, with the fail rate for 
each mechanism taken at worst case conditions. 

 

III. UNDERVOLTAGE/UNDERSHOOT ON LVDS INPUT 

(ELECTROMIGRATION) 

 
A negative voltage on an LVDS receiver input can result in 
high current due to the turn on of the input to ground ESD 
protection diode. This could be caused by poor cable 
connections between the driver and receiver, see figure 3. 
Although Aeroflex Colorado Springs LVDS inputs are 
qualified to HBM ESD class 1 (1000V), an extended time at a 
voltage above the ESD diode turn on could result in damage to 
the interconnect metallization between the input pad and 
ground.  The mechanism that causes interconnect damage is 
known as Electromigration (EM).  EM is caused by 
momentum transfer from electrons to the metal atoms in a 
conductor during current flow.  Over time at stress, enough 
momentum is transferred to cause metal atoms to migrate, 
which can ultimately result in metal voiding (high resistance 
interconnects) or buildup of metal that could result in line to 
line shorting.   EM is accelerated by both increased current 

density and increased temperature, and follows Black’s 
equation as shown in the following equation: 
 

 
 
The subscript use refers to use conditions and the subscript 
stress refers to stress conditions, T refers to temperatures, J 
refers to current density, k is Boltzmann’s constant, Ea is the 
activation energy, and n is the current density exponent. 
 
Once the ESD protection diode is turned on, (~-0.5V) the 
resistance of the receiver essentially drops to 0, and the 
current through the ESD protection is completely driven by 
the output resistance of the supply driving the voltage. For this 
example, consider the case where the under voltage is supplied 
by the LVDS driver, as would be the case for ringing caused 
by poor cabling connections.   
 
We assume the UT54LVDS031LV/E 3.3V quad LVDS driver 
is connected to a UT54LVDS032LV/E receiver, and that 
undershoots of varying voltage and duration occur.  The quad 
driver has an output resistance of ~300Ω in short circuit 
conditions. Based on layout information on the 
UT54LVDS031LV/E and electromigration test structure data 
collected through technology qualification, we can use the 
equation above to calculate part lifetime for a range of 
undershoot voltages.  Figure 2 shows estimated mean time to 
failure for the receiver interconnect under a range of 
undershoot voltages at 125°C. 
 

 
 
Figure 2: Predicted Cumulative Undershoot before Fail vs. 
Voltage for the UT54LVDS031LV/E LVDS inputs  
 
A caveat to this graph is if -10V was held continuously on an 
LVDS input, joule heating would cause the temperature to 
rise, resulting in significant reduction of life time for the 
device.  Overall, however, this data shows wide margin for 
undershoot in use conditions.  For example assume that at 
maximum frequency (200MHz) a 3V undershot were to occur 
for 1ns every cycle, the chart above would predict that the 
input could survive for greater than 80 years at 125C. 
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Figure 3.  Impedance mismatched undershoot case. 
 
Assuming a case where the LVDS Driver and LVDS Receiver 
are poorly terminated and the cable media is impedance 
mismatched, see figure 3.  Based on layout and simulation 
information on the UT54LVDS031LV/E a 1.0V undershoot 
results in an electromigration acceleration factor of 1.57.  This 
acceleration factor coincides with a 1FIT max undershoot time 
of 2,052,504.6 hours or a mean time to failure, MTTF, max 
undershoot of 3,862,096.1 hours. 
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Figure 4. One time undershoot event. 
 
Another case of an undershoot/undervoltage on the LVDS I/O 
would be if there was a one-time event where a negative 
voltage was driven onto the LVDS lines, see figure 4.    
 

IV. OVERVOLTAGE/OVERSHOOT ON LVDS I/O     

(OXIDE WEAR OUT) 

 
The cold spare feature of Aeroflex LVDS inputs allows the 
user to apply active input signals to the LVDS I/O with VDD 
grounded. Because of this, standard ESD protection diodes 
between input pad and VDD are not viable.  The Aeroflex 
proprietary cold spare ESD protection is designed to shunt the 
current associated with a HBM event, and has passed 
qualification up to 1000V.  In the case of a longer duration 
overshoot, the voltage at the pad is applied directly across the 
input gate oxide.  Breakdown of this oxide would likely result 
in shorting of the input to ground and catastrophic failure.    
 
Oxide breakdown can be split into two types, instantaneous 
and long term wear out. Aeroflex does not recommend 
operation above the absolute maximum for its parts, but data 
shows that the gate oxide can withstand > 10V without 
instantaneous breakdown. Long term wear out occurs on all 
oxides placed under electric field stress.  This is also known as 
Time Dependent Dielectric Breakdown (TDDB).  TDDB is 
caused by the buildup of trapped charge in a dielectric due to 
electric field stress.  Over time at stress, enough trapped 
charge may build up such that somewhere in the dielectric, the 

local electric field exceeds the critical field for breakdown.  
TDDB is accelerated by both increased electric field and 
increased temperature, and follows a generalized Erying 
model as shown in the equation that follows: 
 

              
                             
Where ttfuse and ttfstress are the times to failure under use and 
stress conditions respectively, Tuse and Tstress are the absolute 
temperatures (in °K) of the dielectric under use and stress 
conditions respectively, Vuse and Vstress are the use and stress 
voltages respectively that appear across the dielectric 
thickness of tox, Ea is the (Arrhenius) thermal activation energy 
for dielectric breakdown in the particular dielectric materials 
of interest, r is a model parameter for the electric field 
acceleration of dielectric breakdown for the particular process 
and dielectric material of interest, and kB is Boltzmann’s 
constant (8.62 x 10-5 eV/°K).  
 
Again, since these are cold spared LVDS I/O parts, meaning 
that the I/O structure is non-typical [8], the effect of an 
overshoot is on the input oxide.  With the supply voltage of 
any of the devices listed in Table 1 set to 3.6V (maximum 
recommended supply voltage) an overshoot of +1.0V is 
allowed for approximately 346,106.6 hours. 
 

V. INCREASED SWITCHING FREQUENCY                         

(HOT CARRIER INJECTION) 

 
As part of this reliability study Aeroflex completed an 
assessment on a device manufactured on the 0.25µm Aeroflex 
technology node when there is continuous operation at 50MHz 
above its 200MHz specified max switching limit.   
 
The main reliability concern for operation above the specified 
maximum operation frequency is the risk of hot carrier 
ionization (HCI) resulting in increased threshold of the NMOS 
transistors in the high frequency path.  HCI occurs during 
switching, when the transistors conduct peak drain currents 
(shoot through current) and results in worst case degradation 
when the gate-source voltage (VGS) is ~1/2 the drain-source 
voltage (VDS).   HCI is strongly dependent on transistor length, 
with smaller lengths resulting in greater degradation. HCI 
results in the ionization of atoms in the channel [9] which can 
result in charged particles becoming trapped in the gate oxide, 
which degrades transistor performance.  The area of concern is 
the LVDS output driver; a simple schematic is shown in 
Figure 1.  
 
The Aeroflex Colorado Springs implementation of LVDS 
Drivers design uses NMOS transistors [8] as in the schematic 
shown in figure 1.  Review of the datasheet specifications for 
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the LVDS devices built on the 0.25µm technology node, 
[4][5][6][7] using the specified 100Ω output load, show that 
this circuit is designed to have a maximum differential output 
voltage of ~400mV (VOD) and a maximum offset voltage 
(VOS) of 1.450V.  Assuming zero voltage drop across the 
current source, 2.0V can be taken to be equivalent to the 
maximum VDS voltage across any transistor.  The specification 
also defines the maximum output rise and fall time (tLHT and 
tHLT ) as ~600ps.  Based on a part continuously running at 
250MHz required frequency (equivalent to 500Mbs), the 
driver will be switching ~30% of the time.  Because of the 
differential nature of the output, each transistor sees switching 
conditions ~15% of the time. To calculate the effect of hot 
carrier, Aeroflex Colorado Springs makes the conservative 
assumption that worst case bias conditions (VDS at 2.0V, and 
VGS at 0.5(VDS)) are held throughout the switching time.   
 
The LVDS Drivers built on the TSMC 0.25µm process 
technology use 3.3V transistors.  This process has been 
evaluated by Aeroflex Colorado Springs and has been 
qualified to QML-V levels. [10] TSMC characterizes HCI on 
discrete transistors by holding the transistors in a saturated on 
state at highly accelerated drain voltages at 25ºC.  Transistors 
are measured at regular intervals to determine the effect on 
threshold voltage and saturated current and time to fail is 
defined to be the point at which saturated drain current shifts 
by 10%.  HCI is also worst case at cold temperatures, so 
degradation at -55ºC was considered.  Review of the model 
predicts a degradation of ~0.1% transistor saturated current at 
15 years.  This is significantly less than the 10% limit, and 
thus, has a negligible effect on operation. Operating Aeroflex 
LVDS Drivers built on 0.25µm can maintain 250MHz 
(500Mbps) continuous use without significant degradation at 
15 years. 
 

VI. CONCLUSION 

 
Aeroflex LVDS I/O built on the 0.25µm technology node are 
capable of handling a +/-1.0V over/undershoot without 
compromising a 15 year mission life.  The LVDS I/O can also 
sustain operation at 250MHz.  The results discussed are not 
guaranteed by Aeroflex.  Any operation outside of the 
ABSOLUTE MAXIMUM RATINGS, as stated in the 
datasheet and/or SMD may affect device reliability and 
performance. 
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Abstract— Two LVDS components are currently being 

developed by Aeroflex Gaisler (SE) and imec (B) under ESA 

contract 4000105762. The targeted technology is UMC 180 nm 

using the DARE library from imec (B) which has been extended 

and enhanced specifically for this development.  

Index Terms—Component, Radiation, LVDS, SpaceWire. 

I. INTRODUCTION  

One of the key elements in SpaceWire communication is 

the low voltage differential signaling (LVDS) [1] defined to be 

the physical signal level by the SpaceWire standard [2]. LVDS 

provides the ability for communication with high signal 

integrity and high speed from board-to-board and equipment-

to-equipment in a spacecraft system. 

Many ASICs and FPGAs implementing the SpaceWire 

protocol do not provide LVDS interfaces. Hence, there is a 

need for external LVDS components translating between 

single-ended signals and LVDS signals both for the transmitter 

and for the receiver side. Even in cases where the LVDS 

interface are implemented in the ASIC/FPGAs, external stand-

alone LVDS components may be attractive to achieve higher 

system robustness; a stand-alone LVDS component with higher 

voltage tolerance can prevent failure propagation from outside 

of the equipment via the LVDS interface into the ASIC/FPGA 

which often implement the most critical functionality in a 

system design.  

In an ongoing development, funded by the European Space 

Agency (ESA), two LVDS components are developed 

addressing both these needs: one is a dual transceiver and the 

other one is a 4x4 cross-point switch. Both components, the 

latter when configured as a quad LVDS repeater, provide all 

signals needed to host one SpaceWire channel in one single 

component and package. The Dual transceiver translates 

single-ended signals to LVDS signals and vice versa while the 

4x4 cross-point switch provides LVDS to LVDS signals.  

These functions are today available in commercial LVDS 

devices, but the high reliability requirements and harsh 

radiation environment in space applications have motivated us 

to this new development. Critical characteristics have been 

addressed, such as Single Event Transient (SET), Single Event 

Upset (SEU) and Latch-up (SEL) immunity, Total Ionizing 

Dose (TID) hardness, Extended Common Mode range (ECM) 

and Failsafe protection of receivers, cold sparing for 

redundancy purpose, high voltage and ESD tolerance and 

excellent channel-to-channel timing.  

This paper is organized in the following manner: In the 

Product Specification section the preliminary specification of 

both products is reported. The following section discusses the 

main characteristics of the LVDS devices. Finally, the radiation 

performance is discussed including results from simulation. 

All reported results come from simulations performed on 

layout level including package parasitic when applicable. Thus, 

it is expected to reflect the performance of the final products. 

This will be confirmed under the upcoming prototype 

evaluation stage of this development.  

II. PRODUCT SPECIFICATION 

Both products are supplied with one single power supply of 

3.3V±10%. The operational temperature ranges from -55C to 

+125C.  

The LVDS input signals and LVDS output signals are fully 

compliant to the LVDS standard [1]. The LVDS inputs are 

implemented without internal termination resistors. This allows 

the user to match his termination to the actual characteristics of 

his transmission line. The LVDS inputs are implemented with 

active fail-safe functionality and they support an extended 

common mode range of -4.0V to 5.0V. 

All single-ended signals are fully compliant with the 

LVTTL and LVCMOS standard [3]. In addition, the inputs 

support 5V TTL input signals.  

The single-ended inputs and outputs and the LVDS inputs 

and outputs support cold sparing. Thus, cold redundant devices 

may share the same signals as active devices. 

A. Dual Transceiver 

The dual transceiver is functionally equivalent to Texas 

Instrument’s DS90LV049 [4] but it comes with a different 
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package and pin-out configuration. The functional diagram and 

connection diagram of the dual transceiver is provided in Fig. 

1. : RIN1+, RIN1-, RIN2+, and RIN2- are LVDS input signals; 

DOUT1+, DOUT1-, DOUT2+, and DOUT2- are LVDS output signals; 

DIN1, DIN2  EN, EN\ are single-ended input signals; and ROUT1, 

ROUT2, are single-ended output signals. The AND-function of 

the two enable pins (EN and EN\) allows for one single signal 

of any polarity to enable or disable all LVDS and LVTTL 

outputs. Thus, an inverting function of an already available 

signal from e.g. an ASIC will never be needed with this 

product. 

The package of the dual transceiver is a hermetically sealed 

16-pin dual-lead flat package with 1.27mm pitch. The package 

complies with the military standard case outline drawing 

CDFP3-F16 [5]. This is the most common case outline of small 

pin-count devices for space applications. Thus, well-

established processes with proven high reliability can be used 

for assembly to printed circuit boards (PCB). 

a, b,  
 

Fig. 1.  Functional diagram (a) and connection diagram (b) of the dual 

transceiver 

B. 4x4 Cross-point Switch 

The 4x4 Cross-point Switch will be functionally equivalent 

to Texas Instrument’s SN65LVDS125A [6] however it will 

come with a different package and pin-out configuration (the 

design of pin-out and functionality is still preliminary). The 

functional diagram and connection diagram of the dual 

transceiver is provided in Fig. 2. The 4x4 mux is controlled by 

eight select signals (S10-S41): two select signals per LVDS 

output channel (iY/iZ) select any of the four LVDS input 

channels (jA/jB) as its input. It is one enable control signal 

(iDE) per each LVDS output channel. 

The package is under development. It will be a hermetically 

sealed 40-pin dual-lead flat package with 0.635mm pitch. By 

halving the pitch dimension, this package outline will have 

similar size as the dual transceiver. The preliminary outline 

dimensions are 6.0mm x 14.0 mm x 2.4mm. 

This package has two more pins than the SN65LVDS125A 

device. The additional two pins might be used as mode select 

pins mimicking the function of other LVDS devices on the 

market like e.g. a quad single-ended–to-LVDS driver 

(SN55LVDS31) and/or it can be used for power-down control 

of unused LVDS channels. 

 

Fig. 2.  Functional diagram of the 4x4 cross-point  Switch 

III. KEY CHARACTERISTICS 

A. Pin Configuration 

The target application of the Dual transceiver is to provide 

single-ended to LVDS conversion for all signals of one 

SpaceWire port within one single package.  

The pin-out configuration has been defined in order to best 

match the SpaceWire connector standard [2]; The RX signals 

are provided on one side of the package and the TX on the 

other side; this is the same configuration as the SpaceWire 

connector (illustrated in Fig. 3. ). Another benefit with this pin-

out configuration is that a cold redundant component in an area 

efficient manner can be placed on opposite side of the printed 

circuit board (PCB). With the top of one of the device placed 

towards the bottom of the other device placed on the opposite 

side of the PCB (pin no.1 meets pin no.8 etc.). all common 

signals will be shifted just one pin distance (1.27mm) away 

from each others. With this configuration the common signals 

can be connected with a through board via-hole and an 

additional trace of at most 2mm. Thus, very short stubs will be 

needed which will guarantee best possible signal quality. 

The pin-configuration of the Dual transceiver is the same as 

Texas Instruments’ SN65LVDS050/051devices [7]. However, 

the functionality of the enable signals is different. 

The pin configuration of the 4x4 Cross point switch has not 

been defined yet. 
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Fig. 3.  Illustration of the signal matching of the Dual Transceiver (in middle) 

and the SpaceWire connector (on top). The SpaceWire RX signals, Data 
and strobe (Din/Sin), are on the left side and the TX signals, Data and 

Strobe (Dout/Sout), are on the right side. The converted single-ended 

SpaceWire signals can be traced on the PCB under the package in the 
direction away from the connector. Note that this illustration does not 

show the termination resistors tp the LVDS receivers. 

B. Switching rates 

Both devices support 400MBps switching rates. This puts 

high demands on low skew and jitter in all stages of the signal 

chain.  

In Fig. 4. simulation results of the LVDS input stage is 

provided demonstrating a well-defined eye diagram over the 

full operational range.  

The skew and jitter contribution from the LVDS output 

stage are comparable benign but the single-ended LVTTL 

outputs provides more challenges. With single-ended signals, 

any difference in rising and falling characteristics will consume 

on the available skew and jitter budget. In Fig. 5 simulation 

results of the single-ended output stage are provided 

demonstrating rising and falling signals crossing each other at 

1.6V while the mid-point of input switch levels for LVTTL 

compatible inputs are 1.4V (VIH = 2.0V – VIL=0.8V) [3]. The 

actual switch point of any LVTTL input is not specified by the 

standard [3]. It may vary: between devices types, with 

temperature, voltage supply and input slope rate and between 

rising and falling edges. All these factors will define the overall 

skew of the interface and hence the achievable data rate. We 

will provide IBIS models in order to support PCB designers in 

optimizing their interface to our products.  

In interfaces using more than one signal, like e.g. 

SpaceWire using a data and a strobe signal [2], the skew 

between the signals (channel-to-channel skew) will affect the 

maximum achievable data rate. The best channel-to-channel 

skew is achieved by putting all channels within the same 

device; in one device both the temperature and the voltage 

parameters of the eye diagram in Fig. 4. are identical and the 

contribution from process variations are minimized. We have 

simulated the channel-to-channel skew with Monte Carlo 

simulations within one device between two LVDS-to-single-

ended channels, two single-ended-to-LVDS channels and two 

LVDS-to-LVDS channels: all pairs having a channel-to-

channel skew below 250ps adding to the skew and jitter of the 

single channels alone.  

 

Fig. 4.  Simulation result of LVDS input stage over all process, voltage and 

temperature corners. Input signal is a 100mV differential arbitrary 400 
Mbps data signal. 

 

Fig. 5.  Simulation result of the single-ended output with a 15pF capacitive 

load at slow process and temperature corner with 3.0V, 3.3V and 3.6V 
supply voltage. An arbitrary 400 Mbps data signal was applied to an 

internal node before the output stage. 
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C. ESD performance 

ESD is one of the major threats to the overall reliability of 

an electronic system. Before assembly, ESD damages may 

induce latent defects to an electronic device, a damage that 

later after being mounted into an electronic equipment may 

escalate causing a catastrophic failure on system level. After 

assembly, most terminals of an electronic device are well 

protected to ESD damage but terminals directly connected the 

external interface of the equipment are still at danger. This is 

the reason that we have put extra design efforts to protect all 

LVDS signals against ESD. Both LVDS inputs and outputs are 

designed to withstand 8kV human body model (HBM) ESD. 

All other terminals are protected to withstand 3kV HBM ESD. 

D. Over voltage protection 

A major concern when designing high reliability systems 

are failure propagation. This could be a typical scenario: a 

DC/DC converter fails on an equipment (A) leading to an 

overvoltage condition in this equipment: the overvoltage 

propagates through the supply to the input or output signals of 

an interface device in this equipment; one of its input or output 

signal is connected to a interface device in another equipment 

(B); its input or output signal cannot withstand the overvoltage 

and propagates the overvoltage originating from  equipment A 

further into equipment B. 

 One effective protection against this failure propagation 

scenario is to provide high voltage tolerance of all terminals on 

interfacing devices: a high voltage tolerance on the supply 

terminal of the interface device in equipment A can block the 

overvoltage propagating to its input and output signals. If not 

blocked instead a high voltage tolerance of the input and output 

terminals on the interface device in equipment B can block the 

overvoltage propagating to its supply. The absolute maximum 

voltage ratings of the products are provided in TABLE I. The 

voltage tolerance of our products exceeds the tolerance of most 

other LVDS devices thus by using our products the reliability 

with respect to failure propagation in a system will improve. 

TABLE I.  ABSOLUTE MAXIMUM RATINGS 

Symbol Parameter Min Max Unit 

VDD Voltage supply Range -0.3 4.6 V 

VIN Single-ended input voltage range  -0.3 6.0 V 

VIN_LVDS LVDS input voltage range -5.0 6.0 V 

VOUT Single-ended output voltage range  -0.3 4.6 V 

VOUT_LVDS LVDS output voltage range -0.3 4.6 V 

IV. RADIATION PERFORMANCE 

Our products are manufactured in UMC’s 180nm 

commercial CMOS technology. No changes to the process 

have been performed in order to increase the TID hardness, 

SEL immunity or SEU performance. Instead, the products are 

developed with imec’s DARE (Design against Radiation 

Effects) library. Functionalities not already available in the 

library have been added using the DARE design methodology, 

using ELT and guarding. The DARE solution has previous 

heritage for both digital and analogue designs with proven 

good radiation performance [8,9]; pure digital circuits have 

been shown to be good to at least 1Mrad(Si) and analogue 

designs exceed 100kRad(Si). SEL has never been recorded in 

any design based on the DARE concept 

Since the products contain no memory elements, SEU 

hardening is not applicable, but SET hardening is. SET 

hardening has been part of the design flow from smallest 

design-block level and upwards in the design hierarchy. SET 

pulses have been injected on each node in the design 

simulating a heavy ion hit while the effect on the output of the 

circuit has been assessed. Where needed hardening by means 

of SET filtering has been implemented. 

Other LVDS devices have been radiation tested for Single 

event effects (SEE) showing numerous different effects on the 

differential output signal [10]: timing error of a transition, 

extended zero differential output voltage, bit state inversion (0-

to-1 or 1-to-0), and transients on the common mode voltage 

level. These results have motivated us doing extensive SET 

simulations addressing these reported effects. In all 

simulations, SET pulses have been injected corresponding to a 

heavy ion injection with a LET of 60 MeV-cm
2
/mg. 

We have simulated SETs in the LVDS receiver stage. Both 

with a static input signal and dynamic switching input signals, 

we recorded events where the state of the receiver output signal 

toggles (bit state inversion). The critical nodes have been 

located, but SET hardening of the receiver stage is a trade-off 

between SET robustness and its speed performance. For these 

nodes we have favoured the speed performance. The worst 

case recorded bit state inversion was 3.2ns long induced with a 

SET injection corresponding to a heavy ion hit with a LET of 

60 MeV-cm
2
/mg. For lower LETs the duration time of the 

inversion decreases. At a LET below 7 MeV-cm
2
/mg no events 

were recorded. We have measured the total area of the 

sensitive nodes in order to assess the total SET cross section 

and then estimated the expected SET rate in a geostationary 

orbit using the CREME96 tool [11]. The expected SET rate for 

bit inversions between 0.7ns and 3.2ns is below 2x10
-5

 

events/day. One SpaceWire link requires four LVDS receivers, 

thus the SET rate of the link would be 8x10
-5

 events/day. In  

table II, the expected SET rate is transferred to bit error rate per 

different data rates assuming each SET will cause a bit error. 

This SET induced bit error rate is compared to the maximum 

overall bit error rate of 1x10
-12

 required for the SpaceWire 

standard [2] demonstrating an adequate margin for all data 

rates.  
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TABLE II.  SET INDUCED BIT ERROR RATE (BER) PER SPACEWIRE 

INTERFACE 

Data Rate SET induced BER 

Per second Per day errors per bit 
Ratio versus a 

BER of 1x10
-12

 

10 Mbps 8.64x10+11 bits/day 9.3x10-17 9x10-5 

100 Mbps 8.64x10+12 bits/day 9.3 x10-18 9x10-6 

200 Mbps 1.73x10+13 bits/day 4.6 x10-18 5x10-6 

400 Mbps 3.46x10+13 bits/day 2.3 x10-18 2x10-6 

 

In simulation of the LVDS driver stage, no event with bit 

inversion or zero differential voltage output has never been 

recorded. However, we have recorded disturbances on the 

differential voltage and the common mode output voltage. In 

Fig. 6. the worst recorded common mode SET is reported. 

From top: the 1
st
 plot shows the common mode voltage, the 2

nd
 

plot shows the differential voltage and the 3
rd

 and the 4
th
 show 

the voltage on the two differential lines separately. The SET 

amplitude of the common mode voltage exceeds the LVDS 

standard [1] (1.125V to 1.375V) while the differential 

disturbances are well above the LVDS standard (>±100mV). 

Whether or not a LVDS receiver can reject a common mode 

disturbance like this depends on its characteristics. In theory, 

only common mode disturbances from the LVDS driver 

exceeding the input common mode range can be recorded 

erroneously. 0V to 2.4V is the standard [1] common mode 

range of a LVDS receiver. Thus, in theory the disturbance 

reported in Fig. 6. will be rejected. Our receiver with -4V to 5V 

common mode range provides even more margin. In Fig. 7 all 

SET events in the LVDS driver are simulated together with our 

LVDS receiver (no SETs injected in the receiver). From the 

top: the 1
st
 plot shows the cumulated eye diagram of all SETs 

in the driver stage and the 2
nd

 and 3
rd

 plots show the rising and 

falling transition, respectively, of the receiver stage output 

signal. The results in Fig. 7 includes among other events the 

common mode event reported in Fig. 6. In conclusion, the final 

outcome of all SETs in the LVDS driver stage are disturbances 

that by the receiver stage are recorded as tiny timing errors on 

the transitions with at most 0.250ns. The simulation results can 

be compared with the SEE results of timing error of a transition 

reported by R.Koga [10] for heavy ions in the range of 0.9 

MeV-cm2/mg to 90 MeV-cm
2
/mg. For all tested LVDS 

devices, timing errors of 2ns and more was reported. The LET 

threshold was around 10 MeV-cm
2
/mg with a saturation cross 

section around 1x10
-4

 cm
2
/device. We have recorded timing 

errors one order of magnitude smaller at a significant higher 

LET. Thus, we are confident that the LVDS driver stage will 

perform outstanding compared to the LVDS devices tested by 

R.Koga [10].  

 

Fig. 6.  Worst case recorded common mode disturbance in SET simulation on 

LVDS driver stage. 

 

 

 

Fig. 7.  Cumulated SET simulation result of LVDS driver stage with LVDS 

receiver stage connected to its output. 
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We also simulated the LVDS driver stage together with its 

internal supporting circuits like e.g. the current generator and 

the voltage band-gap circuit. Here we identified a node in the 

current generator circuit causing a timing error of almost one 

nanosecond (see Fig. 8. ). We measured the area of this node. It 

is smaller than the area of the sensitive nodes in the receiver. 

We repeated the simulation with SET injections corresponding 

to a LET of 7 MeV-cm
2
/mg. No events were recorded. Thus, 

the expected SEE rate is less than the one expected for one 

receiver (2x10
-5

 events/day geostationary orbit). 

We have also simulated SETs in the single-ended input and 

output stages and all the internal signal paths with no critical 

SETs recorded. 

 

Fig. 8.  Cumulated SET simulation result of LVDS driver stage and its 

supporting circuits with LVDS receiver stage connected to its output. 

V. CONCLUSION 

In this paper we presented two LVDS products being 

developed with the target to serve the need of SpaceWire 

communication in space applications. We have presented its 

key features and strengths. 

This development has now completed the first design stage. 

We sent the first prototype to wafer manufacturing in March 

2013. We expect them ready end of May. This prototype 

implements the functionality of the Dual transceiver as 

presented herein. Radiation tests for single event effects and 

total ionizing dose, ESD tests and electrical characterization 

will be performed on this prototype. Moreover, new potential 

features like power-down capabilities will be evaluated. In the 

next stage, the final designs of the Dual transceiver and the 4x4 

cross point will be finalized and manufactured. The final 

products will be qualified to the ESCC standard for 

hermitically sealed monolithic circuits [12] with a targeted 

product release in 2014. This is a fully European development, 

thus no U.S export restrictions rules will apply to these 

products. 
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Abstract—Extended Common Mode LVDS components from 
TELEFUNKEN Semiconductors are being tested for their 
radiation hardness. The collected test results are introduced and 
discussed; the results which are not yet available for the time 
being will be presented during the conference. 

Index Terms—LVDS, extended common mode, SpaceWire 
component, SOI, radiation test, TID, SEE. 

I. INTRODUCTION 

LVDS translator IC components are widely used for 
SpaceWire (SpW) applications and are absolutely essential for 
aerospace equipment manufacturers. However none of the 
European IC manufacturers introduced such radiation hard 
components to the market until now. On the other hand 
extensive demand on radiation hard LVDS components 
suitable for extended common mode applications at high 
communication speed arose [1]. Those would help solving 
some currently existing robustness issues. 

TELEFUNKEN Semiconductors is the first European IC 
supplier who developed components for extended common 
mode LVDS applications (see Fig. 1. ), which are currently 
being tested for their radiation hardness by ESA. 
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Fig. 1.  Extended Common Mode LVDS 

The radiation testing started with a high dose-rate Total 
Ionizing Dose (TID) test on unbiased components followed by 
Single Event Effects (SEE) tests and low dose-rate TID test on 
biased components. 

II. TESTED COMPONENTS 

The extended common mode capable LVDS components 
developed by TELEFUNKEN Semiconductors comprise 
LVDS receivers, drivers and splitters manufactured using 
Silicon-On-Insulator (SOI) technology TFSMART2. 

Generally SOI technologies are known to mitigate SEE due 
to much smaller volume of charge collecting silicon compared 
to bulk devices [2]. If the SOI devices are fully isolated, as this 
is the case in TFSMART2, they are immune to latch-up thus no 
single event latch-up can occur. Additionally TFSMART2 
features body ties for each device type, which due to charge 
diversion phenomena in SOI technology enhances the SEE 
immunity [2]. Combining bipolar and 3.3V CMOS logic 
devices having 0.35µm minimum feature size with high 
voltage DMOS devices up to 100V on the same die, this BCD 
IC manufacturing technology offers a high potential for 
aerospace applications [3]. Besides latch-up it is also 
inherently resistant to such parasitic effects as substrate leakage 
and others thanks to SOI, which improves the performance and 
makes it suitable for high temperature range. 

The extended common mode capable LVDS components 
have been designed for the combination of the RS-485 receiver 
input voltage range and high-speed performance and efficiency 
of LVDS, providing robust but also fast communication 
channels. Those ICs translate the LVDS signals to 3.3V 
CMOS/TTL and vice versa with max provided data rate of 
400Mbps and higher. The max data rate of such translators is 
limited by the CMOS I/O circuits, thus the best test vehicle for 
the data rate performance demonstration of LVDS circuits is a 
fully differential LVDS repeater. Such repeater comprising the 
same input as LVDS receiver and the same outputs as LVDS 
driver ICs shows significantly higher max data rate, which 
exceeds 800Mbps. The full DC common mode rejection range 
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of the 1 to 4 repeater TF90LVDS104 at 1Gbps data rate is 
shown on the Fig. 2.  as eye diagrams measured using PRBS23 
input signal pattern with 200mV differential magnitude. 

 

Fig. 2.  Highest speed LVDS eye diagrams over common mode 

From the extended common mode capable TELEFUNKEN 
Semiconductors LVDS components two component types have 
been selected for radiation testing: the LVDS receiver 
TF90LVD{S, T}032 [4] and the complementary LVDS driver 
TF90LVDS031 [5]. All described radiation tests are performed 
on these two component types. 

III. RADIATION TESTS 

A. Total Ionizing Dose Test 

This test has been performed at the ESTEC 60Co facility 
using a high dose-rate of 4.5krad/h [3]. 

The ICs of each of both component types have been 
divided into 6 groups: 5 irradiated groups and one control 
group; each irradiated group contained 5 ICs. The 5 groups of 
both components have been irradiated to the total dose of 
5krad, 10krad, 20krad, 40krad and 100krad respectively and 
the parameter drifts have been measured. (There was a 
shipping period of 2 days between irradiation and post-
radiation measurements.) Then the ICs annealed 7 days at 
room temperature and 5 hours at the temperature of 100°C, 
subsequent measurements followed. 

The test results are shown in Fig. 3. The drifts of all 
examined parameters are shown relative to their pre-radiation 
values. The data points “5krad” to “100krad” are calculated 
from the mean values of the 5 different groups of ICs irradiated 
to the corresponding total dose. The data points “after room 
temperature anneal” and “after hot temperature anneal” belong 
to the group of ICs irradiated to 100krad total dose. 
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Fig. 3.  High dose-rate unbiased TID test results 

The shown test results are looking plausible, since the 
observable drift trend is constant through the total dose steps. 
The data points near 0% might be more influenced by 
measurement tolerances. The highest parameter drift is 10% 
whereas the majority of parameters doesn’t show measureable 
drifts. The TF90LVDS031 parameters “Differential output 
voltage” and “Steady-state output common mode voltage” 
show low drifts. They indicate that the voltage reference circuit 
was not significantly impacted by the radiation. The “Output 
short circuit current” of TF90LVDS031 shows that the drift of 
the current reference circuit might be approximately 3%. The 
TF90LVDS031 parameter “High-impedance output current” 
has wide tolerances. It shows 10% drift at 100krad total dose 
which might indicate some degree of degradation in gate oxide 
properties. 

Finally, all tested parts keep their complete functionality 
after irradiation to the given TID radiation doses, room 
temperature annealing and accelerated ageing. No critical drifts 
or specification limit violations have been observed. 

B. Single Event Effects Test 

SEE heavy ions test and low dose-rate TID test on biased 
components are planned to be performed in week 19/2013; the 
results will be presented at the conference. The SEE test will be 
conduct in respect of ESA guideline: Single Event Effects Test 
Method and Guidelines ESCC Basic Specification No. 25100. 
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The purpose of single test for heavy ions test is to 
determine the sensitivity of Single Events Phenomena (SEL, 
SEU and SET for this application) against LET of incident ions 
and extract the cross section saturation and LET threshold for 
calculation and simulation of SEE in orbit. 

The test will be performed on two or three different pairs 
(driver-receiver pair) of component samples with the case lid 
removed, the two samples in a pair will be irradiated separately 
and the not irradiated sample will be a part of the test 
equipment for the DUT. Every component will be tested for 
SEL/SEU/SET. The DUT will be a part of SpW communica-
tion channel and the behavior will be observed using Link 
Analyzer and Digital Signal Oscilloscope (see Fig. 4. ). The 
test equipment used in this configuration is able to capture 
failures causing data corruption and display accurately the 
behavior of the SpW link during these events. The digital 
signal oscilloscope captures accurately SET behavior of the 
devices, being both common and differential mode distortions 
to the LVDS signal, as well as transients on the CMOS logic 
outputs of the LVDS receiver. 

 

Fig. 4.   DUT under functional test in ESTEC Avionics Lab 

The components will tentatively be tested with the ions 
shown in the following table: 

 
The components will be irradiated at the flux of about 

5*103
 ions/cm2/s up to a total fluence of 5*106 ions/cm2 or 200 

SEE events for each irradiation run. The test flow is shown in 
the Fig. 5.  

The components will be tested at high temperature +70°C 
(first pair) and at room temperature for the second and the third 
pair. The SEE test campaign will be performed with the 
support of MAPRAD srl (Perugia, Italy) at the LNS lab of 
Catania (Italy). 

SEE tests performed on a Point-of-Load converter IC 
manufactured in the same technology TFSMART2 showed no 
fails [6], which suggests good results also for current SEE test. 
During the Conference all available radiation test results will 
be presented. 

 

Fig. 5.  Radiation Test Flow 

IV. CONCLUSION 

After performing a high dose-rate TID test up to 100krad 
on unbiased extended common mode LVDS components from 
TELEFUNKEN Semiconductors promising results were 
obtained. After the TID exposure none of the component 
specifications were violated and all tested parts kept their 
complete functionality. 

SEE heavy ions test and low dose-rate TID test on biased 
components will follow soon. During the conference all 
available radiation test results will be presented. 

We are looking forward to obtain good results from the 
described radiation tests. Afterwards the high-quality European 
components will be made available on the space market and 
further components for extended common mode LVDS 
application will be developed. 
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Abstract—Digital Signal Processors (DSPs) are important 
components for many types of space systems such as 
instruments, payload data processors, and platform 
subsystems. As the only existing European DSP (TSC21020) 
is becoming obsolete, ESA is pursuing the development of 
new DSP devices, related IP, and system designs for space 
applications. In this paper, we provide an overview of DSP 
related developments supported by ESA, with relevant 
information on the integration of SpW and SpFi interfaces and 
related system aspects such as bandwidth constraints and 
utilization of specific features. The baseline architectures of 
future DSP ASICs are presented, and the ESA roadmap for 
Digital Signal Processing is summarized.  

Index Terms— Digital Signal Processing, SpaceWire, SpaceFibre, 
SpW, SpFi.  

I. INTRODUCTION 
Digital Signal Processors are based on architectures that 

make them particularly suitable for applications such as 
payload data processing, real time control loops, and similar 
applications where digital data needs to be processed at high 
speed and low power consumption. The expected obsolescence 
of the only European DSP, but also its outdated design and 
performance, create a problematic gap in terms of power 
efficient processing capability for many application areas. The 
development of a new DSP has been delayed by the lack of 
available funding. As a result, equipment developers are often 
forced to use backup solutions involving FPGAs or dedicated 
Application Specific Integrated Circuits (ASICs). However, 
these come with associated disadvantages such as high power 
consumption, lower reliability, long development time, or high 
cost. At an ESA–industry round table held in 2007 [1], a 
number of DSP technology development routes have been 
defined. These have been addressed via a number of different 
R&D contracts, leading to the development of technologies and 
architectures that can bridge the gap until a new, high 
performance, radiation hardened DSP component is available. 
The development routes include processor boards based on 
Commercial Off The Shelf (COTS) DSPs, development of 

radiation hardened DSP IP cores for future ASIC developments 
including prototype chip developments, and preparatory 
activities supporting the future development of a European 
Next Generation Space DSP (NGDSP). These activities are 
presented in the following chapters. 

II. COTS BASED DSP BOARDS 
The use of commercial components for space applications 

is an option that may allow to achieve higher performance, 
lower power, and smaller footprint and volume than would be 
possible by using only space qualified components. In general, 
the use of commercial components does not lead to lower cost; 
in most cases the additional cost of qualification more than 
compensates for the lower cost of component procurement. 
However, the current lack of a space qualified high 
performance DSP component has led to significant efforts in 
the development of processor boards based on commercial 
DSPs. These boards need to provide protection mechanisms for 
mitigation of radiation induced processing errors. Among the 
DSPs available on commercial markets, the TMS320C6727 
available from TI® has been found to be particularly suitable 
due to its good performance and availability as a QML-V 
component. It is latchup immune and sufficiently tolerant to 
Total Ionising Dose (TID). However, the component is 
sensitive to Single Event Effects (SEE) and must therefore be 
protected by suitable radiation mitigation techniques in order to 
achieve an availability that is sufficient for space applications. 

A. Hi-P COTS based Computer 
This activity is part of a broader development effort that 

includes the development of highly reliable (Hi-R), highly 
available (Hi-V) and high performance (Hi-P) COTS based 
computers. The Hi-P development (“ High Performance COTS 
Based Computer Step 2” , ESTEC contract nr. 4000105087) is 
based on the aforementioned TI® DSP, with radiation 
mitigation techniques implemented in a combination of 
hardware and software. A key element of this activity, which is 
performed by Astrium (F) in collaboration with CGS (I), is an 
architecture that combines a high reliability control element 
(“SmartIO”) with a scalable number of DSP based processing 
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modules (PMs), supporting the tailoring of reliability, 
application performance and latency according to the user and 
application requirements. Depending on the number of 
available PMs, task duplication in time (each processing task 
repeated at least once) or duplication / triplication in space 
(task executed on multiple PMs in parallel) with subsequent 
voting and possible re-calculation can be chosen. 

 

 
 

Fig. 1. Hi-P CBC modular architecture 
 
The Hi-P system architecture is shown in Fig. 1, while a 

candidate architecture for the processing module is depicted in 
Fig. 2. For very high bandwidth, input data (for example 
originating from a payload such as a radar) can be routed to the 
processing modules via a separate switch matrix, which allows 
to avoid a bandwidth bottleneck in the SmartIo which is 
typically based on standard General Purpose Processor (GPP). 

 

 
 

Fig. 2. Hi-P PM candidate architecture 
 
Sensitive elements of the PM architecture, including all 

space standard interfaces, are implemented in rad-hard FPGA 
or ASIC technology, and support fast data verification via 
checksum calculation as well as monitoring of the COTS DSP. 

The PMs are expected to provide 1 or 2 SpW interfaces 
(with RMAP target functionality) as well as 1 or 2 SpFi links 
based on TI’s TLK2711 serializer / de-serializer circuits. The 
final number of implemented interfaces will depend on 
available FPGA resources. While the speed of the FPGA 
allows adequate performance for the SpW interfaces, the SpFi 
links may run at lower than typical speed which will be 
optimized during the PM detailed design phase.  

For a flight application the FPGA may be replaced by a 
dedicated ASIC, allowing both higher speed and lower power 
consumption in addition to higher reliability. In order to assess 
the system performance, a number of performance benchmarks 
[2] will be implemented. The results will allow direct 

performance comparisons with other platforms. It is expected 
that the activity will be concluded in Q1 2014. The target 
Technology Readiness Level (TRL) is 5, and TRL 6 for critical 
technologies. 

B. HPPDSP 
This activity is a second development based on the same 

COTS DSP, but with a different technical baseline, and with a 
specific set of requirements derived from studies of future 
science missions. Low mass and very low power consumption 
are among the driving design requirements. The architecture is 
based on a dual DSP concept with FPGA based monitoring of 
task execution and data consistency . The development is 
performed by Astrium UK (“High Processing Performance 
Digital Signal Processor”, ESA Contract 1-6182, 2009) 
supported by University of Dundee (UK). It includes the 
development of a TRL 4 processor breadboard as well as 
implementation of demonstration software including ESA’s 
NGDSP benchmarks [2]. Also here, both SpW and SpFi 
interfaces are integrated. Additional information is available in 
[3]. The end of the activity is expected in the 2nd half of 2013.  

III. RAD-HARD FIXED POINT DSP AND NOC ELEMENTS 
While the development of a space qualified floating-point 

DSP has been hampered by funding constraints, some 
significant work has been performed on fixed point DSP IP 
cores and related Network-on-Chip (NoC) technology. This 
included FPGA breadboarding, design radiation hardening and 
prototype chip development. In addition, fine-grained 
massively parallel architectures are also being investigated.  

A. Massively Parallel Processor Breadboard 
This development activity (“Massively Parallel Processor 

Breadboarding Study”, ESA contract nr. 21986, 2008-2012) 
was performed by RECORE Systems b.v. (NL). It has 
succeeded in the development of a NoC based system that 
combines two fixed point VLIW Xentium™ DSP cores with a 
LEON2 controller [4] . The FPGA based design includes 
features such as SpW including RMAP protocol support, 
CCSDS timers, ADC / DAC interfaces, and on-chip as well as 
off-chip memories. The basic architecture of the developed 
system is depicted in Fig. 3.  

 

 
Fig. 3. MPPB architecture 

 
All elements requiring high bandwidth connectivity are 

connected to the 32-bit wide NoC. Due to the chosen number of 
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network lanes and routers, multiple high data rate transfers can 
be handled concurrently without congestion. The MPPB NoC 
architecture is shown in Fig. 4. 
 

 
 

Fig. 4. MPPB NoC architecture 
 
The Xentium™ DSP cores support up to 4 MACs per clock 

cycle for 16 bit data, and up to 2 MACs per clock cycle for 32 
bit data words. 

In the FPGA implementation which provides a system clock 
of 50 MHz the speed of SpW interfaces is limited to 100 Mbps. 
In an ASIC implementation the full SpW speed can be 
achieved. It should be noted that the NoC architecture, which 
provides 32bit bi-directional connections between routers and 
operates at full system clock, provides very high bandwidth for 
connected data sources and sinks. This architecture is therefore 
a good candidate for future designs aiming at high bandwidth 
applications. The MPPB study has been completed in 2012, and 
final presentation materials are available via [5]. 

B. DARE+ Application ASIC 
The successful MPPB activity has opened the door to the 

development of multi-core high performance processor ASICs 
based on NoC and VLIW fixed point DSPs. However, a key 
step towards this goal is the radiation hardening of the DSP IP 
and NoC elements such as routers, network bridges, DMA, 
memory tiles, and relevant interface IP.  

The DARE technology [6], a rad-hard ASIC library based 
on a commercial (non-space qualified) 180nm ASIC 
manufacturing process (UMC) has been developed by IMEC 
(BE) under ESA contract since 1999. Following the basic 
library development and its evaluation by means of test 
vehicles, a subsequent activity called DARE+ (“DARE plus – 
ASICs for Extreme Radiation Hardness and Harsh 
Environments”, contract Nr. 4000104087 ) was started for 
fixing identified issues and for the development of additional 
library elements. Part of this activity is the design, 
manufacturing and test of an application ASIC (called 
XentiumDARE, or XD). It includes key parts of the MPPB IP 
(DSP core, NoC routers, NoC bridge, SpW RMAP–NoC 
interface, on-chip memory tile, and others). All architectural 

elements have been radiation hardened either via ASIC library 
elements or via architectural changes such as triplication and 
insertion of EDACs. Programming and debugging is possible 
via either SpW RMAP or UART. Due to chip size constraints 
the memory tile also serves as DSP instruction cache which 
would be kept separate in a flight ASIC implementation. The 
Application ASIC architecture is depicted in Fig. 5. 

 

 
 

Fig. 5. DARE+ Application ASIC architecture 
 
The SpW I/F with RMAP target functionality is directly 

mapped to the NoC, which provides an internal bandwidth of 
3.2 Gbps (bi-directional) at a a target system clock of 100MHz. 
Data transfers are supported via DMA. Due to the lack of High 
Speed Serial Link (HSSL) IP in DARE, SpW is expected to 
remain the main standard high speed interface for future 
DARE180 based ASIC developments. 

C. High Performance Data Processor  
This activity (“High Performance Data Processor”, ESA 

contract nr. 4000102909) is performed by ISD (Greece) and 
Astrium (Germany) [7]. It is based on a proposal from 
industry, and aims at the development of a processor prototype 
that is based on scalable reconfigurable fixed point processing 
array technology from PACT (Germany). Fig. 4 shows the 
basic architecture of the envisaged prototype chip.  

 

 
 

Fig. 6. HPDP prototype chip architecture 
 
In this architecture, a large reconfigurable processing core 

capable of handling high bandwidth data streams is supported 
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by a number of additional processing elements including 
DMAs, memory and stream I/O interfaces. The chip design is 
aiming mainly at telecom applications. A set of test 
applications (various DVB-S processing steps such as 
encoders/decoders, PSK modulators/demodulators, simple FFT 
and filter routines) will be demonstrated. SpaceWire interfaces 
are used for the control links to a platform’s data handling 
system, while payload data streams are routed via separate 
interfaces with a total bandwidth comparable to that of a SpFi 
link. The prototype ASIC development, which is based on a 
commercial 65nm technology [8], has suffered some delays; 
results from this activity are now expected around 2015. 

IV. NEAR TERM DSP ASIC PROJECTS 
In addition to the activities described in the last paragraphs, 

the preparations for the development of new, performant DSP 
ASICs have continued. Based on funding from different 
sources such as the Core Technology Program (CTP) of ESA’s 
Science Directorate and the European Component Initiative 
(ECI4) development steps for both fixed point and floating 
point DSP ASICs will be implemented in the near future. 

A. Scalable Sensor Data Processor 
This activity, which is expected to start in 2013 and deliver 

prototype ASICs by 2015, will integrate the results of MPPB, 
DARE+ application ASIC, MPPB assessment results, and 
other work into an ASIC development that aims at a 
commercial product that may be available around the 2016 
timeframe. The baseline architecture is very similar to MPPB 
and includes a LEON2 and two Xentium™ DSPs connected 

via a NoC. The target for system clock is 100 MHz. The SSDP 
design exploits the mixed signal capabilities of the DARE 
technology by integrating both fast and slow ADCs as well as 
multiplexers (MUX) and sensor signal conditioning circuits. 

Additional IPs such as Pulse Width Modulation (PWM) 
units and standard peripherals are integrated in order to create a 
versatile chip which is highly suitable for applications such as 
payload data processing, instrument control, and platform 
subsystems that include sensor data processing functions. 

A functional diagram is shown in Fig. 7. In the upper half it 
shows the NoC subsystem with associated DSPs, fast 
interfaces, and bridges to external components. The lower half 
consists essentially of a standard LEON2 system with 
AHB/APB buses and typical peripherals. A particular feature is 
the housekeeping (HK) data acquisition ADC and MUX 
connected to the AHB bus which is managed by the LEON. 
The final design will be based on consolidated user 
requirements and architectural tradeoffs. 

It is expected that RMAP enabled SpW links will be the 
key digital interfaces of this ASIC, providing typical speeds of 
200 Mbps. A parallel interface to external ADC/DAC 
components that also supports data streaming among multiple 
SSDP chips is also foreseen. It will provide data rates close to 
~1 Gbit/sec. Additional interfaces will include standard 
peripherals such as UARTs and parallel I/Os.  

The SSDP development may be accompanied by additional 
developments for software and processor boards depending on 
available funding and the needs of the early user community.  

 

 
 

 
 

Fig. 7. SSDP DARE+ Application ASIC functional diagram 
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B. Next Generation Floating Point DSP 
The development of a radiation hard high performance 

Floating Point DSP that can replace the outdated TSC21020 
and that allows more reliable and power efficient solutions than 
the COTS DSPs described in II. remains the goal of the main 
DSP development line. 

In a previous TRP activity (“European DSP Tradeoff and 
Definition Study”, ESA contract nr. 420002645, 2008-2012) 
performed by Astrium (F/UK/GE) with support from ISD 
(GR), a number of candidate commercial DSP IPs were 
evaluated. The initial assessment included availability as an IP, 
performance of the DSP core, and capabilities and user 
friendliness of the Software Development Environment (SDE). 

In a following step, a primary candidate and a backup 
solution were investigated in detail, including an assessment of 
the migration to available (ATMEL 180nm) and near future 
(STM 65nm)  rad-hard ASIC technologies. The assessment 
also addressed required modifications of the architectures for 
radiation hardening, addition of space specific features, and 
compatibility with space qualified peripheral components. 

  
Three commercial DSPs were evaluated: 
 
• ATMEL DIOPSIS 940HF 
• Analog Devices ADSP-21469 
• Texas Instruments TMS320C6727B 
 
For the TMS320C6727B, the manufacturer was not 

inclined to license the design for an ASIC development. 
However, as the component is already available as a latchup 
insensitive component (and used in several COTS based 
computer developments) the performance evaluation and SDE 
assessment was continued. For the other candidates IP 
licensing is possible and the detailed assessment was 

performed. The ADI DSP was found to be the superior device 
in terms of both performance and SDE quality. The ATMEL 
device was kept as a backup.  

The analysis of achievable performances revealed that only 
the STM 65nm process would allow to achieve the 
performance goal of at least 1 GFLOP. It also provides the 
added benefit of HSSL IP for the implementation of SpFi. The 
migration to the rad-hard ASIC library as well as architectural 
changes required for radiation hardening (which includes 
adding EDACs for internal and external memories) will reduce 
the maximum clock frequency of the rad-hard DSP below that 
achieved by commercial devices. A clock frequency in the 
range of 200 MHz is expected based on the initial analysis. 

In addition to the integration of EDACs and other means 
for radiation hardening, some significant design changes will 
be introduced to adapt the architecture to the needs of space 
applications. The most important additions will be SpW and 
SpFi interfaces and an interface to external suitably qualified 
memories (DDR2 or DDR3 in addition to SRAM and ROM). 
On the other hand, some IPs that are part of the commercial 
DSP design such as audio processor and some accelerators that 
are of no or limited use for space applications may be removed. 

In an initial assumption for the NGDSP ASIC architecture 
shown in Fig. 5, 4 SpW links are assumed which allows 
connections to redundant data sources and data sinks in a 
typical spacecraft architecture. The supported data rate is 200 
Mbps or higher. For the implementation of SpFi links the 
DSP’s internal 32 bit peripheral bus will impose limitations on 
achievable bandwidth. Depending on the core clock frequency, 
the peripheral bus, which is running at ½ of the core clock, will 
provide bandwidth not exceeding 3.2 – 4 Gbps. It is therefore 
possible that the number of SpFi IPs will be limited to 2, with 4 
external interfaces implemented in order to provide redundant 
links as for the SpW interfaces.  

 
 

 
 

Fig. 8. Draft NGDSP ASIC architecture 
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All architectural changes need to take into account possible 
implications on the SDE, as one key development objective is 
to keep modifications transparent for the SDE wherever 
possible. The next step in the development of the NGDSP 
ASIC will be a feasibility study which is expected to include 
synthesis tests using the DSM 65nm rad hard library and 
corresponding toolchain. Other tasks, like partial FPGA 
prototyping including IP integration tests, SDE tests etc. may 
be included as well. This activity is expected to start not later 
than 2nd half of 2013. 

V. ESA ROADMAP FOR DIGITAL SIGNAL PROCESSING 
All the activities introduced in previous paragraphs are part 

of the ESA roadmap for Digital Signal Processing. This 
roadmap, which is based on the identified needs of European 
industry and other stakeholders, but also includes activities 
proposed by industry and enabled by direct national funding, is 
periodically adjusted in order to reflect the realities of 
technology evolution, availability of funding, identified 
synergies, and progress of ongoing activities. Fig. 9 shows an 
overview of the presented activities and their interdependences. 
Additional activities may soon appear in support of the 
presented core activities after the down selection of ESA TRP 
proposals for the 2014/2015 timeframe. The complete 
roadmap, which includes additional activities not presented 
here due to status, limited relevance for this paper, or paper 
volume restrictions, is available and frequently updated on 
ESA’s On-board Data Processing Website [5]. 

VI. SUMMARY 
European industry and other stakeholders have an urgent 

need for technologies that support and enable reliable digital 
signal processing for space applications at high performance 
and power efficiency. As existing components are outdated and 

will soon become obsolete, powerful new technologies based 
on COTS components as well as rad-hard ASICs are being 
developed. Radiation hard fixed point DSP IP for ASIC 
developments is now commercially available; COTS based 
DSP boards are expected to be ready for adoption by projects 
in 2014, while new DSP ASICs are expected to be available as 
prototypes in 2015 and 2016 and as flight models in 2016 and 
2017 for SSDP and NGDSP, respectively. Evaluation boards 
and associated software are expected to become available at the 
same time as ASIC prototypes. 
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Abstract— The Very High-Speed Serial Interface 

(VHiSSI) device aims to provide a versatile SpaceFibre 

interface device in a small package. The device can act as a 

parallel interface device providing several modes of 

operation, or it can act as a SpaceWire to SpaceFibre 

bridge. 

This paper describes the VHiSSI chip in detail, outlines 

the applications it can be used for, and summarises the 

status of the VHiSSi project. 

 
Index Terms—SpaceWire, SpaceFibre, networks, spacecraft 

onboard processing 

I. INTRODUCTION 

Space-based Earth observation and scientific 

instrumentation currently under development will push the 

limits of on-board data-handling technology. In the past Mil-

Std 1553 and proprietary data-links were used to get instrument 

data from the instruments to the on-board mass memory unit 

and to the down-link telemetry system. Over the past decade 

the proprietary data links have been replaced with a standard 

networking technology designed for use on-board spacecraft: 

SpaceWire. While SpaceWire is currently being used to fulfil 

the on-board data-handling requirements of many missions, 

there are some very high data-rate instruments which are 

beyond its capabilities.  

Several future space-based instruments, for example 

synthetic aperture radar (SAR) and hyper-spectral imagers, will 

be capable of producing data at data rates of several Gbits/s. 

New downlink telemetry techniques (laser and Ka-band 

communications) will be able to provide much higher 

downlink capacity than previously possible. High speed 

memory technologies will be able to serve multiple high data 

rate instruments and stream data to ground on demand. To 

support the growing need for onboard communications 

network bandwidth, technologies able to support multi-Gbits/s 

data transfer have been developed, e.g. Channel Link and, 

Wizard Link. Unfortunately these are all restricted USA 

devices resulting in a critical European dependency. 

ESA has been developing a standard multi-Gbits/s network 

technology called SpaceFibre [1] [2] [3] [4]. SpaceFibre 

provides multi-Gbits/s data rates over fibre-optic and electrical 

cable. It provides a coherent quality of service mechanism able 

to support bandwidth reserved, scheduled and priority based 

qualities of service. It provides extensive fault detection, 

isolation and recovery (FDIR) capabilities, including a link 

level retry function that recovers from errors and resends data 

transparent to the user application. SpaceFibre uses the same 

packet format as SpaceWire [5] making it easy to bridge 

existing SpaceWire devices into a SpaceFibre network. 

The VHiSSI project is a European Union Framework 7 

research project which will integrate a complete SpaceFibre 

protocol engine, together with the physical layer interfaces, in a 

radiation tolerant chip manufactured by a European foundry. It 

will provide a complete SpaceFibre solution in a single chip. 

The VHiSSI research programme aims to create very high-

speed data-interface technology which is a critical component 

technology for future spacecraft payloads, particularly 

telecommunications and Earth observation payloads where 

multi-Gbits/s data-rates are urgently needed. A complete 

solution to very high-speed data networking onboard spacecraft 

will be provided, levering research on SpaceFibre, using a 

European fabrication facility, and providing a non-dependent 

technology. 

The VHiSSI research programme will:  

 Provide multi-Gbit/s serial data-link technology, 

essential for future spacecraft onboard data-handling 

systems. 

123



 Lever prior and concurrent research on the emerging 

SpaceFibre standard, to provide a complete multi-

Gbit/s serial technology for spacecraft onboard data-

links and networks, including fault detection, isolation 

and recovery (FDIR) and quality of service (QoS). 

 Provide a versatile chip architecture, which can be 

adapted and configured to support multiple 

applications. 

 Provide the critical clock-recovery mechanism on 

existing European chip technology. 

 Use a European semiconductor fabrication facility, 

enhancing and developing its capabilities for radiation 

tolerant chip design and production with a radiation 

tolerant library. 

 Provide a non-dependent technology (ITAR free), 

allowing unrestricted use on European spacecraft and 

substantial export opportunities - an important 

capability for Europe. 

This paper describes the work carried out by University of 

Dundee and STAR-Dundee on this project and summarises the 

current state of the project. The team working on this project 

comprises engineers from: 

 University of Dundee who are leading the project, 

and who are responsible for project management 

and the VHiSSI device architecture and 

specification. 

 Astrium GmbH who are responsible for gathering 

and requirements and use cases for the VHiSSI 

device. 

 STAR-Dundee Ltd who are responsible for 

designing the digital part of the VHiSSI chip in 

register-transfer level (RTL) VHDL code. 

 ACE-IC who are responsible for the design of the 

SerDes and CML transceivers. 

 Ramon Chips who are responsible for the 

radiation tolerant library for the IHP chip 

manufacturing process and low level design of the 

VHiSSI device. 

 IHP who are responsible for manufacturing the 

VHiSSI device and digital/static test of the chip.  

 SCI who are responsible for supporting the high 

performance/analogue testing of the experimental 

VHiSSI chip. 

II. VHISSI CHIP ARCHITECTURE 

The overall architectural block diagram of the VHiSSI chip 

is illustrated in Figure 1. 
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Figure 1 VHiSSI Overall Architecture 

 

There are five main functions within the VHiSSI chip: 

 SpaceWire Bridge 

 FIFO, DMA, Memory and Transaction Interface 

 SpaceFibre Interface 

 SerDes 

 IO Switch Matrix 

 Mode Switch Matrix 

The SpaceWire Bridge provides a bridge between 

SpaceWire and SpaceFibre with up to 11 SpaceWire interfaces 

being available. The SpaceWire Bridge includes a SpaceWire 

router which allows routing between SpaceWire ports and 

Virtual Channel (VC) buffers of the two SpaceFibre interfaces. 

Configuration of the VHiSSI chip can be carried out over any 

SpaceWire interface connected to the embedded SpaceWire 

router or over VC0 or VCA of the SpaceFibre interface. The 
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SpaceWire Bridge is connected to the IO Switch Matrix and to 

the Mode Switch Matrix. 

The FIFO and DMA, Memory and Transaction (DMT) 

Interface provides various types of parallel interface into the 

VHiSSI chip for sending and receiving data over the 

SpaceFibre interfaces. The various parallel interface functions 

have been designed with specific application scenarios in mind 

and between them are able to operate with many types of local 

host system, including FPGAs and processors. The parallel 

interface is also designed to use a small number of pins, so that 

the VHiSSI chip can fit into a small (100 pin) package. The 

FIFO mode provides a direct parallel interface to two 

SpaceFibre virtual channels. The memory type interface 

provides a 32-bit bus interface for accessing VHiSSI registers 

or VC buffers. It is a multiplexed address/data bus, with the 

VHiSSI device providing an internal address latch/counter to 

hold the register/VC buffer address. The transaction interface is 

similar to the memory interface, but aims to simplify software 

interfacing. A single address line is used to distinguish 

commands and status information from data. A command is 

written to the VHiSSI device to specify the transaction that is 

about to take place. For data transfer to/from a VC buffer, a 

read of status information provides the status of the VC buffer 

identified in the command. The data transfer can then take 

place in a burst transfer the maximum size of which is 

determined by the VC buffer status information. The DMA 

interface puts the VHiSSI chip in control of data transfers. 

When there is data ready to transfer, an internal DMA 

controller in the VHiSSI device requests control of the external 

data bus. Once granted it then affects the data transfer. An 

external address latch/counter is required, which may be 

implemented in an FPGA. The FIFO and DMT interface is 

connected to the IO Switch Matrix and to the Mode Switch 

Matrix. On reset the IO pins and connections to the VC buffers 

from the FIFO and DMT interface and SpaceWire Bridge are 

determined and set by these two switch matrices. 

The SpaceFibre Interface has 11 virtual channels. VC 0 is 

intended primarily for VHiSSI device and local system 

configuration and monitoring and is connected to the 

embedded SpaceWire router. The other VCs have 

programmable VC numbers and so are referred to by letters. 

VCA is connected to the embedded SpaceWire router. The 

other VCs are either connected to the SpaceWire router, 

directly to a SpaceWire interface, or to the parallel interface, 

depending on the mode of operation. Each VC supports full 

SpaceFibre QoS which can be configured independently for 

each VC. VC0 and VCA are directly connected to the 

embedded SpaceWire router. The other SpaceFibre VC buffers 

are connected to the Mode Switch Matrix which connects them 

to either the SpaceWire Bridge or the parallel interface. The 

other side of the SpaceFibre interface is connected via a 

multiplexer to either the nominal or redundant SerDes and 

CML transceiver. 

The SerDes converts parallel data words from the 

SpaceFibre interface into a serial bit stream and vice versa. On 

the receive side the bit clock is recovered from the serial bit 

stream by the SerDes. The SerDes includes integral CML 

transceivers. 

The IO Switch Matrix connects either the SpaceWire 

LVDS, SpaceWire LVTTL or parallel interface signals from 

the FIFO and DMT interface to the digital IO pins of the 

VHiSSI chip. Configuration is static and determined on exit 

from device reset, i.e. on the rising edge of the RSTN signal. 

The Mode Switch Matrix connects either the SpaceWire 

Bridge or FIFO and DMT interface (parallel interface) to the 

VC buffers of the two SpaceFibre interfaces. Configuration is 

static and determined on exit from device reset, i.e. on the 

rising edge of the RSTN signal. 

In addition to these major functions the VHiSSI chip 

includes a JTAG test port and some other device test modes. 

 

III. VHISSI CHIP APPLICATIONS 

In this section several applications of the VHiSSI device 

are considered 

A. High Data-Rate Instrument Interface 

SpaceFibre offers substantially higher data rates than 

SpaceWire to support high data-rate instruments. Connection 

of a high data-rate instrument to a mass memory unit via 

SpaceFibre is illustrated in Figure 2. 
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Figure 2 High Data-Rate Instrument Connected To 

Mass Memory 

To provide data at high-speed from a local instrument to 

the SpaceFibre interface a parallel interface is required. To 

operate with current space qualified FPGAs this interface has 

to be 32 bits wide, which requires a 62.5 MHz interface clock 

(32-bits x 62.5 MHz = 2 Gbits/s, which after 8B/10B encoding 

is 2.5 Gbits/s signalling rate). 

The simplest type of interface is a FIFO type interface, 

which is straightforward to connect to an FPGA. For high data 

rate transfer from an instrument it is only necessary to write 

data to an output VC buffer in the SpaceFibre interface. A 

slower speed interface, e.g. SpaceWire, would be useful for 

controlling and reading housekeeping information from the 

instrument. 

If the instrument includes an embedded processor it may be 

preferable to use a memory type interface to write and read 

data from the SpaceFibre VC buffers in the SpaceFibre 

interface. This interface can then also be used to access the 

configuration, control and status registers inside the SpaceFibre 

interface. In this case it is the responsibility of the instrument to 

handle the transfer of data to the SpaceFibre interface. 

A DMA controller included in the SpaceFibre interface 

transfers responsibility for data transfer from the instrument 

controller to the SpaceFibre interface. This may save some 

important processing power within the instrument controller. 
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The VHiSSI device is able to provide a SpaceFibre 

interface for high data rate instruments using a FIFO, memory 

or DMA type interface to an FPGA or processor. This interface 

is designed to be able to operate a clock speeds achievable by 

flight qualified FPGAs while sustaining 2 Gbits/s data 

transfers. It also is designed to minimise the number of pins 

required for the interface. 

B. SpaceWire to SpaceFibre Bridge 

SpaceWire has been used extensively to provide a standard 

interface to various instruments. To connect these instruments 

into a SpaceFibre based data-handling network a SpaceWire to 

SpaceFibre Bridge is required.  
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Figure 3 SpaceWire to SpaceFibre Bridge 

Figure 3 shows a SpaceWire to SpaceFibre Bridge being 

used to multiplex several SpaceWire links over a single 

SpaceFibre link. In this particular example four instruments 

with SpaceWire interfaces are connected to some other 

SpaceWire enabled equipment. Bridging between SpaceWire 

and SpaceFibre is straightforward since both protocols use the 

same packet format. 

The VHiSSI chip can operate as a SpaceWire to SpaceFibre 

bridge with either LVDS or LVTTL SpaceWire interfaces and 

includes an internal SpaceWire router. 

 

C. Mass Memory Interface 

A mass memory requires several SpaceFibre interface 

connections to support several high data-rate instruments and 

instruments with SpaceWire interfaces. This is illustrated in 

Figure 4. 
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Figure 4 Mass Memory Interface 

Two high data-rate instruments are shown, one with a 

single SpaceFibre link and the other requiring two SpaceFibre 

links to support data rates of 4 Gbits/s. Several SpaceWire 

instruments are also connected to the mass memory via a 

SpaceWire to SpaceFibre Bridge.  

The Mass Memory unit provides four SpaceFibre interfaces 

connected to a common bus or network for accessing the 

memory modules that are to store the data. 

The VHiSSI chip can provide all the SpaceFibre interfaces 

required in the example network of Figure 3: high-speed 

instrument interfaces, SpaceWire to SpaceFibre bridge and the 

interface to the mass memory unit. 

D. Control Processor 

Configuration and control information can be sent over a 

SpaceFibre network using individual virtual channels or a 

virtual network. A SpaceFibre router allows a control processor 

to access all the instruments and other equipment on the 

network as illustrated in Figure 5. 
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Figure 5 Control Processor on SpaceFibre Network 

Figure 5 shows a complete SpaceFibre based on-board 

data-handling system. A SpaceFibre router is used to 

interconnect the various units. A control processor is connected 

to this router. It is able to send configuration, control and status 

request commands to all of the other units on the network. 

Typically a virtual network would be used to manage this 

control and status information, where one virtual channel in 

each unit is dedicated to control/status and each of them is 

given the same virtual channel number, e.g. VC0. The control 

processor then sends SpaceWire packets containing commands 

over VC0 to another unit. This unit responds over VC0. Since 

the control processor is the master of the VC0 virtual network, 

there is no undesirable contention between SpaceWire packets 

on VC0. This approach leaves all the other virtual channels 

available for data transfer. 

The SpaceWire instruments do not support virtual channels, 

so control/status packets and data packets have to be 

multiplexed over the SpaceWire links. The SpaceWire to 

SpaceFibre Bridge must be able to support this multiplexing of 

SpaceWire packets containing control information, status or 

instrument data. This requires a SpaceWire router which could 

be provided within the SpaceWire to SpaceFibre Bridge. 

Normally configuration, control and housekeeping requests 

require small packets and should therefore not have a major 

impact on data transfer over the single SpaceWire link from 

instrument to the SpaceWire router in the SpaceWire to 

SpaceFibre Bridge. 

The VHiSSI device together with a SpaceFibre router 

device can provide all the SpaceFibre network functionality 

needed for onboard data-handling architectures like that of 

Figure 5. 

IV. STATUS OF VHISSI PROJECT 

A comprehensive set of requirements for the experimental 

VHiSSI chip have been gathered from the European spacecraft 

engineering community by Astrium GmbH, focusing on a 

small device which could be used to provide very high-speed 

data-links on-board a spacecraft. A versatile chip interface has 

been designed by University of Dundee which covers many 

potential applications while keeping the number of pins 

required on the chip to a minimum. The architectural level 

design of the experimental VHiSSI chip and its interface 

definition have been shaped, reviewed and polished and 

detailed design of this chip is currently underway by STAR-

Dundee Ltd. 

A critical part of the VHiSSI project is the radiation tolerant 

serialiser/deserialiser, clock-data recovery circuitry and high-

speed serial driver/receiver technology. This is a demanding 

design activity due to the speed of the interface and the 

required radiation tolerance. A design has been created by 

ACE-IC ready for testing. 

The use of the IHP chip foundry required a complete 

radiation tolerant component library to be designed. This has 

been carried out by Ramon Chips and includes logic gates, IO, 

LVDS IO, and memory cells. A test chip called RADIC5 has 

been designed and implemented which includes the critical 

circuitry designed by ACE-IC and library test components 

from Ramon Chips. This test chip is currently under test by 

Synergie-CAD and IHP. The results of this testing will feed 

into updated component design by ACE-IC and Ramon Chips 

which will be incorporated into the experimental VHiSSI chip. 

The layout of the RADIC5 test chip is shown in Figure 6. 

 

Figure 6 RADIC5 Test Chip 

A radiation test board for the RADIC5 is currently being 

designed and will be used to support the radiation testing of the 

SerDes and other components on the chip. 

An FPGA board is also being designed to support the 

functional validation and system level validation of the VHiSSI 

chip design prior to manufacture of the VHiSSI ASIC device. 

This FPGA board will also be used to provide test signals for 

functional testing of the VHiSSI ASIC device once it has been 

manufactured. 

The next steps are to complete testing of the test chip, to 

finalise the design of the experimental VHiSSI chip, to 

manufacture this chip, and to test it. 
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V. CONCLUSIONS 

SpaceFibre is a powerful, multi-Gbits/s networking 

technology for use on board spacecraft which has QoS and 

FDIR capabilities built into the hardware. The VHiSSI project 

is an EU Framework 7 project that is designing an 

experimental SpaceFibre chip. The VHiSSI chip is 

implemented in a small 100 pin package but provides complete 

SpaceFibre interface and SpaceWire to SpaceFibre bridge 

functionality. This chip is designed to cover the various 

SpaceFibre network interface requirements envisaged for 

different onboard systems, including SpaceWire bridging, high 

data-rate instrument interfacing, and mass memory unit 

interfacing. An initial test chip (RADIC5) has been produced to 

test the critical radiation tolerant SerDes technology and the 

radiation tolerant library components. The RADIC5 chip is 

currently under test. The experimental VHiSSI chip will be 

ready for testing during 2014. 
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Abstract—In this article the mass storage device prototype for 

the onboard computing system of a new generation space 

platform is considered. Its application, structure, information 

interfaces and etc. are presented. Use of the high-speed 

SpaceFibre and SpaceWire interfaces is offered. 

Index Terms—Mass Storage Device, SpaceWire, SpaceFibre, 

NAND-Flash, Memory Controller. 

I. INTRODUCTION 

Onboard control systems of existing spacecrafts, as a rule, 

are built on the base of the separate systems controlled by the 

digital computer, and are integrated in a single network by 

means of the system level interface (usually it is MIL-STD-

1553). JSC «NII «Submicron» is to develop a perspective 

onboard informational computing system (OICS) based on the 

SpaceWire and SpaceFibre network technologies [1], [2] for 

the new generation space satellites. 

The onboard mass storage device (OMSD) is one of the 

elements of developed OICS. It is intended for non-volatile 

storage of digital information from Earth observation 

equipment. 

Existing highly reliable specialized storage devices of 

leading world manufacturers are based on the NAND-flash 

memory (e.g. “TCS”, USA; “Galleon Embedded”, Norway) 

[3], [4]. This trend is justified primarily by the absence of 

rotating mechanical parts, as in the classic hard disk drives. 

This causes their increased reliability and service life. 

Typically, the volume of target information and its 

recording (or reading) rate to a drive have special requirements 

to communication interface bandwidth. Thus baud rate can be 

up to several Gb / s per channel and transmission line length of 

up to 10 meters and more.  

Typically, onboard specialized storage devices are made for 

multi-channel connectivity of multiple sources of information. 

It is caused by limitations of both the dimensions and weight 

parameters and energy consumption. 

The most common used in solid state drives interface is 

SATA 2 (3Gb/s), SATA 3 (6Gb/s), PCI-Express (4 Gb/s), 

Fiber Channel (up to 10 Gbit/s) [5]. 

The most appropriate is the idea of application a specialized 

gigabit unified digital interface for use in the storage devices 

for space applications. The aim is to provide unification of 

cross-platform compatibility of equipment used in various 

projects in different countries (including in the framework of 

international cooperation), as well as reducing development 

time and debugging the finished product. 

To solve these problems the most promising interfaces are 

SpaceWire and SpaceFibre. They are specially designed for use 

in the on-board equipment of spacecraft. These interfaces allow 

to work in a wide speed range from several Mbit/s up to several 

Gbit/s and cover a wide range of solved problems on board [6]. 

II. DESCRIPTION 

The structure of the OMSD and the OICS as a whole 

suggests applying of SpaceWire and SpaceFibre high-speed 

interfaces as a communication transmission medium of 

instructions and data. The SpaceFibre interface will be used for 

communication of those elements of OICS where data 

transmission rates reach several Gb/s per channel. The 

SpaceWire interface is used as the common unified 

environment for transmission of commands and interaction 

between all subsystems of OICS. 

Structurally the OMSD consists of storage modules (from 2 

to 15 modules) and two switch modules (Fig. 1). 

Storage modules are intended for reception of input 

information on two channels of the high speed SpaceFibre 

interface and it’s saving in NAND-Flash memory. Switch 

modules are intended for information transfer between storage 
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modules and for formation of an output flow to Earth via a high 

speed radiofrequency line. 

Basic elements of the storage modules are the memory 

controller (MC) and NAND-Flash memory. Radiation-tolerant 

chip MCT-03D is implemented as a "system on chip" based on 

CPU IP-core with MIPS32 architecture, developed by 

"ELVEES" RnD center. 

Preliminary MCT-03D microprocessor main 

characteristics: 

• Central Processor Unit (CPU): 
- Architecture – MIPS32 compatible; 
- 16 KB data and 16 KB instruction cache with direct 

mapped capability; 
- Memory management unit (MMU): with TLB and 

Fixed Mapped; 
- Multiplier and Divider; 
- FPU ANSI/IEEE Standard 754-1985, “IEEE 

Standard for Binary Floating-Point Arithmetic.”, 
Single and Double precision; 

- JTAG IEEE 1149.1 On Chip Debug Unit; 
- 128 KB RAM; 
- five external interrupt, NMI. 

• External Memory Port (MPORT): 
- Data bus – 32 bit, Address bus – 24 bit; 
- Built-in controller SRAM, NOR Flash, NAND 

Flash, SDRAM; 
- Program configuration type and size blocks of 

memory; 
- separate data buses for both system memory and 

NAND-Flash controllers; 
- Program configuration wait cycle of SRAM; 
- supporting up to 16 banks of NAND-Flash memory; 
- parallel simultaneous writing to four banks (four 

channels) of NAND-Flash memory; 
- technical speed of one NAND-Flash Memory 

Interface channel no less than 33 МB/s;. 

• Peripheral units: 

- Two duplex SpaceWire (ECSS-E-50-12С) ports*, 
from 2 up to 400 Мbod each with built-in the chip 
LVDS transceivers; 

- Four duplex GigaSpaceWire (SpaceFibre or 
SpaceWire-RT for future upgrades) ports*, from 5 
Mbod up to 1.25-2,5 Gbod each with built-in the 
chip CML - compatible transceivers; 

- Two Multifunctional Buffed Serial Ports (MFBSP): 
SPI, I2S, LPORT, GPIO support; 

- Two 4-channels DMA. Flyby mode data transfer 
(ADSP-TS201); 

• Interrupt controller; 
- Two UART (16550); 
- Two 32-bit interval timers; 
- 32-bit Watch Dog timer. 

• Additional features: 
- “Radiation  Tolerant” 120MHz ASIC for space 

applications (CMOS, “RadHard by design” 
process); 

- several built-in the chip PLL; 
- Internal and external memory Error correction: 

single error correction and double error detection by 
the Hamming code; 

- Power saving Modes; 
- Development and debugging tools: МСStudio-3М; 
- C, C + + compiler; 
- OS LINUX 2.6.36 and RTOS uOS support. 

• Package: CQFP-240; 

• ASIC status: experimental IC will be implemented by 
ELVEES in 2013-2014. 

Test samples (prototype) of the МСТ-03D chip (Fig. 2) 

without built-in silicon 4-channels gigabit router (МСТ-03P 

with one gigabit port) are designed for 0.18 µm design rules 

and manufactured at the Russian factory [7].  

NAND-Flash memory is based on modules commercially 

available from 3D PLUS [8]. The OMSD consisting at 15 

storage modules has total capacity up to 1 Tbytes. 

III. MAIN CHALLENGES 

The main tasks in the development of storage device are 

managing the distribution of stored information, ensuring its 

integrity during transmission and storage. 

The problem of data distribution occurs due to the limited 

memory amount of a single memory module and multi-channel 

structure of the storage device as a whole, with all its channels 

operating independently of each other. This problem can be 

solved by sharing of switching modules and a common file 

system of storage device. The task of switching modules will 

include the management of information flows redistribution 

among storage modules in accordance with the file table (i.e. 

issuing commands to memory controllers). The task of the 

memory controller is sending/receiving the information and 

data exchange with NAND-flash modules (i.e. the 

transformation of logical addresses in the files table to 

corresponding physical memory addresses in a specific storage 

module). 
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Fig. 3. View of the 3D storage module. 

 

 
Ensuring the integrity of stored information during 

transmission (or reading) will be made by using the mechanism 

of jamfree coding. This may be a Reed-Solomon code, which 

allows to identify and correct multiple errors in blocks of 

information. This justified by the fact that the NAND-flash 

memory cell are subject to wear and damage during operation. 

This could affect the reliability of a previously recorded 

original information. Also heavy charged particles may affect 

the state of memory cells. Studies show that the algorithmic 

processing reduces the chance of error in the decoded 

information to values almost comparable with the use of 

specialized radiation-tolerant memory. Ensuring the integrity of 

information in the memory controller is through the use of 

radiation-tolerant MCT-03D processor and the Hamming code 

protected RAM. To ensure even wear of all memory blocks in 

memory module, the memory controller will implement their 

alternation when writing or erasing, and detect bad blocks. 

Replacing bad blocks with the new ones will come from 

reserve, which have already been laid by the manufacturer of 

flash-memory chips in production. 

Memory controller will also implement a special 

accelerated procedure that verify the array of NAND-flash after 

power-on or after the filing of a special command to the 

memory controller. Full storage device efficiency (keeping the 

rate of information exchange) at failure to 25% of the total 

number of NAND-flash physical blocks is expected to achieve. 

Procedures of memory blocks alternating and exchange will 

take place automatically, providing storage reliable operation 

with maintaining the required amount of flash-memory. For 

algorithms and IP-blocks development of these procedures the 

participation of the St. Petersburg University of Aerospace 

Instrumentation  (SUAI) is involved. 

Separate microprocessor’s housing CQFP-240 takes a lot of 

space on a board, in size comparable to two memory modules. 

Therefore a further step in the development of the developed 

OMSD we see in increasing of its elements integration, in 

particular, the establishment of “memory controller - NAND-

flash” microassembly (Fig. 3). 

 
This will significantly reduce the size of the storage module 

by integrating the microprocessor’s die to the NAND-flash 

memory module, which will be achieved through the use of 3D 

PLUS State-of-the Art stacking technology [9]. 

IV. 3D PLUS STACKING TECHNOLOGIES 

3D PLUS State-of-the Art stacking technologies for SiP 

(System In Package) allow us to bring the best standard 

semiconductor devices and technologies in one single highly 

miniaturized package. The maximum dimension of the 3D 

microassembly will be 35 mm x 35 mm x 11 mm (L x l x h) 

(Fig.4). 

The electronic parts in the stack of the microassembly will 

be the MCT-03D in bare die developed by ELVEES RnD 

center, 64 GByte NAND-flash already Space Qualified from 

3D PLUS, some glue logic and the passive components 

(resistors and capacitors). 

A System-In-Package (SiP) consists of a number of 

dissimilar integrated circuits enclosed in a single highly 

miniaturized package. The SiP performs all or most of the 

functions of an electronic system, and, it can contain several 

silicon components (bare die or package) and passive 

components. 

Key features: 

• very small form factor and low profile (more than 80% 

reductions in size and weight + up-system and in 

service induced benefits); 

• heterogeneous systems : ability to merge different die, 

package technologies (flip-chip, FBGA, SOT, 

SOP,….) and form factors; 

• improved reliability: space qualified stacking 

technology, fewer connectors and solder-joints, rugged 

 
Fig. 4. Application of "memory controller - NAND-flash» 

microassembly. 

 
Fig. 2. МСТ-03P with one gigabit port – the  test sample of the  

МСТ-03D  chip without built-in silicon 4-channels gigabit router. 
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Fig. 5. FLOW 2 SiP Process Flow Chart 

to extremely harsh environments; 

• improved performance: improved speed and signal 

integrity (less parasitic elements); 

• improved flexibility: modular design enables low-cost 

system changes, reduce PWB application routing 

complexity; 

• proven “first time right” design and development 

methodology; 

• recognized turn-key design, manufacturing and test. 

The Flex Process– SiP Stack (Heterogeneous components 

and mixed technology stacks) technology flow of 3D PLUS are 

selected for the design of the microassembly. 

This patented process has the unique capability to stack n-

High any heterogeneous active, passive, Opto-electronics and 

MEMS/MOEMS devices in a single highly miniaturized 

package and with almost no limit for the merging of 

heterogeneous technologies (standard non modified Die or 

packages with different sizes). 

This 3D technology is based on the stacking of electronic 

components (chips, commercial packages, sensors) placed on a 

film layer generally 35mm wide, and so called flex. This 

solution allows testing and screening the components of each 

layer before stacking. This is the key feature for building ‘n’-

High stacks with a very good yield. The flex are then stacked 

vertically and connected together thanks to a vertical 

interconnection technique. 

This technology allows gaining a factor of at least 10 on 

weight and volume of the components comparing to existing 

solutions. This is the most efficient technology for building 

complex System-In-Packages (SiPs). It enables achieving a 

combination that cannot be realized with monolithic System-

on-Chip (SoC) approaches, and it has a lower development cost 

and a faster time to market. This capability domain is 

referenced as FLOW 2 (Fig. 5) and is qualified by European 

Space Agency (ESA) for Space applications. 

3D PLUS has been Capability Approved by European 

Space Agency (ESA) for the manufacturing of 3D stacked 

modules. 

3D PLUS is qualified as category 1 Manufacturer, the 

highest qualification level that can be achieved in the ESA 

specification ECSS-Q-ST-60-05C. 

V. CONCLUSION 

There are plans to develop transmission rates of serial I/O 

duplex SpaceFibre transceivers up to 2.5 Gb/s and 6.25 Gb/s 

per channel. It is planned to provide an opportunity to work on 

copper cable with a 50 ohms characteristic impedance and via 

fiber-optic transceivers (FOT on Fig.1). Further extension the 

volume of storage device up to 4 Tbytes is under consideration. 
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Abstract — In the frame of the BepiColombo (BC) programme, 
TAS-I Mila no has developed a Solid State Mass Memory unit 
(BC-SSMM), embedding a SpW network, based on 10 AT7910E 
SpW router ASICs, connecting 3 internal SpW nodes (Memory, 
Supervisor A and Supervisor B) to the external ones (9 P/L 
Instruments, 2 Transfer Frame Generators, On-Board 
Computer, EGSE). The BC-SSMM behaves as the data exchange 
centre for the other avionic units of the platform, all interfaced 
through SpW links (nom. and red.). It implements the RMAP 
protocol (ECSS-E-ST-50-52C) for router configuration and 
monitoring, the CCSDS packet transfer protocol (ECSS-E-ST-
50-53C) for storage and retrieval of CCSDS packets and a 
mission specific protocol supporting the exchange of multiple 
CCSDS packets as cargo of a single SpW packet. The 
BepiColombo platform is the first flying programme using SpW 
standard also for the C&C link with the OBC, traditionally based 
on other mature standards (e.g. Mil 1553 stdbus). Time code 
distribution supports On Board Time (OBT) synchronisation, 
replacing the harness needed to distribute dedicated pulse 
signals. BC gives the opportunity to test the compliance of the 
AT7910E SpW router ASIC with the ECSS-E-ST-50-12C and to 
identify important and handy improvements. It also allows to 
verify the performances of the SpW network, in term of 
collisions, stalling, routing latency and throughput, in relation to 
the policy used for logical address mapping and other network 
configurable features management (timeouts, autostart…etc.). 
The SpW network is the support to all the higher layer functions 
implemented inside the BC-SSMM (e.g. PUS services as per 
ECSS-E-70-41A). A lack inside ECSS-E-ST-50-12C about 
connectors is finally highlighted. 

I. SCENARIO 

The typical application scenario for the BC-SSMM is a 
multi-instrument/payload satellite where several independent 
Users provide data, organized in CCSDS source packets, to be 
stored on-board into files (named packet stores – PS) and then 
retrieved, according to the storage and retrieval criteria 
defined in the Packet Utilization Standard (ECSS-E-70-41A). 
The BC-SSMM features SpW I/Fs with 9 Payload Instruments 

(P/L), the On-Board Computer (OBC) and 2 Telemetry 
Format Generators (TFG), plus an EGSE SpW I/F to support 
spacecraft assembly integration and test (AIT) on Ground. 

The I/O SpW data links and their cross-strap philosophy 
are shown in Fig. 1. Each P/L, OBC and TFGs can 
independently operate with either its nominal or redundant 
SpW I/F at a rate between 10 and 100 Mbps, though in 
BepiColombo most of these I/Fs run at 10Mbps. 

The SSMM exchanges, through these SpW I/Fs, CCSDS 
packets that can either be TC (from OBC to SSMM, or from 
OBC to P/Ls through SSMM), or TM (from P/Ls and OBC to 
SSMM, or from SSMM to TFGs and OBC). Each TM or TC 
is transferred as cargo of a SpW packet as per ECSS-E-ST-50-
53C.   
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Fig. 1.  BC-SSMM SpW links input/output cross-strap philosophy 
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An exception is represented by non-science CCSDS packets, 
already collected by the OBC but addressing Ground; many of 
these CCSDS packets become the cargo of a SpW packet sent 
from OBC to the Supervisor (SUP). These packets carry in 
their header a protocol identifier=240, specifically used for the 
BepiColombo application (as per ECSS-E-ST-50-51C). 
Another exception is represented by the TM packets towards 
TFGs, each embedded as cargo of a single SpW packet with 
only one destination address octet used to represent the down-
link Virtual Channel it is transmitted to. 

II. ARCHITECTURE 

The SSMM features a self-redundant and Single Point 
Failure (SPF) free architecture, shown in Fig. 2, consisting of: 

• Supervisor modules A/B (managing all the BC SSMM 
operations) each embedding a Supervisor SpW node 
and  a SpW router 

• Memory Array of 3 Memory Modules (MM) as 
required by mission capacity (384 Gbit EOL) and 
reliability 

• Input modules A/B (managing data storage) 
• Output modules A/B (managing data retrieval) 
• SUP DC/DC Converter modules A/B each supplying 

the associated (A or B) Supervisor module 
• MEM&IO DC/DC Converter modules A/B supplying 

(through an SPF free OR) the MMs and the I/O 
modules. 

Redundant functions A and B are housed on separate 
PCBs. Any combination of “A” and “B” functions is possible 
except for the Supervisor Module and SUP DC/DC Converter 
Module; for these last only the A-A or B-B combinations are 
possible. Any single failure can affect an I/O router of the 
cross-strap, or the “A” or “B” part of an internal function; the 
failure remains isolated inside the affected function or router. 
After recovery of the first failure the SSMM is still fully 
operational. 

Each Input module embeds 3 SpW routers and 1 Write 
Controller FPGA (WRC-FPGA - ACTEL RTAX2000) which 
handles storage of the incoming CCSDS packets into the 
destination PSs inside the MMs. Each Output module embeds 
1 SpW router and 1 Read Controller FPGA (RDC-FPGA - 
ACTEL RTAX2000) which handles retrieval of the outgoing 
CCSDS packets from the source PSs inside the MMs. From 
SpW viewpoint the 3 MMs and the 2 I/O modules (without the 
8 SpW routers) act as a single SpW node, linked to the parallel 
ports of the associated 8 SpW routers. 

Each Supervisor Module hosts a processor core 
(ERC32uP, PROM, EEPROM, RAM) running the application 
software (SW), 1 SpW router and 1 FPGA (OBT&C&C-
FPGA - ACTEL RTAX2000), buffering I/O data to/from the 
SpW network. From SpW viewpoint the processor core and 
the OBT&C&C-FPGA act as a single SpW node, called the 
supervisor node, linked to the parallel ports of the associated 
SpW router. 

Therefore the SSMM embeds 3 SpW nodes (supervisor A, 
supervisor B, and the combined MM & I/O modules) and 10 
SpW routers, interfacing the 12 external SpW nodes (plus the 

EGSE) and providing internal routing paths to allow packet 
switching between any couple of internal and external nodes.  
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Fig. 2.  BC-SSMM block diagram. 

Each of the 3 internal nodes is separately supplied; one 
supervisor node behaves as master and supervises all the 
memory node operation, while the other supervisor can be 
activated in service mode only and doesn’t interact with the 
memory node and with the master one; the memory array can 
therefore save the stored data and file system data even when 
the master supervisor is switched-off. 

The WRC-FPGA of the BC-SSMM splits incoming 
CCSDS packets (of 4112 bytes max) in segments before 
recording, while the RDC-FPGA reassembles outgoing 
CCSDS packets after segments retrieval (128 bytes/segment 
max.). 

Storage and Retrieval of packets occurs in a wormhole 
fashion through the WRC/RDC-FPGA, from/to a SpW link, 
to/from the PSs of the Memory Array; therefore the 9 users 
and the 2 TFGs can concurrently and randomly access the 
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same memory module without latencies, via small temporary 
buffers inside the WRC and RDC-FPGA. This ensures that the 
max I/O throughput can be achieved under any random traffic 
condition even when all the I/O accesses are concentrated onto 
one MM of the Memory Array. 

Therefore the I/O module relieves the SW running on the 
operational supervisor from any overhead due to 
storage/retrieval of packets into/from (the PSs of) the Memory 
Array. Dynamic SW intervention is limited to allocation of 
memory areas needed for the ongoing storage/retrieval 
operations (typically assignment of sectors to be written/read 
for each involved PS). The Application SW higher layer 
functions implement the data storage according to PUS service 
15 and the data retrieval according to PUS service 13 and 15. 
Data storage is done routing each packet to a PS according to 
its application process identifier (APID). An exception is the 
storage of P/L non-science packets which is done into a single 
cache PS according to the logical address; the same applies for 
the storage into the PS used as destination of a copy operation. 

Figure 3 shows the open BC-SSMM,  while Fig. 4 shows 
the actual BC-SSMM PFM. 
 

 

 
 

Fig. 3.  BC-SSMM PFM open box view 

 

Fig. 4.  BC-SSMM Proto Flight Model. 

The BC-SSMM consists of 9 boards, plugging into a 
passive motherboard as follows: 

• 1 board for each MM � 3 boards 
• 1 board housing 1 I/O module (A/B) � 2 boards 
• 1 board housing 1 (A/B) Supervisor module � 2 

boards 
• 1 board housing 1 SUP DC/DC Conv. and 1 MM&IO 

DC/DC Conv. � 2 boards. 

III.  THE BC-SSMM SPW NETWORK 

A. Topology & Mapping 

The network topology is the best compromise satisfying 
the user requirements in terms of performances (i.e. overall 
data throughput=~60Mbps, latency<10ms) and budgets 
(mass<12Kg; power consumption<60W; dimension LxWxH= 
340x282x251mm; reliability=0,994 over 7,5 years). It is not 
based on a common scheme (e.g. tree, ring, star, grid based tor 
etc), but has the purpose to ensure that each SpW node (P/Ls, 
OBC, TFGs and the 3 internal ones) can operate its I/O data 
without suffering the I/O operations of the other nodes; 
indeed, in the BepiColombo scenario, the BC-SSMM can 
simultaneously sustains the following packet flows: 

• Science TM packets from 9 P/Ls to memory 
• TC packets from OBC to 9 P/Ls 
• P/L non-science TM packets from 9 P/Ls to memory 

(these include event packets, acknowledge (ACK) 
packets to Ground telecommands and ACK packets to 
OBC telecommands; they are all accumulated into a 
cache PS for later sorting) 

• Non-science TM packets from memory to OBC (these 
are the event and ACK packets of the previous point; 
OBC sorts its own packets and assembles multiple TM 
packets (4112-byte) for Ground into single SpW 
packets sent to the master supervisor, which then 
disassembles them and sends the elementary non-
science TM packets to memory for later down-link 

• Multiple non-science packets from OBC to the master 
supervisor (these include the ACK to Ground 
telecommands of the previous point to be stored and 
later down-linked) 

• Non-Science TM packets from master supervisor to 
memory (obtained after disassembling SpW packets of 
the previous point, each carrying multiple CCSDS 
packets re-transmitted by the OBC) 

• TC packets from OBC to SUP A 
• TC packets from OBC to SUP B 
• SSMM TM packets from SUP A to OBC 
• SSMM TM packets from SUP B to OBC 
• TM packets from memory to master supervisor (to be 

assembled by application SW into 4112-byte packets 
named File Data Units  - FDU- as per PUS service 13) 

• TM packets from master supervisor to memory (4112-
byte FDUs as at the previous point) 
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• TM packets (i.e. 4112-byte FDUs of the previous 
point) from memory to the TFG supporting PUS 
service 13 

• TM packets from memory to the TFG supporting PUS 
service 15 

• TM packets from memory to memory (copy 
operations) 

Since most of the packet flows reach the memory node, it 
provides six input ports to sink up to 6 packets at a time from 
the network (i.e. from 12 source nodes via the input routers). 
Conversely two output ports are sufficient to retrieve up to 2 
packets at a time from memory and forward towards the 
network (i.e. towards 5 destination nodes via the output 
routers). Other internal SpW links interconnect the 10 internal 
SpW routers, to provide routing paths to any packet flow. 

Each packet flow is point to point exchanged between a 
couple of SpW nodes.  Though the assignment of more than 
one logical address per node is unusual, each internal node of 
the SSMM is associated to as many SpW logical addresses as 
the number of packet flows it is reached by; this allows the 
identification of the sender and of the packet type in the 
receiving node. 

The assignment of logical addresses (reflected into the 
routing tables of the routers crossed by the corresponding 
packet flow) is such that each packet follows the shortest path 
to reach its destination, minimising collisions with other 
packets. 

Each packet flow can follow more than one routing path 
from the same source node to the same destination node. The 
number of possible routing paths depends on: 

• the internal redundancy configuration (A or B 
functions) 

• the external (nom or red) SpW I/Fs used by each P/L, 
by each TFG and by the OBC 

• the SpW routers of the I/O cross-strapping which may 
be all operating, or 1 of them failed (8 cases). 

After detection of an internal failure (affecting any A or B 
function, or a SpW router of the I/O cross-strapping), the BC-
SSMM application SW re-programs the routing tables of the 
active SpW routers to reallocate all packet flows in the new 
degraded configuration. Routing tables programming is 
performed by the master supervisor through command/reply 
RMAP packets (as per ECSS-E-ST-50-52C) exchanged with 
each target router, using path addressing. Alternative routing 
paths from supervisor to each target router are available for 
RMAP packets too, to cope with possible failure of any 
intermediate router. 

B. Collisions & Latency 

Each SpW node (the BC-SSMM internal 3, the 9 P/Ls and 
the OBC), generates packets asynchronously with respect to 
the other nodes and therefore collisions may occur. 
Nevertheless the additional wait time due to a collision is well 
tolerated by each SpW node since it cannot take more than the 
transfer time of the longest CCSDS packet (4,1164ms for 
4112-byte on a 10Mbps SpW link without null characters). 
The transfer time is guaranteed by the properly sized TX and 

RX buffer equipping each source and destination node of the 
BC platform; for the SSMM internal nodes: 

• the memory node directly sinks/sources any 
incoming/outgoing packet into/from the addressed PS 

• each supervisor node does the same via 5KB rx/tx 
buffers read and written by the application SW 

Therefore in case two longest packets generated by node A 
and node B,  addressing the same node C, collide at an output 
port of a router, the unlucky packet has to wait 4,1164ms max. 
for the output port to become free. This complies with the 
latency required for the BC platform (<10ms from P/L to 
memory). 

The selected asynchronous approach saves the 
implementation of a synchronization process spread over all 
network nodes (e.g. assigning precise time slots to each source 
node) to prevent collision of packets at any router output port. 

Inside the SSMM, before the first failure of a router or of a 
FPGA, up to 4 packets may collide onto 2 output ports of an 
input router (configured in group adaptive routing mode); the 
last 2 packets shall wait until the first 2 packets free the 2 
output ports. Latency is here to be intended as the wait time 
for the SpW routing path to become free from the source node 
up to the destination node. Once the routing path is free, then 
the packet can be forwarded according to the signalling rate of 
the slowest crossed link. Therefore the actual transfer time of 
a packet through the SSMM is the sum of the latency and of 
the transfer time of a packet through a free routing path. 

With the purpose to minimise collisions, the non science 
packets from the 9 P/Ls to the OBC are stored into a cache PS 
of the SSMM and then forwarded to the OBC rather than 
being wormhole routed towards the OBC. In the former case 
the memory node sinks 6 packets at a time and the collision of 
9 packets onto six output ports allows the 3 unlucky P/Ls pay 
a 1x wait time (<=4,1164ms); in the latter case the OBC 
would sink 1 packet at a time and P/Ls would pay up to 8x 
wait time. Therefore the selected store&forward scheme, 
though complex, prevents that a P/L experiences an excessive 
wait time before transmission of a packet, i.e. the risk to loose 
internally generated data due to overflow of its TX buffer. 

C. Stalling 

Once the routing path from source node to destination 
node is free, additional wait time would be due to the source 
or destination which, in case of failure, causes a packet to stall 
on its routing path. Stalling propagates to all the packet flows 
sharing 1 or more SpW links of their routing path with that of 
the stalled packet, as established by network topology and 
logical address mapping. 

The SSMM, no matter as source or destination, by design 
prevents any stalling unless an internal router or node is 
affected by a permanent failure (hopefully unlikely), however 
recovered via the foreseen switch-over procedure. 
Nevertheless the SSMM is equipped to handle and report to 
the OBC stalling due to the P/Ls. The SSMM doesn’t handle 
stalling due to the OBC (and the TFGs it embeds), but it 
doesn’t hang up and resumes any halted operation as soon as 
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the OBC (i.e. the highest hierarchical level of the BC 
platform) will recover the stalling; in particular: 

• stalling of a TM packet from a P/L towards the 
Memory Array, due to the P/L, is supported by a 
timeout mechanism which, causing a temporary 
disconnection of the P/L SpW link, sets free the path 
towards the Memory Array for the other P/L packets 
colliding onto an output port of the same input router. 
The stalled packet is then received, after the link 
disconnection, in a truncated shape (EEP terminated) 
and stored into the Memory Array. The event is 
reported to the OBC and normal operation immediately 
restarts.  

• stalling of a TC packet from OBC towards a P/L: 
• if caused by the destination P/L (i.e. the P/L sinks 

no more data), is supported by the timeout 
mechanism of the input routers, configured in 
“Watchdog Timer” mode, which flushes 
automatically the stalled packet; then an event is 
reported to the OBC. After packet removal the 
OBC can forward a subsequent TC packet either 
to the SSMM or to the P/Ls. 

• if caused by the source OBC (i.e. the OBC sources 
no more data), can be recovered only by the OBC. 
If a copy operation (memory to memory) is 
running in background, then it stalls too together 
with all the other retrieval operations from 
Memory to TFGs, to OBC (non-science packets) 
and to master supervisor (packets for FDUs 
assembly). Though the timeout mechanism of the 
input router truncates (with an EEP) the TC packet 
forwarded to the P/L, no timeout mechanism is 
configured in the supervisor router and output 
routers to ensure consistency of the ongoing 
operations, which are immediately resumed as 
soon as the OBC will remove the stalled packet. 

• stalling of a TC packet from OBC to SSMM, due to 
the source OBC, can be recovered only by the OBC. 
The stalling has no effect on other packet flows, since 
it affects only the SpW link between the SSMM and 
the OBC. 

• Stalling of a TM packet towards the OBC, due to the 
destination OBC, halts the ACK TM from Supervisor 
to OBC, together with all the other retrieval operations 
from Memory towards TFGs, OBC (non-science 
packets), master supervisor (packets for FDUs 
assembly) and Memory (copy). No timeout mechanism 
is implemented to ensure consistency of the ongoing 
operations which are immediately resumed as soon as 
the OBC will remove the stalled packet. 

• Stalling of a TM packet from Memory Array to the 
TFG supporting service 13 Virtual Channel (VC), due 
to the destination TFG, halts the background operation 
inside the SSMM (i.e. file copy and FDU assembly). 
As the TFGs are part of the OBC, it is up the OBC to 
remove the stalled packet (e.g. by disconnecting the 
TFG link) 

• Stalling of a TM packet from Memory Array to the 
TFG supporting service 15 VC, due to the destination 
TFG, halts the non-science packets from the Memory 
Array to OBC. As the TFGs are part of the OBC, it is 
up the OBC to remove the stalled packet (e.g. by 
disconnecting the TFG link). 

In all cases stalling due to OBC or TFGs doesn’t affect 
storage of science packets. Conversely if the OBC stalls for 
more than ~3sec while sinking non science packets retrieved 
from the cache PS, this last may overflow and subsequent 
non-science packets generated by the P/Ls are discarded (but 
no stalling on any P/L SpW link occurs).  

D. Throughput 

The average input net data rate (=stored bit/sec) from the 9 
P/Ls is expected to be ~50Mbps. The SpW signalling rate is 
set at 10 Mbps for 8 P/Ls and 100Mbps for 1 P/L. Since the 
input module multiplexes the 9 P/L SpW links onto the 6 
parallel ports of the active WRC-FPGA, it is able to sink 6 
packets at a time, 5 at 10mbps and 1 at 100Mbps, equivalent 
to a peak net input data rate of 120Mbps which can be 
continuously sustained from the input SpW links up to the 
SDRAM ICs of the addressed MMs. 

The average output net data rate (=retrieved bit/sec) is 
limited by the actual sink rate of each destination node. It is 
expected to be ~1,5Mbps towards the 2 TFGs, as limited by 
the down-link RF bandwidth. The SpW signalling rate is set at 
10 Mbps for both TFG SpW links; the available net output 
data rate towards the 2 TFG SpW links (16Mbps) is never 
reached (except at TFGs’ reset when their input buffers are 
still empty). 

Therefore the SSMM throughput on the retrieval path 
provides a large margin with respect to 1,5Mbps; this margin 
is used to retrieve packets in background towards the internal 
memory (for copy), towards the master supervisor (for FDU 
assembly as per PUS service 13) and towards the OBC (for 
non-science packets). The available net retrieval data rate 
towards internal destination nodes is 16Mbps and is fixed by 
the single internal SpW link from the output router to the 
supervisor router running at 20 Mbps (as it occurs for all the 
internal SpW links). 

The retrieval of packets for background operation (copy 
and FDU assembly as per PUS service 13), is interleaved 
(through the same RDC-FPGA output port linked to an input 
parallel port of the output router) with the retrieval of 4112-
byte FDUs towards the TFG supporting service 13. The 
retrieval of an FDU takes from 47ms to 82ms (when the bit 
rate of the TFG supporting PUS service 13 varies from 700 to 
400 Kbps); this is not critical for the background operations 
which lock their average retrieval rate at 2x the TFG rate, 
though transferring each packet at 16Mbps (without null 
characters). 

The retrieval of non science packets from the cache PS 
towards the OBC (flow controlled at 57 pkt/250msec to 
prevent problems with the OBC central SW) occurs at 8Mbps 
(i.e. the OBC net sink rate) with high priority through the 
other RDC-FPGA output port shared with the packets towards 
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the TFG supporting service 15.  The throughput on the 10 
Mbps SpW link between SSMM and OBC is limited by the 
capability to sink/source packets of the application SW 
running in both units. SSMM stand-alone test with all the 
SSMM SpW links running at a 100Mbps SpW signalling rate 
has been successfully performed. 

IV.  AT7910E SPW ROUTER ASIC EXPERIENCE 

The SpW Router has demonstrated to be a well conceived 
and robust design. The BC-SSMM, exploiting its routing 
capabilities, features now performances (mass, power 
consumption, reliability….) which could have been never 
reached with alternative state of the art devices. The 
application SW of the BC-SSMM doesn’t suffer any overhead 
due to the routing of packets to/from P/Ls and towards TFGs, 
since it handles only the SpW packets sunk /sourced by the 
master supervisor SpW node. 

Nevertheless the experience of TAS-I Milano has 
highlighted few minor problems solved with a work-around 
and few nice to have improvements which would have 
simplified the BC-SSMM development; in particular: 

• a true data sheet of the device is still missing, though 
this lack is partially compensated by the user manual 

• the initial signalling rate of a SpW output port may not 
be 10Mbps, unless 10 Mbps is initialized inside the 
corresponding port control register 

• the following features, though useless for applications 
with stand-alone remote routers, would be welcome for 
any unit embedding routers controlled by a host 
microprocessor: 
• a dedicated interrupt pin, asserted each time an 

error is sensed on a router port (with mask 
capability) 

• possibility to read/write from/into any internal 
register without any RMAP packet exchange (e.g. 
via a host interface obtained by combining the 
current Status Interface and Time-code Interface) 

• option to automatically append the CRC octets to 
each RMAP packet injected into the parallel port 
and addressed to the same router or to other 
routers of the same SpW network. 

V. SPW STD CONNECTOR 

The ECSS-E-ST-50-12C doesn’t deal with SpW cables 
linking two SpW nodes placed in two locations  “A” and “B”, 
physically separated by an intermediate barrier “C” as it 
occurs for: 

• a unit in a thermal-vacuum chamber linked to an 
external test equipment during AIT on Ground 

• two units of the same satellite platform with a wall in 
between. 

A SpW link like this consists of three main sections: 
• the cable from “A” to the left side of “C”  
• the wiring through “C”  
• the cable from the right side of “C” to “B”  

The 9-contact micro-miniature D-type (MDM) connector 
is not suitable for both sides of “C” since in case the 4 shields 
of the twisted pairs would be tight to pin 3 of the MDM 
connector (on each side of  “C”), the signal grounds of the 
SpW nodes “A” and “B” would be shorted together through 
the link. This contrasts with figure 5-3  in chapter 5.4 of the 
ECSS-E-ST-50-12C std. 

With the purpose to maintain separation of the 4 inner 
shields, still matching the 100 Ohm cable impedance also 
through the intermediate barrier (the shield of each twisted 
pair has been tight to 8 or 9 contacts around the 2 contacts of 
the associated differential signal), TAS-I Milano developed a 
specific SpW cable, terminated on one side with a 9-contact 
MDM connector and on the opposite side with a 44-contact 
high density connector, as shown in Fig. 4. 
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Fig. 5.  BC-SSMM specific SpW cable for  Thermal Vacuum Chamber. 

The BC-SSMM tests in the TV chamber have been 
successfully performed up to 100Mbps using two cables like 
this (1,5m + 5m) for each SpW link connecting the internal 
SSMM to its external test equipment. 

VI.  CONCLUSION 

The use of the SpW standard is becoming widespread over 
many programmes, though often limited to the implementation 
of point to point interconnections replacing alternative 
solutions (e.g. RS-422, Mil1553-std…..etc.). Conversely the 
BC-SSMM is the first representative implementation of an 
actual SpW network with routers and nodes fitting the purposes 
of the ECSS-E-ST-50-12C. The flexibility of a design based on 
a SpW network, is confirmed by the immediate reuse of the 
BC-SSMM in Solar Orbiter, applying little adjustments to 
house one more instrument and to map additional packet flows. 
The SSMM internal SpW network is also suitable to implement 
additional services like the CCSDS File Delivery Protocol 
(already implemented as customization of PUS Service 13 and 
15). 
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Abstract—The topology of an onboard computer network 
is determined by the physical location of nodes (sensors, 
computer modules, databases, etc). Data flows in network 
are determined by a sender and receiver pair (or set of 
receivers in case of multicasting). A packet flow could be 
organized through a number of intermediate switches. 
Time division multiple access allows several users to share 
the same channel by dividing their channel access time 
into different time slots.  Operation of a network is 
managed by a schedule that defines which node is allowed 
to initiate a transmission at any particular time. This table 
shall be compiled on the one hand to prevent conflicts in 
the network resources usage, and on the other hand to 
utilize the resources as the highest level as possible. The 
aim of the work presented in this paper is to develop a 
method of finding the best routes for all data flows in a 
network and compiling an optimal schedule table, which 
guarantees deterministic data transmission. 

Index Terms— SpaceWire-D, Scheduling 

I. INTRODUCTION 

Nowadays time-scheduled protocols over SpaceWire [1] 
(SpaceWire-D [2], SpaceWire-T [3]) are actively discussed and 
developed. These protocols can be developed as a network 
service running at existing SpaceWire equipment [8]. 
Deterministic data delivery with predictable characteristics is 
achieved by using time-division multiplexing, that is managed 
by a schedule table. SpaceWire-D provides several types of 
schedule table, but does not offer any algorithm of constructing 
such a tables. By routing data streams through one or another 
path using different intermediate switches different scheduling 
tables with discrepant characteristics would be obtained. 

II. GRAPH COLORING APPROACH TO SOLVE SCHEDULING TASK 

In the graph theory, graph coloring is a procedure of the 
assignment of labels traditionally called "colors" to the 
elements of the graph, in such a way that no two adjacent 
vertices share the same color [5].  The chromatic number of a 

graph G is the smallest number of colors K needed to correctly 
color all the vertices of G, i.e. the smallest value of k possible 
to obtain a k-coloring. 

Scheduling task can be referred to vertex coloring task. 

Consider n data flows N
iiJ )1(}{ − and competition 

matrix }{ ijmM ≡ , where ijm  is equal to one if iJ competes 

with jJ , and to zero otherwise. Representing every flow iJ  

with node iA  and connect with undirected edge ije  nodes iA  

and jA  if 1=ijm , schedule table making task can be 

considered as a coloring task for graph G  witch consist of 

nodes N
iiAGV )1(}{)( −≡  and edges }{)( ijeGE ≡ . Minimal 

value of time-slots, required for deterministic schedule 
organization, is equal to the chromatic number )(Gk of a 

graph G [6]. 

Examine a the network shown in Fig. 1. This network 
consists of five nodes and includes five data flows defined in 
table I. 

 
Fig. 1 Example network 
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TABLE I.  CORRESPONDENCE BETWEEN FLOWS AND NODES 

Flow Source Destination 

1X  a b 

2X  a c 

3X  a d 

4X  b d 

5X  c e 

A competition matrix for this data flows is presented in table 

II. In this example flow 1X  competes with flows 2X  and 

4X , flow 2X  competes with flows 1X  and 5X  etc. 

TABLE II.  SAMPLE OF COMPETITION MATRIX 

 X1 X2 X3 X4 X5 
X1 * 1 0 1 0 
X2 1 * 0 0 1 
X3 0 0 * 1 0 
X4 1 0 1 * 1 
X5 0 1 0 1 * 

This competition matrix can be interpreted as adjacency 
matrix for a new graph H. The result of coloring procedure for 
this graph H is shown in Fig. 2. For given example coloring is 
absolutely trivial and chromatic number is two. The network 

resources are allocated for data flows 1X , 3X  and 5X  in 

first time-slot and for data flows 2X  and 4X  in the second 

time-slot.  

 
Fig. 2 Competition matrix colored graph 

III. COLORING 

During our work we studied and developed several 
algorithms for graph coloring. 

A. Greedy coloring 

A greedy coloring is a coloring of the vertices of a graph 
formed by a greedy algorithm that considers the vertices of 
the graph in sequence and assigns to each vertex an available 
color. Generally, greedy colorings do not use the minimum 
number of possible colors, however they have been deployed 
in mathematics as a technique for proving other results about 
colorings as well as in computer science as a heuristic to find 
colorings with few colors. 

B. Liquid scheduling 

The capacity of a network can be called as its liquid 
throughput. The liquid throughput corresponds to the flow of a 
liquid in an equivalent network of pipes. E. Gabrielyan and 
R.D. Hersch [7] proposed to schedule the data flows of a 
network in accordance with a schedule yielding the liquid 
throughput. Such a schedule called liquid schedule takes into 
account the underlying network topology and ensures an 
optimal utilization of all bottleneck links. In order to build a 
liquid schedule the traffic is partitioned into time slots 
comprising mutually non-congesting flows which keep all 
bottleneck links busy during all time slots. The search for 
mutually non-congesting flows utilizing all bottleneck links is 
of exponential complexity. An efficient algorithm presented in 
[7] traverses the search space non-redundantly and limits the 
search to only those sets of flows, which are non-congesting 
and use all bottleneck links. 

C. Heuristic coloring with QoS requirements 

Time division of a bandwidth guarantees deterministic 
delays, but it is very important to predict throughput as well as 
transmission delays. Greedy coloring and liquid scheduling 
don't take in mind any throughput requirements for data flows, 
so we developed an algorithm that builds scheduling table 
based on several QoS requirements. Several steps are 
performed to reduce a search tree of the NP-complete brute-
force problem: 
1. Find all possible routes for all data flows. Different routes 
can use different switches and channels. 

,...,, 321 iiii RRRX =  

2. Group non-congesting routes with close transmission times 
(Fig. 3) 

,...,, 131 kji RRRG =α  

 
Fig. 3 Grouping routes 

This grouping consists of two stages: 
• Calculating  transmission time for all data flows through all 
routes with formula above: 
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where: N  is the number of transit channels, id  is the length 

of channel i , ic  is the propagation speed of transmission 

medium of channel i , im  is size of buffer in switch i , iTω  

is the processing time in switch i , iTb  is the blocking time in 
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switch i , L  is the length of packet in bits, and bt is the one 

bit transmission time in channel i . iTb  considered to be zero 

at SpaceWire-D. 
• Calculating normalized transmission time for all data flows 
through all routes: 

)max( 1
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where '
it  - normalized transmission time for route i . 

• Calculating normalized average transmission time for all 
data flows: 
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• Creating groups, using breadth-first search. Resulting 
groups must not compete one with other and satisfy next 
condition: 

averageji Ttt ≤− ''  

3. Form a schedule table from a set of groups, using one group 
as one time-slot.  Breadth-first or depth-first search are used to 
find acceptable for all QoS requirements schedule table.  

 
Fig. 4 Schedule table creating 

IV. SOFTWARE 

A software tool "Network TDMA Scheduler" implements 
the algorithms described above. It has GUI (Fig. 5) and allows 
compiling schedule table and predicting time characteristics of 
the obtained schedule.  

The workflow consists of the following steps: 
1. Creating a network with one of several ways: 

• drawing with build-in primitives, 
• loading from a XML file, 
• using build-in network generator with several 

topologies: star, tree or ring. 
2. Defining data flows with one of several ways: 

• choosing by hands, 
• loading from XML file, 
• using build-in random generator. 

3. Calculating a network schedule with one of the 
coloring  algorithms.  

4. Computing characteristics of the obtained schedule. 

 

 
Fig. 5 Network TDMA Scheduler interface 

All schedule tables, compiled with the algorithms 
examined above, have some characteristics that affect network 
performance. The time-slot length, the number of time-slots in 
the epoch, and the number of data flows transmitted during 
one time-slot are related to the schedule table characteristics. 
A packet transfer delay and the aggregate throughput are 
related to the network characteristics.  

The aggregate network throughput can be calculated as 
following: 

∑
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tL
s

0

)(
 

where: k  is the number of streams, t  is the number of 

time-slots assigned to the stream i , E  is the epoch length in 
sec. 

Build-in network generator allows creating networks with 
star, tree or ring topologies. Automated tool permits compute 
different network characteristics on dynamic topologies. Fig. 6 
shows growth of aggregate throughput on dynamically scaling 
ring network. At first step the network consists of 4 switches, 
8 nodes and 4 data flows between nodes. At every new step 
one switch, two nodes and two data flows are added to the 
network. Aggregate throughput of the network at each step is 
shown at Fig. 6, Fig. 7 shows number of time-slots (lower 
values are the best). 
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Fig. 6 Aggregate throughput of network 

 
Fig. 7 Number of Time-Slots 

Liquid schedule gives results close to results by heuristic 
coloring as it is seen above, but it is important to remember 

that such QoS requirements as throughput and latency can be 
guaranteed only by heuristic coloring. 

V. CONCLUSION 

In the paper the task of deterministic data transmission 
with guaranteed delivery time in SpaceWire network was 
studied, methods of scheduling tables construction for 
networks with time division multiplexing were reviewed. 
Algorithms of compiling such tables were proposed. A 
software tool "Network TDMA Scheduler" implements the 
algorithms described above. It allows compiling schedule 
table and predicting time characteristics of the obtained 
schedule. All schedule tables, compiled with the algorithms 
examined above, have some characteristics that affect network 
performance. The time-slot length, the number of time-slots in 
the epoch, and the number of data flows transmitted during 
one time-slot are related to the schedule table characteristics. 
These characteristics were studied for several networks with 
standard topologies, advantages and disadvantages of 
algorithms were discovered. 
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Abstract—SpaceWire is becoming more and more popular in 

space applications due to its technical advantages, including 

reliability, low power and fault protection, etc. SpaceWire 

networks also provide an efficient approach to connect on board 

equipments and function units. Yet, comparing with widely 

deployed terrestrial network protocols such as Ethernet, it is 

difficult to develop software for SpaceWire buses since it is 

relatively a new type of network. Therefore, it will be very useful 

if the SpaceWire interfaces can be regarded as common network 

interfaces.  

Towards this end, in this paper, we propose vSpWNet, a new 

network device driver framework to build virtual SpaceWire 

Network Interfaces. vSpWNet consists of several routines, 

including the SpaceWire hardware access encapsulation 

functions, Network frame packaging and unpacking functions, 

packets encoding and decoding functions, etc. 

We have integrated our proposed vSpWNet into the protocol 

stack of VxWorks. Experimental results show that, our proposed 

vSpWNet platform performs well in a real OBC board. 

Moreover, our vSpWNet approach can be ported into other 

Operation Systems, including RTEMS, eCOS, etc. 

Keywords— SpaceWire, vSpWNet, VxWorks. 

I. INTRODUCTION 

SpaceWire
[1,2]

 is a spacecraft communication network 

based in part on the IEEE 1355 standard of communications. It 

is coordinated by the European Space Agency (ESA) in 

collaboration with international space agencies including 

NASA, JAXA and RKA. Within a SpaceWire network the 

nodes are connected through low-cost, low-latency, full-duplex, 

point-to-point serial links and packet switching wormhole 

routing routers. SpaceWire covers two (physical and data-link) 

of the seven layers of the OSI model for communications. 

Yet, comparing with the widely deployed terrestrial 

network interfaces such as Ethernet
[9]

, there are very few 

software for SpaceWire buses since it is relatively a new type 

of bus standard
[6,7]

. Therefore, it will be very useful if the 

SpaceWire interfaces can be used as a common network 

interface. 

In this paper, we are the first to propose an idea of 

vSpWNet, a new network device driver framework to build 

virtual SpaceWire Network Interfaces. It can package the 

SpaceWire buses, simulate SpaceWire buses as Ethernet 

interfaces. We named this new network device driver 

framework vSpWNet. In the premise of availability, vSpWNet 

can be ported into other operation system easily, including 

RTEMS, eCOS and so on. 

The implementations of vSpWNet can greatly enhance its 

practicality. Most of the applications based on Ethernet 

interfaces can works on vSpWNet directly. Then, a lot of time 

and energy resources can be saved. 

The problems we need to solve can be summarized as 

follows, 

a) How to package the SpaceWire and simulate it as 

Ethernet interfaces, since SpaceWire buses and 

Ehternet interfaces are quite different. 

b) How to make vSpWNet can be ported into other 

operation system easily, since protocol layer interfaces 

are different on different operation system. 

The rest of this paper is organized as follows. in section II, 

the vSpWNet is proposed. The design of vSpWNet is 

represented in section III. We describe the implementations of 

vSpWNet in section IV. And the test result is shown in section 

V. Finally, we conclude in section VI. 

II. OUR PROPOSED VSPWNET FRAMEWORK 

SpaceWire is becoming more and more popular in space 

applications due to its technical advantages, including 

reliability, low power and fault protection, etc
[3]

. However, 

comparing with the widely deployed terrestrial network 

protocols such as Ethernet, it is difficult to develop software 

for SpaceWire buses since it is relatively a new type of 

network interface while Ethernet network interfaces are already 

very mature. If we develop all the application over again, it 

surely will consume huge resource. Taking all these into 

consideration, we propose vSpWNet. 

vSpWNet is short for virtual SpaceWire network. Fig 1 

shows the position of vSpWNet in OSI
[10]

 model. The 

vSpWNet covers Datalink layer and Physical layer. The 

physical interface is SpaceWire buses and the Datalink layer 

mainly is SpaceWire driver framework. 

By means of vSpWNet, we can use Ethernet in space. That 

way we can not only take advantage of SpaceWire’s reliability, 
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low power, and fault protection but also Ethernet’s large 

amount of mature application software. 

Physical

DataLink

Network

Transport

Session

Presentation

Application

vSpWNet

Device

Driver

SpaceWire

Protocol

 

Fig. 1.  vSpWNet’s structure 

So our main work is the design and implement of vSpWNet. 

III. THE DESIGN AND IMPLEMENTION OF VSPWNET 

In this section, we describe the design and implementation 

of vSpWNet. 

First, we should decide the main structure of vSpWNet. 

Generally, the device driver and network layer connect directly 

as shown on Fig 2. 

Physical 

Layer

Device 

Driver

Network 

Layer

 

Fig. 2.  Physical layer, device driver and network layer 

This is the traditional structure. But it is hard to be ported 

into other operating system. So we add a Vsp layer between the 

device driver and network layer. The new structure is shown in 

Fig 3. 

Device 

Driver
Vsp Layer NetworkPhysical

 

Fig. 3.  the structure of vSpWNet 

The Vsp layer contains the SpaceWire hardware access 

encapsulation functions, Network frame packaging and 

unpacking functions, packets encoding and decoding functions. 

The work models of Vsp layer is shown in Fig 4. 

The SpaceWire buses receive the electric signal and 

convert it into data
[4,5]

. Then the device driver commits the 

packages to the Vsp layer. Vsp layer dispose the packages and 

commit them to the network layer. 

And the sending packet procedure is just the reverse. 

Fig 5 shows the main function interfaces of the Vsp layer. 
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Fig. 4.  The work models of Vsp 
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Fig. 5.  the main function interfaces of the Vsp layer 

There are 14 important function interfaces as follows: 

 VspBind()：bind a network device; 

 VspUnBind()：Unbind a network device; 

 VspDevLoad()：Load a network device drive to the 

operation system; 

 VspDevUnload()：Unload a network device from the 

operation system; 

 VspReceive()：the receive data function; 

 VspError()：return error to the upper layer; 

 VspSend()：the send data function; 

 VspTxRestartRtn()：restart the network device； 

 VspMCastAddrDel()：delete the multicast address; 

 VspMCastAddrGet()：get the multicast address; 

 VspPollSend()：the polling send function; 

 VspMCastAddrAdd()：add the multicast address; 

 VspPollReceive()：the polling receive function; 
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 VspIoctl()：Device settings. 

The Vsp layer separates the network layer and the datalink 

layer and improves the portability of vSpWNet. 

IV. THE EXPERIMENT OF VSPWNET 

We verify feasibility of vSpWNet by experiments and test 

the transmission speed and reliability. 

The experiment is based on VxWorks 5.5
[9]

 operation 

system. VxWorks is a real-time embedded operating system 

developed by WindRiver Company. 

The MUX layer in VxWorks can be mapped to our Vsp 

layer. Fig 6 shows the position of MUX in OSI model.  

Application Layer

Protocol Layer

（TCP/IP）

Socket Layer

（BSD socket）

Vsp Layer

（MUX）

Datalink Layer

（SpaceWire driver）

Physical LayerPhysical Layer

 

Fig. 6.  The position of MUX 

Having to MUX layer, we can develop the network device 

driver easily. Our SpaceWire driver is based on MUX layer 

and its important functions are listed as follows: 

a) Device Loading Function: sysEtherEndLoad 

Device Loading Function is the entrance of every 

network device drivers. Fig 7 shows the flow chart of 

sysEtherEndLoad:  

Initialize 

the data 

structure

Initialize 

the buffer

Register 

the device 

driver in 

VxWorks

Initialize 

the 
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Fig. 7.  The flow chart of sysEtherEndLoad 

b) Device Unloading Function: SPWUnload 

SPWUnload releases all the data structure and 

unloading the device from VxWorks.  

c) Device Start Function: SPWStart 

SPWStart sets SpaceWire buses in work mode. It 

always calls function sysIntConnect to register 

interrupt in VxWorks. Fig 8 shows the flow chart of 

SPWStart:  
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Fig. 8.  the flow chart of SPWStart 

d) Sending Package Function: SPWSend 

When there are packages to send, MUX will call 

SPWSend. Fig 8 shows the flow chart of SPWSend:  
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Fig. 9.  The flow chart of SPWSend 

e) Interrupt Handler Function: SPWInt 

When there is an interrupt, MUX will call SPWInt to 

handle the interrupt. Fig 10 shows the flow chart of 

SPWInt:  
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Call 
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Fig. 10.  The flow chart of SPWInt 

f) Receiving Interrupt Handler Function: 

SPWHandleRcvInt() 

This Function can handle the receiving interrupt. Fig 

11 shows the flow chart of SPWHandleRcvInt:  
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packet lenth

Get the starting 
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packet in the 
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Start to get data 
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Set the new start 

address of the 
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Fig. 11.  The flow chart of SPWHandleRcvInt 

V. THE RESULT OF THE EXPERIMENT 

Before testing, we should build the VxWorks Boot Image 

which integrates the vSpWNet driver. Then we burn it into the 

target board. The test scenario is shown in figure 12: 

After the image loading successfully, we start to test the 

vSpWNet. The experiment shows that it works well. From the 

test results, we proved the feasibility of vSpWNet and it can 

meet most of the application transmission requirements. 
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VI. CONCLUSION AND FUTURE WORK 

In this paper, we studied the advantages and disadvantages 

of SpaceWire buses systematically. Then we came up with the 

idea of vSpWNet and proposed the concept of Vsp layer to 

improve the portability of vSpWNet. Finally, we designed and 

have implemented it based on VxWorks embedded operation 

system. 

From experiments results, it proved that our vSpWNet can 

meet the actual requirements properly. Most of the applications 

based on TCP/IP protocol work well on vSpWNet. So 

SpaceWire will be more easy to use. Moreover, our vSpWNet 

approach can be ported into other Operation Systems, 

including RTEMS, eCOS, etc. 

In the future, we will improve our vSpWNet to make it 

work more efficiently. 
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Fig. 12.  Test Scenario 

ACKNOWLEDGEMENT 

The work described in this paper is partially supported by 

the grants of the National Basic Research Program of China 

(973 project) under Grant No.2009CB320503, 2012CB315906; 

the project  of National Science Foundation of China under 

grant No. 61070199, 61103189, 61103194, 61103182, 

61202488, 61272482; the National High Technology Research 

and Development Program of China (863 Program) No. 

2011AA01A103, 2012AA01A506, the Research Fund for the 

Doctoral Program of Higher Education of China under Grant 

No. 20114307110006, 20124307120032, the program for 

Changjiang Scholars and Innovative Research Team in 

University (No.IRT1012), Science and Technology Innovative 

Research Team in Higher Educational Institutions of Hunan 

Province(“network technology”); and Hunan Province Natural 

Science Foundation of China (11JJ7003). 

REFERENCES 

[1] http://en.m.wikipedia.org/wiki/SpaceWire. 

[2] Glenn Rakow, Richard Schnurr, Steve Parkes, SpaceWire 
Protocol ID: What does It Means to You, Aerospace 
Conference, 2006. IEEE. 2006, 24(6):3~4. 

[3] Sandra G. Dykes, Buddy Walls, Mark A. Jonhson, 
KristianPersson. A Non-Broadcast Address Resolution 
Protocol for SpaceWire Network. Aerospace Conference. 
Washington DC, ACM Press, 2006:4~5. 

[4] TukkaHowkola, Sari Lppanen, Modeling the SpaceWire 
Architecture with Lyra. Proceedings of the Fifth 
International Conference on Application of Concurrency 
to System Design, Los Angeles, 2004. New York, 
IEEECOMPUTER SOCIETY, 2004:10~11. 

[5] R. Marshall, W. Berger, C.Rodgers, Reconfigurable 
Processing Susysterms in Spaceborne Application. IEEE 
Aerospace Conference Proceedings, Big Sky, Montana, 
2004. New York, IEEE CPOMPUTER SOCIETY, 
2004:5~6. 

[6] S.M.Parks, SpaceWire a satellite on board data handing 
network. Aircraft Engineering and Aerospace Technology, 
2001. 

[7] Dr SM Parkes, SpaceWire: SERIAL POINT-POINT 
LINKS, University of Dundee, 2000. 

[8] WindRiver, VxWorks Network Programmers' Guide, 
1999. 

[9] Steven Vaughan-Nichols, The Birth and Rise of Ethernet: 
A History, 2012. 

[10] Douglas E. Comer, Internetworking with TCP/IP-
Principles, Protocols and Architecture, 2006. 

[11] WindRiver, VxWorks Programmers' Guide, 1999. 

 

148



Toolset for SpaceWire Networks Design and 

Configuration 
Session: SpaceWire networks and protocols 

 

Short Paper 
 

Alexey Syschikov, Elena Suvorova, Yuriy Sheynin, Boris Sedov, Nadezhda Matveeva, Dmitry Raszhivin 
Saint-Petersburg State University of Aerospace Instrumentation  

Saint-Petersburg, Russian Federation 

{alexey.syschikov, suvorova, sheynin, boris.sedov, n.matveeva, dmitry.raszhivin}@guap.ru 
 

Abstract— SpaceWire networks design and configuration is a 

complicated design problem that includes a set of different tasks 

to be solved: terminal nodes selection, workload tasks mapping, 

logical channels definition, interconnection topology design and 

switches selection, configuration space settings and routing table 

generation, etc. In design one should take into account many 

characteristics and requirements: terminal nodes performance 

for workload, channels latency and throughput, communication 

system capacity to cover logical channels requirements, etc. 

Every design step and the whole network should also fit into 

other user and technological constraints: area, mass, power 

consumption, heating also. 

Design tasks are complicated; some of them are NP-hard. 

“Manual” design of SpaceWire networks with dozens of nodes 

becomes very complicated, time-consuming and has high 

probability of design errors and misses. 

To deal with the problem a through design flow for SpaceWire 

Networks Design and Configuration has been developed. Toolset 

includes network architecture design tool, communication 

structure forming tool and tool that forms logical structure and 

routing information. All these tools are highly automated and 

produce results corresponding to the defined user requirements 

and technological constraints. Network modeling tool is also 

provided for simulation of network functioning and collection of 

network statistics for investigation purposes. 

IndexTerms— SpaceWire network, automated design, design 

space exploration, SpaceWire configuration 

I. INTRODUCTION 

A network synthesis problem for systems with dozens and 

hundreds of nodes in general case is NP-hard. Nowadays in a 

number of network synthesis methodics affordable 

computation complexity is reached due to significant 

constraints in the problem statement only. 

Some input parameters for SpaceWire network generation 

are determined at the architecture stage on the base of tasks 

parameters. Tasks should be allocated to nodes. The network 

should transmit data packets between source and destination 

terminal nodes with required throughput and timing 

parameters.  

In system level design a network should be generated of 

devices (routers) from a system components library. The 

system components library can include different types of 

routers with various number of ports, mass, power, timing 

parameters. 

The network should also meet user requirements in total 

equipment mass and power, in fault tolerance, considers 

specific requirements based on spatial placement of nodes.  

Network synthesis methodic, such as based on Stainer three 

synthesis [1,2,3,4] and other classical methodics for wireless 

networks synthesis [1,5,6], do not deal with these constraints  

and can’t be used for SpaceWire networks synthesis. 

Development of a SpaceWire network structure 

correspondingly to architecture and others user’s requirements 

are supported by the suggested methodology and developed 

tools. 

II. ARCHITECTURE 

The system design techniques and supporting software are 

based on the design space exploration methodology. This 

approach is productive and is widely used in modern R&D. For 

example, communication architectures with big number of 

channels generate exponentially growing number of possible 

mappings of logical channels to the communication paths in 

the physical structure of the communication network. It makes 

impossible a straightforward exhaustive exploration of 

variants. Interrelation between possible mappings and 

communication protocols characteristics increases complexity 

of actions in design space exploration. 

The proposed instrument is an automated tool for the 

design of SpaceWire networks. 

The methodology of a network structure design includes 

four main stages: 

 Analysis of the workload for the network to be design; 

 Synthesis of the network architecture, including the 

terminal nodes and logical channels; 

 Synthesis of the communication system, including 

switches and physical channels. 

 Synthesis of the Logical Network structure and 

correspondent setting in nodes and switches. 

Design of SpaceWire network architecture is performed 

from a given set of basic system components from a network 

system components library according to user-defined network 

characteristics. 

During forming of the SpaceWire network architecture it is 

necessary to verify the possibility of allocation of computation 

workload to the particular library of system components. To 
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achieve this, the allocation of computing workload to 

synthesized architecture should be done.   

Formed structure should correspond to the user 

requirements: performance, throughput, command transmit 

delay, signal of real time transmit delay, failure tolerance of the 

network, etc. 

The problem is solved with a restricted search. 

Methodology generates a set of possible solutions, which 

includes alternative problem solutions. Search is restricted by 

using a number of criteria for discarding not satisfying 

solutions at each stage. 

The assignment problem for the network synthesis has a 

task graph G as the input data. 

       ,     where 

N –set of graph vertexes, which are computation tasks, 

E – set of graph edges. 

Additionally we define the overall throughput of the 

network input/output ports in each direction (for input and for 

output). 

            ∑                     . 

Task graph vertexes are mapped to the system library 

components and a set of possible solutions is formed. At this 

stage the job is to define the number of nodes of each type and 

allocate task graph vertexes to the SpaceWire network nodes 

(end nodes). The total network characteristics should not 

override the user-defined constraints. 

The allocation of the task graph vertexes on the network 

nodes is represented by the 

                        

                      ( )                 where 

k –total number of nodes in the task graph; 

   –node of the task graph allocated to the node nb of the 

network. 

The function for allocation of a task graph vertex to the 

network node is: 

     (  )            ( )   . 
The function of a network node allocation that defines 

which task graph vertexes are allocate to this network node: 

     ( )  ⋃          ( )           ( )      

Formula for the total weight of the SpaceWire network is: 

       ∑       

 

   

       

k – the total number of nodes in the network; 

       –  thei-the node of the network. 

 

To limit the search space we apply the criteria: 

1. The total weight of the SpaceWire network limit. 

         

 

2. The limit of the throughput of output logical channels 

of the network node. 

The required output logical channels throughput is: 

               
 ∑       

       
              
            

          

        – node of the network. 

The criterium is: 

                      
 ∑           

 

   

 

 

3. The limit of the throughput of input logical channels 

of the network node. 

The required input logical channels throughput is: 

              
 ∑       

      
              
            

          

       – node of the SpaceWire network. 

The criterium is: 

                      
 ∑           

 

   

 

 

4. The limit of the requirement to the network node 

memory. 

        ∑    

       (   )

         

5. The limit of the requirement to network node 

computation resource (processor). 

        ∑             

       (   )

     

 

In the process of possible solutions building the best ones 

are selected with the complex set of minimization parameters. 

 

1. Total requirement for the network throughput. 

      ∑       
       

                 

 

 

2. Maximum requirements for the throughput of network 

node input ports. 

         
      

(              
) 

 

3. Maximum requirements for the throughput of network 

node output ports. 

         
      

(               
) 

 

As a result we get the architecture of a SpaceWire network 

that is based on the computing/communication workload 

requirements and satisfy the user-defined constraints. 
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III. SPACEWIRE NETWORK SYNTHESIS 

We use decomposition of a system to subsytems. 

Decomposition is used for support of spatial constraints and 

specific timing constraints (jitter) for some tasks. It helps also 

to decrease algorithm complexity. 

A. Spatial constrains 

Technology constraints related to spatial placement of 

terminal nodes and specific of cable-laying typically are 

relevant for a spacecraft. Certain groups of devices should be 

placed locally due to their functionality (sensors, locator) or 

structural reasons. Typically quantity of cables that connect 

such group with other parts of the network is strongly 

constrained. 

The methodic takes into account this type of user 

constraints. User can specify such groups of nodes as clusters. 

Our tools generate subnetwork structure for each cluster 

independently (routers of one subnetworks are not used in 

others) and with constrained (required) quantity of 

interconnections to other network parts.  

B. Specific timing constraints 

We use network structure patterns in our methodic for 

specific timing constraints support. 

SpaceWire networks are often used for data transmission 

from sensors to computer or from computer to visualization or 

telecommunication subsystems. Not only packet delivery time 

but jitter is important for these applications also. Therefore an 

appropriate network structure for such subsystems is 

symmetric (that is important for jitter parameter) tree.  

The tool generates symmetric trees of routers from the 

system components library that meet mass and power 

constraints. Adaptive routing can be used for simultaneous 

throughput utilization of some links, which directly connects 

two devices (e.g. in fat trees).  

Such subsystems can include up to 90% of terminal nodes. 

Therefore this approach also allows to essentially decreasing 

the computation complexity of the algorithm. 

At a lower layer of the tree our tool could generate daisy 

chains of nodes (if nodes supports this functionality), to 

decrease hardware cost of the network. 

The tool automatically selects subgraphs in a logical 

interconnection graph, for which tree based subnetworks could 

be generated. 

Others typical for a SpaceWire networks structures are used 

for distributed computing. In the tasks graph such structures are 

usually represented by subgraphs with peer to peer connections 

between tasks. Typical requirement is equal data transmission 

time between all components of a distributed computing 

platform.  

A designer should select subgraphs that correspond to 

distributed computing in a logical interconnections graph 

because rules of such subgraphs detection strongly depends on 

the tasks that are processed in system.  

A good structure for such network fragments corresponds 

to bipartite graphs is Banyan network [7,8,9]. Banyan networks 

provide path with equal length between all nodes from one set 

of nodes from a bipartite set to another set. 

In our methodic Irregular Banyan subnetworks are built of 

routers. The Banyan subnetwork generation algorithm can use 

the adaptive routing to utilise total throughput of some links 

that directly connect a pair of devices (nodes, routers) and 

takes into account requirement of connections with other parts 

of the SpaceWire network. 

Subnetworks for logical interconnections subgraphs with 

peer-to-peer interconnections are generated as Banyan 

networks also. 

A Banyan network in this case should connect not only 

nodes from different sets but nodes from one set with same 

timing parameters of interconnections also. We use coupled 

Banyan networks in what in the left half of the network we 

append interconnections mirrored interconnections of the right 

half; in the right half we append interconnections mirrored 

interconnections of the left half. 

Example of such a network is represented in Fig.1. Black 

lines correspond to interconnections between nodes from 

different sets, gray lines correspond to interconnections 

between nodes from one set. 

 

Fig.1 Example of doubled banyan network 

IV. SYNTHESIS OF LOGICAL NETWORK STRUCTURE 

Synthesis of a logical network structure includes mapping 

of logical channels (created at the architecture synthesis stage) 

to physical paths (in the basic variant of network structure) and 

generation of configuration settings for all terminal nodes and 

routers in the network structure. 

In the developed algorithm, which maps logical channels to 

physical paths, logical channels could be mapped not only to 

shortest paths, by to others paths that correspond to throughput 

and timing constraints.  Usage of the adaptive routing for 

throughput is also considered. 

Further generation of configuration parameters for terminal 

nodes and routers (routing tables’ content, adaptive routing 

mode, and link transmission rate) is performed.  

Link transmission rate is configured correspondingly to 

required throughput and packet transmission time. Adaptive 

routing could be configured for pairs of nodes or routers that 

are directly connected via some links (for throughput). 

Logical addresses of the terminal nodes should be defined 

before the routing table content generation. Our tools assign a 

logical address to every application (task) in a terminal node. 

If the quantity of addresses is more than 224, then the 

regional addressing is used. Regions (or groups of regions) 

correspond to subgraphs that are extracted in the logical 

interconnection graph structure. 
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Routing tables’ content is generated after logical and 

regional address assignment, in correspondence to mapping of 

logical channels to physical paths. 

V. FAULT TOLERANCE SUPPORT 

Hardware redundancy is used for providing fault tolerance.  

Fault tolerance support is realized by to hardware replication 

(routers and links replication). We suggest two types of 

redundancy policy: path replication based and dynamic path 

reconfiguration. 

A. Path replication based redundancy 

If tolerance to N-1 faults is need, the whole SpaceWire 

network structure should include N independent paths between 

source and destination terminal nodes. The whole network 

structure (Fig.2) includes N copies of the basic structure 

(configurations of corresponding routers in all replicas are 

identical). Every terminal node is connected to all replicas of 

the basic network structure. Source terminal nodes should send 

copies of every packet to all replicas of the basic structure.  

Destination terminal nodes should correctly interpret data 

flows with proper and faulty copies of received packets. 

This redundancy policy is recommended for systems with 

strong requirements to packet delivery reliability and real time 

constraints.  

Hardware cost of buffering scheme in terminal nodes is 

essential for this redundancy policy. 

Tn1

Tn2

R1

R2 R3
Tn3

Tn4

Tn5
R1

R2 R3

(0)

(1)

 

Fig.2 Example of a path replication based network structure (N=2) 

If fault tolerance is required, at the first stage our tools 

generate a basic network structure and logical configuration for 

it and next this network structure is expanded for fault 

tolerance.  

User should reserve resources (mass, power, number of 

device’s used ports that can be utilized for a basic network 

structure, should be decreased correspondingly to quantity of 

faults and selected fault tolerance policy) before a basic 

network generation. In the basic network should be used not 

more than 1/N allowable mass and not more than 1/N of every 

terminal node port’s quantity for tolerance to N-1 faults. 

For practical reasons it is typical to apply FT-requirements 

to some fragments of the network only, to some of its 

subnetworks, clusters. Thus the strategy of network 

redundancy by path replication is applied to these individual 

parts of the network. 

B. Dynamic path reconfiguration redundancy 

Further, dynamic path reconfiguration redundancy could be 

used for a N-1 faults tolerant network that includes N replicas 

of a basic network (Fig.3). All routers Ri(0) and Rj(0) in the 

basic network (marked by “0”) that are directly connected, 

have connections with routers Rj(k) and Ri(k) for all network 

replicas (represented by gray dotted lines in the figure). 

Adaptive routing configuration for direct interconnections 

of devices by some links is identical in the basic network and 

all the replicas.  

For dynamic path reconfiguration additional adaptive 

routing configuration is generated for interconnections between 

network replicas in whole network structure.  

Tn1

Tn2

R1

R2
R3

Tn3

Tn4

Tn5
R1

R2 R3

(0)

(1)

 

Fig.3 Example of dynamic path reconfiguration based network (N=2) 

In this case a terminal node sends to the network only one 

copy of a packet. It sends packet to any link that corresponds to 

this packet’s path and is currently in the work state. Then every 

next transit router send packet to any link that corresponds to 

this packet’s path and is ready. If a fault occurs in a router or a 

link when a packet transmitted, this packet would be lost or 

corrupted and destination node would not receive correct copy 

of it. Also fault can impact to transmission time of others 

packets in network.  

However in this case designer doesn’t need additional 

hardware for packet buffering in terminal nodes. Therefore this 

fault tolerance policy is recommended for networks without 

guaranteed delivery packets, without strict real time 

requirements and when packets buffering in terminal nodes is 

impossible. 

When a designer plans to use this fault tolerance policy, he 

should reserve resource of network equipment mass and 

resource of terminal nodes and routers port’s quantity before a 

basic network generation. In the basic network should be used 

not more than 1/N allowable mass and not more than 1/N of 

every router and terminal node port’s quantity for tolerance to 

N-1 faults. 

VI. CONCLUSION 

The paper describes the methodology and toolset for 

SpaceWire network design. It provides the design space 

exploration mechanism for synthesis of large SpaceWire 

networks. The design includes the set of terminal nodes, 

communication structure, switches and links to meet the 

computation requirements and user-defined constraints. The 

high level of automation allows making changes in 

requirements and reconfiguration of SpaceWire network rapid 

and easy. The methodology also allows generating fault 

tolerant networks with variable level of tolerance. 
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Abstract—SpaceWire is a standard for on-board satellite 
networks as the basis for future data-handling architectures. 
However, it can’t meet the deterministic requirement for 
safety/time critical application in spacecraft, where the delay of 
real-time (RT) message streams must be guaranteed. Therefore, 
SpaceWire-D is developed that provides deterministic delivery 
over a SpaceWire network. This paper researches on computer 
simulation for real-time performance in SpaceWire-D network. 
Based on the principal of SpaceWire-D protocol, we set up its 
network model and simulation model where an event-driven 
scheme is adopted, give an implementation of simulation 
program based on VC, where the Time Slot scheme and static 
schedule method are also implemented, and then present a 
validation of the simulation model, and finally develop several 
simulation cases on typical application. The simulative results 
indicate that the schedule table plays an important role on delay 
of the message in SpaceWire-D networks. To increase the real-
time performance of SpaceWire-D, an effective schedule table 
should be researched and provided. 

Index Terms—SpaceWire-D, real-time, simulation, VC.  

I. INTRODUCTION 

SpaceWire is a standard for on-board satellite networks 
chosen by the ESA as the basis for future data-handling 
architectures [1]. However, it can’t meet the deterministic 
requirement for safety/time critical application in spacecraft, 
where the delay of real-time (RT) message streams must be 
guaranteed. Therefore, SpaceWire-D is developed that 
provides deterministic delivery over a SpaceWire network [2].  

Aiming to evaluate the SpaceWire/SpaceWire-D protocol, 
network designers may take several measures such as 
numerical analysis [3], simulation, and hardware test. An 
analytical method in [3] to compute an upper-bound on the 
worst-case end-to-end delay of a packet in a SpaceWire 
network is proposed. However, the analytical method is limited 
by many assumptions. Also, hardware test is sometimes 
impractical because of long research cycle and expensive cost. 

This paper researches on computer simulation for real-time 
performance in SpaceWire-D network. Based on the principal 
of SpaceWire-D protocol, we set up its network model and 
simulation model where an event-driven scheme is adopted, 
give an implementation of simulation program based on Visual 

C++, where the Time Slot scheme [4] and static schedule 
method are also implemented, and then present a validation of 
the simulation model, and finally develop several simulation 
cases on typical application. 

II.  OVERVIEW OF THE SPACEWIRE-D 

A. SpaceWire-D  Protocol 

SpaceWire provides versatile network architecture for 
onboard data-handling using switches and bi-directional serial 
links. It delivers the high throughput required for payload data 
with low implementation cost. However, it does not provide 
guarantees in the packet latency due to network congestion. 
Besides, the use of wormhole switching increases the worst 
case latency of packets that use shared links on the way to their 
destination.   

SpaceWire-D is a protocol that provides deterministic 
delivery over a SpaceWire network [4] (the protocol stack for 
SpaceWire-D is illustrated in Fig.1). SpaceWire-D delivers 
data within predetermined time constraints. Deterministic data 
delivery is the delivery of data within predetermined time 
constraints: not too early and not too late.  

 
Fig.1. SpaceWire-D protocol stack 

B. SpaceWire-D Scheduling  

In SpaceWire-D networks, it is often required that data is 
delivered within certain time constraints. One promising 
solution is to schedule the network using time division 
multiplexing. With a schedule table, there is no network 
contention and packet delivery time is deterministic. Then it is 
possible to obtain latency and throughput guarantees for the 
user data. The required periodic synchronization signal is 
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easily provided using SpaceWire Time-Code (TC) characters. 
Time is divided into discrete time intervals or time-slots (TS) 
determined by the arrival of a Time-Code.    

SpaceWire uses wormhole switching, so packets are 
typically not buffered within the routers.  Therefore,  the  
scheduling  is  implemented  at  each  transmitting  node  or 
network  terminal  using  a  local  schedule  table.  Each  local  
table  must  be  configured following  a  global  network  
scheduling,  assuring  that  contention  can  not  occur  when 
no errors are present in the network. 

III.  SIMULATION MODELLING  

Aiming to evaluate the SpaceWire/SpaceWire-D protocol, 
a simulation method is adopted. And simulation modeling of 
the SpaceWire networks covers some issues including event-
driven mechanism, time-code synchronization, and etc. 

A. Event-driven Mechanism 

There are two time advance approaches in simulation [5]: a) 
time-driven simulator, and b) event-driven simulator. In this 
paper, the event-driven approach is adopted because of its 
effective simulation performance. Figure 2 presents the flow 
diagram of event-driven simulation. 

 
Fig.2. A Typical event-based simulation model 

Where, 
Initialize simulation is that some node information and events 

are generated when the simulation is started, and an event 
list is built. 

Get the next event to be executed from the list   is that those 
events are arranged chronological in the event list, and the 
simulation program gets the next event which should be 
executed from the list. 

Tsim= Tnext-event   is that once the next-event is got, the event-
driven simulator progresses time with the next-event time. 

Execute the event  is that the event is triggered and executed 
step by step. 

Produce new events and put them into the list   is that the 
executed event may triggers new events. If there are some 
new events triggered, they will be inserted into the event 
list. 

Update the statistics information is that when an event is 
executed, there may lead to some changes of states and 
parameters in the nodes or routers. So the changes should 
be updated. 

Tsim>Tmax  is that the simulation program would judge if the 
current time exceeds the simulation time we set. If no, the 
simulation will go on, or else, the simulation will finish. 

B. Event  Example 

The implementation process of the simulation program is 
described by corresponding events. Figure 3 proposes an 
example of event, named as Time-Code generation event. In 
the SpaceWire-D network, there is a unique node that can 
allocate system time to other nodes to ensure synchronization. 
It is named as Time-Master. Time-Master periodically 
triggered the Time-Code generation event. The flowchart of 
this event is shown in fig.3. This event is triggered 
periodically to generate Time-Code and insert the Time-Code 
into the output queue. While sending the Time-Code, the 
corresponding router event is triggered. In this way, all the 
information transferred in the SpaceWire-D network can be 
scheduled. 

 
Fig.3.  Flowchart of the Time-Code generation event 

C. SpaceWire-D Simulation Based on Event-driven Scheme 

Figure 4 presents the working process of the SpaceWire-D  

 
 

Fig.4.  Flowchart of SpaceWire simulation model  
based on event-driven scheme  
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network model based on event-driven scheme. As described in 
section II, the Time-Code and schedule are two key issues in 
the SpaceWire-D network. Therefore, the simulation model 
needs to provide event scheduling scheme based on Time-
Code. In fig.4, Step 2 indicates that scheduling of every event 
can be implemented only if the event is in its Time Slots.  

D. the Simulation Software Based on VC + + 

On the basis of the simulation modeling, a simulation 
program based on VC++ [6] is developed to research the 
performance of SpaceWire-D network. And the simulation 
software includes several modules such as message parameter 
setting module, topology configuration module, simulation 
control module, and data survey module.  

IV.  VERIFICATION  

In this section, a mathematical model is proposed to analyze 
and verify the effectiveness of the aforementioned simulation 
model. 

A.             SpaceWire Network Topology 

The SpaceWire Network is setup according to the topology 
described in fig.5. The network topology consists of seven 
nodes, two routers and several SpaceWire links. Where, LA41, 
LA52~ LA54, LA60, LA70, and LA80 are working as nodes. 
Among them, LA70 is a mass storage, the destination of LA41, 
LA52 ~ LA54, LA60 and LA80. As a processor, LA80 is used 
to transmit the packets coming from LA54 to LA70 for 
storage. LA60 collects packets from sensors, and then sends 
them to LA70 mass storage [4]. 
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Fig.5. SpaceWire-D network topology architecture 

B.  the Scenario Parameters 

The scenario parameters and the events are set in Table I 
and Table II, respectively. 

 

 

 

 

 

 

C. Model Verification 

Ref. [4] proposes a mathematical model to compute the 
event delay in a SpaceWire-D network. Ordinarily, an event 
contains two processes, one is the process of source node 
sending message and the process of destination node sending 
response message. So the event delay is the sum of message 
delay and response message delay, i.e., the delay is the time to 
finish both processes.  

The delay of SpaceWire-D is denoted as 
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Where, 

N     is the number of nodes in the SpaceWire network. 
i      is the sequence number of each node. 
Tim  is the generation time of the m-th message in the i-th 

node.  
De  is the operation delay, which represents the delay of 

event such as READ and WRITE defined in [4].  
\   is an operator getting remainder. The remainder is 

number left over when one integer is divided by 
another. 

D. Results 

Table III shows the deviation between the simulation results 
and mathematical analysis results. 

 

  
Table III illustrates that the simulation results are basically 

consistent with mathematical analysis results, which indicates 
the correctness of the simulation model. Moreover, the 
deviations of delay between two methods are less than 2%, 
which verify the validity of the simulation model.  

V. SIMULATION AND ANALYSIS 

In the simulation program, the delays of different events are 
discussed when the schedule is set to Simple Schedule, 
Concurrent Schedule and Optimization Concurrent Schedule, 
respectively. 
A. Simulation Scenario & Message Parameters 

Here, we use the aforementioned network topology and the 
events in Sec.IV.  The scenario parameters are set in table IV. 

TABLE II.    EVENTS AND THEIR TYPES 

Number Event Event Type 

M1 LA41�LA70 Write 
M2 LA60�LA70 Read 

M3 LA80�LA70 Write 
M4 LA52�LA70 Read 
M5 LA53�LA70 Read 

 

TABLE I . THE SCENARIO PARAMETERS 

Quantity Value 
Simulation time 100s 
Link bandwidth 200Mbps 

Scheduling delay of 
router 

0.5us 

 

TABLE III.   COMPARISON ON ETE DELAY OF DIFFERENT EVENTS 

Maximum delay Minimum delay 
exp.(1) sim. deviation exp.(1) sim. deviation Events 

(us) (us) (%) (us) (us) (%) 
M1 188.450 188.548 0.052 38.450 38.452 0.005 

M2 233.650 233.748 0.042 83.650 83.748 0.117 

M3 203.450 203.549 0.049 53.450 53.549 0.185 

M4 248.650 249.750 0.442 98.650 99.750 1.115 

M5 218.450 219.550 0.504 68.450 69.550 1.607 
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i) Simple Schedule (SS) 
SS gives an initiator full control of the network for one or 

more specified time-slots, which is illustrated in Table V. 
 

 

 
 

ii) Concurrent Schedule (CS) 
CS makes more usage of network bandwidth by allowing 

more than one initiator to initiate transactions in a time-slot. 
This gives much possibility that two initiators might attempt 
to use the same network resources (links) at the same time. So 
in CS, LA52 can share the time slot with LA80, which is 
illustrated in Table VI. 

 

 
 

iii) Optimization Concurrent Schedule (OCS) 
OCS builds on the concurrent schedule to improve network 

efficiency further. Different from CS in table VI, where the 
time schedule of LA80 and LA52 take two TCs,  OCS makes 
the two TCs become one, so the distribution period will cut 
down by a time slot. 

 
 
B. Simulation  

Figure 6 presents the delays of five events when the scheme 
is set to SS, CS and OCS, respectively.  

 
Fig.6. Delay comparison among three schedules 

 
Figure 6 shows that, i) For SS, the delays of five events 

(190, 230, 200, 250, and 220 (unit: us)) are all higher than 
those of the other two schedules. ii) For CS, the delay of event 
LA52 is smaller than that of SS, i.e., the delay is decreased 
from 250us to 200us. The reason is that LA52 and LA80 share 
the same time-slot. The two nodes can use the same links at 
the same time. iii) For OCS, the delays of five events are the 
smallest among the three schedules. The reason is that the 
schedule period decrease from 5 to 4, so the delays of all 
events decreased. 
C. Result  

Based on the above simulation, we can infer the following 
result that the schedule table plays an important role on delay 
of the message in SpaceWire-D networks. To increase the 
real-time performance of SpaceWire-D, an effective schedule 
table should be researched and provided. 

VI.  CONCLUSION 

In this paper, we set up SpaceWire-D network model and 
simulation model where an event-driven scheme is adopted, 
give an implementation of simulation program based on VC++, 
where the times slot scheme and static schedule method are 
also implemented, and then present a validation of the 
simulation model, and finally develop several simulation cases 
on typical application. The simulative results indicate that an 
effective schedule table can obtain better real-time 
performance of SpaceWire-D networks. 
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TABLE VII.   OPTIMIZATION CONCURRENT SCHEDULE 

Time-Slot 0 1 2 3 4 … 58 59 

Event LA41 LA60 LA80 
LA52 

LA53 LA41 … LA53 LA41 

 

TABLE VI.   CONCURRENT SCHEDULE 

Time-Slot 0 1 2 3 4 … 58 59 

Event LA41 LA60 LA80 
LA52 

LA52 
LA80 

LA53 … 
LA52 
LA80 

LA53 

TABLE IV.   THE SCENARIO PARAMETERS 

Quantity Value 
Simulation time 100s 

Time-slot 45us 
Time code 0~63 

 

TABLE V.  SIMPLE SCHEDULE 
Time-
Slot 

0 1 2 3 4 … 58 59 

Event LA41 LA60 LA80 LA52 LA53 … LA52 LA53
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The novel SpaceFibre standard provides quality of service 

features, which are implemented by means of virtual channels. 

However, the SpaceFibre standard covers only “point-to-point” 

connections and does not specify the network layer. 

In order to provide quality of service in a network operating with 

SpaceFibre links it is necessary to support quality of service 

mechanisms in the routing switch functionality. 

Nowadays, routing switches can support various implementations 

of virtual channels mechanisms (architectures and structures of 

port controllers and switch matrix). These implementations provide 

different performance and latency characteristics for packet flows. 

But at the same time, they lead to different hardware costs. 

One of the key aspects affecting both achievable performance 

and latency characteristics and hardware costs is ratio of the virtual 

channels quantity in a port and switch matrix’s channels quantity 

connected to every port (connection point). The connection points 

quantity can vary from one to a quantity of virtual channels in this 

port. 

The case when switch matrix’s channel quantity connected to 

one port is less than quantity of virtual channels in this port can 

lead to additional packet transmission latency which is necessary 

for release of a connection point. Moreover, with growing quantity 

of connection points the hardware cost of switch matrix and port 

controllers increases dramatically. 

In this paper we evaluate additional data packet transmission 

latency introduced by a switch matrix and hardware costs for 

different routing switch parameters: ports quantity, virtual 

channels quantity in ports, connection points quantity; and 

different parameters of packet flows through each virtual channel. 

Index Terms—SpaceFibre, SpaceWire, Networking, Virtual 

channels, Quality of Service.  

I. INTRODUCTION 

SpaceWire-RT Network layer is responsible for routing 

SpaceFibre packets over a SpaceFibre network, comprising 

SpaceFibre routing switches, SpaceFibre links, and SpaceFibre 

nodes. SpaceWire-RT provides compatibility with SpaceWire 

at Network and Packet Layers [1]. The current specification of 

the Packet and the Network layers is not included in the 

SpaceWire-RT standard. But the Network layer 

implementation is described in the SpaceFibre presentation [5]. 

Quality of service parameters that can be provided by 

routers with SpaceFibre ports [1] depend not only on the 

SpaceFibre protocol characteristics and port implementation 

specific but on a network layer implementation also. 

In this paper we consider some classical ways of the 

network layer implementation that can be used for a router with 

SpaceFibre ports. We evaluate the hardware costs and timing 

characteristics for these implementations. 

We do not consider an impact of low layers of SpaceFibre 

(from the Retry Layer and lower) to timing characteristics of 

data flows. In our analysis we suppose that SpaceFibre 

connection is established and data transmission errors do not 

occur (data frames are not retransmitted). We take into account 

the necessity of auxiliary information’s transmission by 

reserving of some physical channel throughput.  

Let us consider which parameters are important for 

different qualities of service (QoS) that are provided by 

SpaceFibre. 

For the Scheduled service a packet should be transmitted 

from the source to the destination during a corresponding time 

slot (the packet can be transmitted through one or several 

routers).  

Thus the short transmission time from the input port to the 

output port via the network (with only one router) is very 

important for the scheduling service. 

Therefore, for evaluation of achievable parameters for this 

type of service we need to know the maximal packet 

transmission time via the network layer. 

For the Bandwidth reserved service the network layer 

should support the corresponding throughput for its channels. 

For this type of service the following additional requirement to 

a jitter size [2] often exists: the difference between minimal 

and maximal packet transmission time via the network (with 

only one router) should not exceed a required value. 

Consequently, it is necessary to know the minimal and 

maximal packet transmission time through the network. 

If the Priority service is used, the network layer should 

provide a priority processing scheme without priority 

inversion. Priority inversion could appear only when data 

packets with different priorities are transmitted via one network 

layer resource (one channel). In this case the packet with the 
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higher priority can wait until a lower priority packet would be 

transmitted if the lowest priority packet goes first. 

 

II.  CONSIDERED ROUTER’S STRUCTURES 

A. 1st
 way of router’s network layer structure 

Router’s Switch matrix includes a separate channel for 

connection of each input virtual channel with the correspondent 

output virtual channel in this way. Quantity of connection 

points to the switch matrix (hereinafter – connection points) for 

every port of a router is equal to the virtual channels amount in 

this port, Fig. 1 (only one data transmission direction is 

represented). This way was recommended by  the SpaceWire-

RT specification draft [5]. 

In such router structure data flows can compete with each 

other only within one virtual channel in output port of router. 

In this case timing characteristics in the network layer depend 

only on arbitration rules. In all other cases timing 

characteristics of data flows are not influenced by the router 

network layer. 

However, such router structure results in an essential 

hardware cost. 
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Fig. 1  The first way of router’s network layer implementation 

B. 2nd
 way of router’s network layer structure 

According to this router structure, the quantity of 

connection points for every port is less than amount of virtual 

channels in the port. In our research we suppose that data flows 

from every virtual channel can be transmitted via any 

connection point of the correspondent port, Fig. 2. 

Hardware cost of this router structure is essentially less, 

than hardware cost of the previous one. But in this way, data 

flows from different virtual channels share switch matrix 

channels. Therefore, an impact between data flows and 

corresponding disturbance of its timing characteristics in this 

case in this router structure is more essential than in the 

previous one.  
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Fig. 2 The second way of router’s network layer implementation 

III. EVALUATION OF HARDWARE COSTS 

We are using Cadence RTL Compiler and Encounter and 

UMC 120 nm technology library for evaluation of router’s 

switch matrix hardware cost. 

We performed a logical and a physical synthesis of the 

switch matrixes with different number of channels that 

correspond to different router implementations (different 

amount of ports and connection points). 

Results of the logical synthesis are represented in Fig. 3. As 

shown in this figure, if quantity of connection points is bigger 

than 4, hardware cost grows essentially. The logical synthesis 

becomes impossible when quantity of ports is 16 and quantity 

of virtual channels is 16 or bigger (256 channels of the switch 

matrix). The physical synthesis is problematic if quantity of 

ports is bigger than 8 and of virtual channels is bigger than 8 

(64 channels of switch matrix). This amount of switch matrix 

channels is boundary of hardware resources for the 1
st
 way of a 

router structure. The 2
nd

 way can be implemented with the 

greater amount of virtual channels if 2 – 4 connection point for 

every port is used.  

 
Fig. 3 The switch matrix hardware cost 

Thus the 1
st
 way of a router structure hardware is 

essentially constrained.  

IV. THEORETICAL PARAMETERS EVALUATION  

Maximum/minimum delay and jitter are calculated for the 

proposed router structures. The following assumptions were 

made during calculations: the packet size for the virtual 

channel was the same for every source; for every virtual 

channel data transmission is enabled in every time slot;  Nchars 

are written to TX and RX buffers of each port at the same 

amount of time; the packet size for every virtual channel is less 

then frame size; the frame size is less then buffer size for every 

virtual channel; kTcalcPrec for every port of a device has the 

same value.  

Notation: 

i  - an identifier of a virtual channel; 
k - an identifier of a node (a terminal node or a router); 
l  - an identifier of a link; 

p  - an identifier of a port ; 

h  - an identifier of a virtual channel with the highest 

priority; 
sizeF  - the frame size in bytes; 

i
sizeP_VC - a packet size for the virtual channel i  in bytes;  

i
VC_sizeB - a buffer size for the virtual channel i  in bytes;  
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i
VC_countSw - the number of routers which should be 

passed for transmission of data of the virtual channel i; 

i
VC_countLink

 - the number of links which should be 

passed for transmission of data of the virtual channel i.  

1
i

countSw_VC
i

VCcountLink_   

lv - a data rate in the link l, Gb/s. We assume that it is equal 

to 1 Gb/s for all links.  

s/byte21024128s/bit31024v   

l
Tbyte - the transmission time of 1 Nchar (1 byte) through 

the link l.  

l
v

1
l

Tbyte  ; for the data rate of 1 Gb/s 

s9105,7
21024128

1

v

1
l

Tbyte 



  

k
f - an operating frequency of the node k, MHz. 

i
VC_jitter  - jitter of data packets for the virtual channel 

i; 

i
CminDelay_V  - the minimal packet’s transmission 

delay for thr virtual channel i for the whole transmission path;  

i
CmaxDelay_V  - maximal packet’s transmission delay 

for virtual channel i for the whole transmission path; 

i
VC_Delaymin

i
VC_Delaymax

i
VC_jitter   

}
i

SourceVC{  - a set of source nodes for the virtual 

channel i;  

}
i

DestinVC{  - a set of destination nodes for the virtual 

channel i;  

k
TwrByteTX

 
- time of writing of 1 Nchar into the TX 

buffer of the node k;  

k
TwrByteRX

 
- time of writing of 1 Nchar into the RX  

buffer of the node k (for this implementation it is equal to the 

transmission time of 1 byte through the SpaceFibre link, i.e. 

l
Tbyte

k
TwrByteRX  ) 

k
TcalcPrec - time of the Precedence calculation for all 

virtual channels in node k. This parameter is defined by the 

developer of the system. 

k
rixDelaySwMat  - the delay of  accessing to routing 

table and selection of connection points in a router with 

identifier k. This time is necessary to connect the input port 

with the output port for data transmission.  

Calculation of the minimum data transmission delay for 

the virtual channel i: 

}LinkVC{min i  - a set of physical links, which constitute 

the shortest  data transmission path for the virtual channel i. 

}
i

SwVC{min  - a set of routers, which constitute the 

shortest data transmission path for the virtual channel i;  

i
urce_VCminDelaySo  - the minimal processing delay 

in a packet's source of the virtual channel i 

)
k

TcalcPrec
k

TwrByteTX
i

(sizeP_VC
}

i
{SourceVCk

min

i
urce_VCminDelaySo





 

i
VC_nDelayDestimin

 - the minimal processing delay 

in a receiver of the virtual channel i 

)
k

TwrByteRX
i

(sizeP_VC
}

i
{DestinVCk

min

i
n_VCDelayDestimin








 

i
_VC

k
minDelaySw

- the minimal delay in a router for 

packets of the virtual channel i. We assume that there is no 

competition between packets of one virtual channel and that 

different virtual channels do not compete in the router’s output 

port. 

k
TcalcPrec

k
rixDelaySwMat

k
TwrByteRX

i
VC_sizeP

i
VC_

k
DelaySwmin




 

 

i
n_VCDelayDestimin

}
i

SwVCmin{k
i

_VC
k

DelaySwmin

}
i

LinkVCmin{l
i

sizeP_VC
l

Tbyte

i
e_VCDelaySourcmin

i
Delay_VCmin















 

Calculation of the maximum data transmission delay 

for the virtual channel i: 

}
i

LinkVC{max  - a set of links, which constitute the 

longest data transmission path for the virtual channel i;.  

}
i

SwVC{max  - a set of routers, which constitute the 

shortest data transmission path for virtual channel i;  

iurce_VCmaxDelaySo  - the minimal processing delay in 

a packet’s source of the virtual channel i;  

}
p

allVC{  - a set of virtual channels, which are supported  

in the port with identifier p of a node.  

}
i

rityPrioHigh{allVC  - a set of virtual channels, which 

are supportes in  the port with identifier p of  a node and have a 

higher priority than the priority of the virtual channel i;  

}
i

allPortVC{  - a set of node’s ports which support data 

transmission via the  virtual channel i; 

)}

ij,
p

allVCj

)
k

TcalcPrec
k

TwrByteTX
j

(sizeP_VC

k
TcalcPrec

k
TwrByteTX

i
(sizeP_VC

}
i

allPortCV{p
max{

}
i

{SourceVCk
max

i
urce_VCmaxDelaySo













i
stin_VCmaxDelayDe  - the maximum processing delay in 

a destination node for packets of the virtual channel i  
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)
k

TwrByteRX
i

VC_sizeP(
}

i
DestinVC{k

max

i
VC_nDelayDestimax








 

i
VC_

k
DelaySwmax

 - maximum delay in a router for 

packets of the virtual channel i for the case when the 

competition exists between the packets of one virtual channel 

and the packets of different virtual channels for the switch 

output port.. 

)
k

TcalcPrec

ij},
i

rityPrioHigh{allVCj

)
k

TcalcPrec
k

TwrByteRX
j

VC_sizeP(

k
TwrByteRX

i
VC_sizeP(

)1}
i

allPortVC{(

k
TcalcPrec

k
rixDelaySwMat

k
TwrByteRX

i
VC_sizeP

i
VC_

k
DelaySwmax


















 

i
stin_VCmaxDelayDe

}
i

{maxSwVCk
i

_VC
k

maxDelaySw

}
i

{maxLinkVCl
i

sizeP_VC
l

Tbyte
i

urce_VCmaxDelaySo

i
CmaxDelay_V













Calculation of the data transmission delay and jitter for the 

virtual channel with the highest priority.  

The following restrictions were made during calculations: 

for every virtual channel data transmission is enabled in every 

time slot; all routers contain only one connection point for each 

port.. The connection point is shared by all virtual channels of 

the corresponding port. 

h
VC_jitter  - jitter for packets of the virtual channel with 

the highest priority.   

h
CminDelay_V  - the minimal packet transmission delay 

for the virtual channel with the highest priority for the whole 

transmission path.  

h
CmaxDelay_V  - the maximal packet transmission 

delay for the virtual channel with the highest priority  for the 

whole transmission path.  

h
VC_Delaymin

h
VC_Delaymax

h
VC_jitter   

The value of the minimal packet transmission delay for the 

virtual channel with the highest priority is equal to the value of 

the minimal  packet transmission delay for the virtual channel 

of an arbitrary priority.  

i
CminDelay_V

h
CminDelay_V   

The value of the maximal packet transmission delay for the 

virtual channel with the highest priority is not equal to the  

minimal packet transmission delay for the virtual channel of an 

arbitrary priority.  

hurce_VCmaxDelaySo  - the maximal packet processing 

delay for the virtual channel with the highest priority in a 

source node. 

}
k

TcalcPrec
k

TwrByteTX)1F(size

k
TwrByteTX

h
(sizeP_VC

}
h

allPortVС{p
max{

}
h

{SourceVCk
max

h
urce_VCmaxDelaySo








 

i
stin_VCmaxDelayDe

h
stin_VCmaxDelayDe   - 

the maximal packet processing delay in a destination node for 

the highest priority virtual channel is equal to the maximal 

packet processing delay in a destination node of an arbitrary 

virtual channel priority.  

h
VC_

k
DelaySwmax - the maximal delay in a router 

for packets from the virtual channel with the highest priority. 

We assume that the frame of the lower priority packet is 

already being transmitted and there is a competition between 

the packets of virtual channels of the same priority in output 

port of router. 

)
k

TcalcPrec
k

TwrByteRX
h

VC_sizeP()1}
h

allPortVC{(

k
TwrByteRX)1sizeF(

k
TcalcPrec

k
rixDelaySwMat

k
TwrByteRX

h
VC_sizeP

h
VC_

k
DelaySwmax







 

h
stin_VCmaxDelayDe

}
h

{maxSwVCk
h

_VC
k

maxDelaySw

}
h

{maxLinkVCl
h

sizeP_VC
l

Tbyte

h
urce_VCmaxDelaySo

h
CmaxDelay_V













 
















}
h

{maxSwVCk
))

k
TcalcPrec

k
TwrByteRX

h
VC_sizeP(

)1}
h

allPortVC{(

k
TwrByteRX)1sizeF((

k
TwrByteRX)1sizeF(

h
VC_Delaymin

h
VC_Delaymax

h
VC_jitter

 

Connection point is not allowed to switch between virtual 

channels. 
















}
h

{maxSwVCk
))

k
TcalcPrec

k
TwrByteRX

h
VC_sizeP(

)1}
h

allPortVC{(

k
TwrByteRX)1VC_sizeP((

k
TwrByteRX)1VC_sizeP(

h
VC_Delaymin

h
VC_Delaymax

h
VC_jitter

l

l  

lVC_sizeP  - the maximum packet size for the virtual 

channel with the lower priority l.  

V. TIMING CHARACTERISTICS ESTIMATION 

A. Network models 

Timing characteristics estimation was done on the basis of 

the models, which are depicted in Fig. 4 and Fig. 5. 
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Fig. 4 Network model 1 
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Fig. 5 Network model 2 

 

The Network model 1 comprises a router with 4 ports, each 

of which can work with 4 virtual channels. Terminal nodes 

generate packets in a random time moments. At these random 

moments the terminal node sends the generated packets to each 

virtual channel. The destination nodes for each virtual channel 

are also chosen randomly and can be different for the virtual 

channels. This configuration can lead to a potential possibility 

of data packets flow concurrency in the output port. The 

second way of the router organization can also result in the 

concurrency for the connection points in the input ports. 

In its turn the Network model 2 comprises a router with 5 

ports. Four of these ports are connected with the terminal 

nodes, which are sources of packets, and the fifth port is 

connected to the terminal node, which is a destination node for 

all packets flows. According to this model, each packet source 

generates packets for only one particular virtual channel. Such 

model gives an ability to investigate the characteristics in case 

of the concurrency of packets flows in the output port 5. In 

contrast to the first network structure, the distortion of data 

flows characteristics can be more considerable as all data flows 

shall be transmitted through the same output port.  

These particular models were chosen in order to investigate 

how the common virtual channels recourses utilization on the 

network layer of a router can affect the timing characteristics of 

the virtual channels as well as degradation of the quality of 

service. 

 

B. Models’ implementation and simulation results 

interpretation 

The results of the simulation can significantly depend on 

the router model implementation features such as local clock 

frequency and link capacity within the router. We used two 

different router models for our investigation and built the 

network models on the basis of these routers. 

The first model was created on the basis of the SystemC 

SpaceWire-RT Network model, which was implemented in the 

scope of the SpaceWire-RT project [3]. According to the 

SpaceWire-RT Outline Specification, SpaceWire-RT standard 

takes SpaceFibre as the basis. This model defines a router 

which implements the protocol layers from the Serialisation 

Layer up to the Network Layer. The link bandwidth in the 

model is set to 2 Gbits/s. 

Also the concerned network was simulated on the adapted 

DCNSimulator model [4]. In this case we used the router and 

node models which comprise only the Virtual Channel and the 

Network Layers (this gave an opportunity to reduce the 

simulation time and to obtain the more detailed results). The 

link bandwidth in the model is set to 1 Gbit/s. 

The simulation of the Network 2 model resulted in the 

following latencies which are given in Table 1. The obtained 

latencies for two models differ by two times. This can be 

explained by the two times difference in the link bandwidth in 

the models. 

TABLE I.  THE COMPARISON OF SIMULATION RESULTS  

Virtual Channel 

number 

Latency in the 

SpaceWire-RT 

Network model, 

μs 

Latency in the 

DCNSimulator, 

μs 

1 3,43 6,09 

2 4,64 8,12 

3 5,85 10,15 

4 7,064 12,18 

Therefore, the absolute values of the timing characteristics 

are scaled proportionally to the change of the link bandwidth in 

case of router characteristics alternation such as a local 

frequency and/or link capacity. In spite of scaling the general 

relation remains the same. 

 

C. Estimation of achievable characteristics of the Network 

model 1 

Let us consider the case when each virtual channel has its 

own particular priority level, which corresponds to the virtual 

channel number: VC1 – the highest priority, VC4 – the lowest. 

The packet length does not exceed the frame length. Fig. 6 

shows the simulation results for the 1
st
 way of router 

implementation, Fig. 7 – for the 2
nd

 way of router 

implementation with only one connection point for each port. 

According to the diagrams, the reduce of the connection 

points quantity leads to a minor increase of the average time of 

packet transmission and to a considerable increase of jitter, 

especially for the low priority levels. As for the highest priority 

level, there is almost no difference. 

However, if the packet length exceeds the frame length the 

achievable characteristics for the 2
nd

 way (average transmission 

time and jitter) would be considerably worse than for the 1
st
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way especially for the highest priority levels (Fig. 8 –  Fig. 11). 

The packet length in this simulation was set to 750 bytes. 

 

 
Fig. 6 Simulation results 1 

 

 
Fig. 7 Investigation: the 2nd way of router implementation, 1 connection 

point 

 

 
Fig. 8 Investigation 9. Comparison of the packet transmission time via 

VC1 in case of different connection points quantity 

 

 
Fig. 9 Investigation 9. Comparison of the packet transmission time via 

VC2 in case of different connection points quantity 

 

 
Fig. 10 Investigation 9. Comparison of the packet transmission time via 

VC3 in case of different connection points quantity 

 

 
Fig. 11 Investigation 9. Comparison of the packet transmission time via 

VC4 in case of different connection points quantity 

The average transmission time and jitter grow 

proportionally with the increase of the packet length while 

using one connection point (Fig. 12- packet length – 1000 bytes, 

Fig. 13 – packet length – 1500 bytes) 
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Fig. 12 Investigation 14. Comparison of the packet transmission time via 

VC1 in case of different connection points quantity  

 

 
Fig. 13 Investigation 15. Comparison of the packet transmission time via 

VC1 in case of different connection points quantity 

 

The increase of the connection points’ quantity up to two 

points gives an ability to significantly reduce the difference 

between the characteristics. The difference for the 2
nd

 way with 

two and three connection points is very small and the 

characteristics, obtained for them are very close to the 1
st
 way 

characteristics. 

This investigation shows that the 2
nd

 way of router 

implementation with one connection point has a significant 

drawback. The addition of one more connection point (i.e. two 

connection points for the port) provides a possibility for 

improvement of the average transmission time and jitter values. 

The average transmission time values are almost similar for the 

1
st
 way of the router implementation and for the 2

nd
 way with 

two connection points. As for jitter, it is 20% higher for the 2
nd

 

router structure. 

D. Estimation of achievable characteristics of the Network 

model 2 

In contrast to the Network model 1 in this case the 

competition between data flows exists only in the output port, 

but it is stronger because of the essential data flows intensity. 

If a packet length is smaller than the frame length then the 

average packet transmission time for the 1
st
  and the 2

nd
 ways 

of the router implementation is almost the same, Fig. 14. This 

result is coinciding with results obtained on the Network 

model 1.  

Similarly to the Network model 1, the average transmission 

time and jitter grow proportionally with the increase of the 

packet length in case of using the 2
nd

 way of the router 

implementation with one connection point (Fig. 15 – packet 

length –  1000 bytes, Fig. 16 – packet length – 1500 bytes). 

The increase of the connection points’ quantity up to two 

points gives an ability to significantly reduce the difference 

between the characteristics of the 1st and 2nd ways. Similarly 

to the Network model 1 in this case the difference of jitter 

between these router’s implementations is not more than 20%. 

 
Fig. 14 Investigation 13. Comparison of the packet transmission time via 

VC1 in case of different connection points quantity 

 

 
Fig. 15 Investigation 14. Comparison of the packet transmission time via 

VC1 in case of different connection points quantity 

 

 
Fig. 16 Investigation 15. Comparison of the packet transmission time via 

VC1 in case of different connection points quantity 

VI. CONCLUSION 

According to the investigations made the 1
st
 way of the 

router organization results in the limitations in hardware 

implementation. The comparison of the achievable timing 

characteristics for different ways of router implementation 
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showed that if a packet size is smaller than the frame size then 

the average packet transmission time for both ways is almost 

similar. Jitter of the low priority traffic grows faster for the 2
nd

 

way of the router implementation.   

Therefore, the 2
nd

 way of the router implementation with 

one connection point can be used for the networks with the 

packet length shorter than frame size. In this case it will 

provide scheduled, bandwidth reserved and priority qualities of 

service. 

The packet lengths larger than the frame size while using 

the 2
nd

 way of the router implementation result in degradation 

of the timing characteristics in comparison with the 1
st
 way.  

This degradation of characteristics grows proportionally to 

the packet’s length of the virtual channels of low priorities. 

Consequently, the 2
nd

 way of the router implementation with 

one connection point in networks where long packets are 

transmitted is possible only when there are no hard real time 

requirements and jitter constraint’s.  

In such systems the achievable link utilization will be less 

than the physical link throughput. The link can stay and wait 

for the rear frames of the transmitted packet (frames from 

others virtual channels could not go to this output port because 

the connection point is occupied by the current packet).   

The 2
nd

 way of the router implementation with two 

connection points essentially decreases these disadvantages. 

The average packet transmission time and achievable link 

utilization in this case are almost similar to the 1
st
 way of the 

router implementation. 

Jitter is 20% bigger for the 2
nd

 way of the router 

implementation with 2 connection points than for 1
st
 way. 

Therefore, the achievable characteristics for the scheduled 

service and jitter value for this 2
nd

 way of router 

implementation are 20% lower.  

The achievable characteristics for the priority and 

bandwidth reserved (without jitter constraint) qualities of 

service are practically the same for the 2
nd

 way of router 

implementation with 2 connection points and for the 1
st
 way. 
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Abstract—The GAIA Mass Memory receives asynchronous 
scientific data from the instruments via seven Spacewire links @ 
40 Mbps. These 7 SpW are included as IPs in a single FPGA. 
GAIA launch is planned end 2013. 

Index Terms—Mass Memory, file system, reliability 

 

I. INTRODUCTION 

The Gaia mission, lead by ASTRIUM, is an ESA mission 
that will allow the creation of a precise three-dimensional map 
of about one billion stars throughout our Galaxy and beyond. 

 
Seven 'Video Processing Units' collect the astrometric and 

photometric observations of objects passing across the Gaia 
focal plane. The data produced by these units must be stored 
prior to transmission to the ground. Due to the large amount of 
data produced and limited visibility of ground stations, Gaia 
contains a dedicated data storage unit - the Payload Data 
Handling Unit (PDHU). 
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Fig. 1.  GAIA PDHU DATA FLOW 

 

 

 

 

II. DESCRIPTION 

The PDHU is mass memory equipment which offers a 
storage capability of more than 1Tbits beginning of life and 
more than 800Gbits end of life. 

The PDHU accepts and handles stores and reads the 
following data flow in parallel: 

• "Science Data Packets"  Data packets from the 7 
VPUs by the SpW links 

• "Auxiliary Science Data Packets" Transmitted by 
the 7 VPUs by the SpW links 

• "Telemetry science Data"   Packets sent by the PDHU 
to the CDMU 

In addition to this task, the PDHU manages the TM/TC 
links with the CDMU (Command and Data Management Unit), 
maintains its internal reference time (periodically re-
synchronized with the On Board Timing via MIL-1553), 
controls the sectors deletion and recovery processes. The 
equipment includes both hot and cold redundancy depending 
on the functionalities. The Hardware-Software functionalities 
require a very high level of interactions. 

 
 

III.  MAIN CHALLENGES 

The design, development manufacturing and tests of the 
equipment have led to some major challenges successfully 
achieved leading to the PDHU being recognized as one of the 
most challenging electronic equipment of the GAIA satellite. 
During the design phase the reliability was carefully looked at 
in order to reach a 0, 99 figure over the mission life time of 5,5 
years. 

Due to the particular location of the equipment the 
mechanical design faced a thermal request for no conductive 
thermal dissipation. Thermal Vacuum tests have shown that the 
maximum power of 35 Watts could be dissipated via thermal 
radiation only. 

In terms of mass memory operation the two main topics are 
the file management with a very fast response time and the 
asynchronous nature of the data inputs. Packets handling of 
sizes between 17bytes and 96 Kbytes is performed in a typical 
response time of 3,5 µsec. 
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All 7 SpW inputs are handled with IPs integrated in a single 
RTAX FPGA with the fully asynchronous data handling 
performed at a typical data rate of 40Mbps (useful data at 
30Mbps), with possible maximum speed above 100Mbps. 

 
 

IV.  EQUIPMENT DESCRIPTION 

 
The PDHU has the following major characteristics:  

� Mass: 14 kg 
� Power : 26 Watts 
� Volume : 2,3 liters 

 

 
Fig. 2.  PDHU FM in the satellite (Credit:ASTRIUM) 

 
 
The PDHU model “Fig. 2” is composed of three different 

types of boards: 
� Memory Boards 
� Controller Boards (see “Fig. 3”) 
� Power Supply Boards 

 
 
The controller board, based on a LEON 2 FT ASIC, 

includes all input-output-command-control functions.  All 
aspects related to the SpW inputs are included within this  
single board. 

 
 
 
 

 
 

 
Fig. 3.  CONTROLLER BOARD 

 
 
The specificity of the equipment stands also in the fact that 

the file system in largely based on an Hardware approach 
rather then on usual software ones . This has been triggered by 
the very short file-system response time required (below 5µs in 
the worst case) due to the inputs signal speed. Further details 
on this very specific implementation is provided in § 5. 

 
The software services implemented are equivalent to the so 

called PUS Service 13.  
 
The equipment is based on mixed of cold and hot 

redundancy concept. The power supplies are used in hot 
redundancy while the controller and memory functions are in 
cold redundancy. 
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Fig. 4.  REDUNDANCY CONCEPT 
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V. HARDWARE BASED FILE SYSTEM 

Every packet received from the VPU or from the LEON is 
divided in Blocks of 64 Bytes, whatever the size of the 
incoming packet. That is, the Block containing the end of the 
packet will probably not be full and the padding of the Block is 
not used. 

A Block contains the data of the packet and the 
corresponding Reed-Solomon control bits. Considering a Reed-
Solomon code 64 / 60, the data payload are 60 Bytes, 4 Bytes 
are reserved for the RS control Bytes. This code can correct up 
to 2 Bytes anywhere in the data field. 

When a packet is coming, the Packet size is sent to the 
FSM by the mean of the data link interface. The FSM has the 
responsibility to calculate the real packet size that will be taken 
in the mass memory with the formula:  

- Number of Blocks = (Star Packet size + 59) / 60 
 
The File management is Hardware implemented inside the  

so called Management FPGA. 
The PDHU file system management is mainly, bit not only, 

based on two tables, the File Header Table (FHT) and the 
Sector Link Table (SLT), which allows the memory allocation 
of the entire Memory Array. The File System Manager has the 
responsibility to manage all the 256 files stored in the Memory 
Array. 

The File Manager is responsible to process each request, 
access and update the file system tables. As FHT is frequently 
accessed, and in order to reduce the file system request latency, 
it is stored in the embedded FPGA memory while the Sector 
Link Table is stored in the external SRAM memory. All the 
memories are protected by EDAC. 

The requests to the file system are issued from the VPU I/F 
located inside the Data Link FPGA.  

Each time a new star packet or an auxiliary science data is 
received from a VPU, the VPU Interface extracts the File ID 
and packet size from the incoming packet and performs a file 
system request to the File System Manager, sending these two 
data. 

The FSM has to define the number of Blocks to be 
implemented in the Memory Array. The Number of Blocks 
corresponds to: (Star Packet size + 59) / 60. 

Based on the File ID, the File System Manager access the 
File Header Table. The FSM returns, according to the number 
of Blocks, the corresponding Sector address and Block offset. 
Further more it updates the File Header Table, the Sector Link 
Table (SLT), the Block Counter Table (BCT), the Useful 
Header Table (ULT) and the Sector Size Table (SST). 

The deletion process is controlled by the processor through 
the PCI bus. The File Header Table and the Sector Link Table 
are accessed by the LEON which performs the necessary tables 
update to free the selected sectors of files. 

The File System Manager is connected with the internal 
AMBA bus to handle the file system request from the LEON 

processor and to access the Sector Link Table and the Block 
Counter Table, which are located in an external memory. 

The access of the FHT by the LEON is controlled by the 
FSM and gives the priority on the access to its own controller. 

The “First free sector” register is implemented in an APB 
register, in order to be also accessible by the LEON. 

The “Last free sector” register, used only by the LEON for 
file deletion, is memorized in the SRAM of the LEON 

In the cyclic files, a Sector must be closed on request. A 
dedicated command sent by the LEON using a register 
containing the file number where the current sector must be 
closed 

 

VI.  SPW FPGA IMPLEMENTATION 

The FPGA including all inputs data processing is dedicated 
to data link and consists of the following blocs:  

- Reset and Clock 
- VPU Interface (7x) 
- VC Interface 
- Time Keeper 
- Management Transfer Interface 
- Memory Bus Interface 
- Memory Module Switch Decoder and Leon Status  
 
The design is based on 7 commercial Spacewire IP 

(SpaceWire-b CODEC from University of Dundee) included in 
a single Actel RTAX2000S FPGA with the following 
architecture: 
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Fig. 5.  SPW FPGA ARCHITECTURE 

 
The system requires the implementation of seven (7) 

SpaceWire interfaces for the GAIA VPU data reception. The 
requested speed of each SpaceWire link is 40Mbps (RX_CLK 
= 40MHz) with an average useful data rate over one second of 
30Mbps. Due to board design constraints, only one FPGA was 
foreseen for the seven SpaceWire interfaces.  
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The main challenge of this FPGA design was the 
management of the clock networks, since Actel’s RTAX 
FPGA only provides eight (8) dedicated clock buffers 
(Hardwired Clock and Routed Clock Buffers), and the 
implementation of the SpW clock recovery logic for the seven 
links. 

 
Due to design constraints (several clock domains), most of 

the dedicated clock buffers were already used preventing the 
implementation of the SpaceWire clock recovery logic as 
recommended by Actel. .Therefore, in order to provide each 
SpW IP with a dedicated clock network, local clock feature 
provided by the FPGA has been used. Each SpW IP is placed 
in a separate FPGA tile and uses part of the global clock 
network. 

 
To increase the SpW link speed and clock signal integrity, 

the clock recovery logic (XOR and first Flip-flops stage) has 
been manually placed in the FPGA to precisely control delay. 
The post-layout static timing analysis (worst-case) reports 
RXCLOCK frequency between 114MHz and 128MHz on the 7 
SpaceWire Interfaces while 40MHz was required. 
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Abstract — The aims of the present study were first to establish 

a SpaceWire Validation Test Plan (SVTP), commonly with 
Astrium-F and TAS-F, in order to cover all the ECSS standard 
specifications, addressing in particular the physical and electrical 
compliance requirements, in which some additional tests were 
specified. The methodology offered through this SVTP is 
substantially based on the approach used for the MIL-STD-1553 
Validation Test Plan.    

Subsequently, this SVTP has provided the basis to define and 
realize a prototype of a SpaceWire Validation Test bench aiming 
to fulfill most of the SVTP specifications. For an optimized 
covering of these requirements, this test bench has been built by 
using both the SpaceWire Conformance Tester from STAR 
Dundee company, associated with a custom tool (called “HOST 
SpaceWire Traffic Generator” from Delta Technologies Sud-
Ouest (DTSO)) developed especially for this validation test plan 
and providing a large panel of physical and low-level/electrical 
compliance tests. 

Index Terms—SpaceWire standard, Compliance Testing, 
LVDS, BER, Eye diagram, design margins, test procedures.  

I. INTRODUCTION 

SpaceWire is based on two existing commercial standards, 
IEEE-1355 and LVDS which have been combined and adapted 
for use on-board spacecraft. Since its introduction in the early 
2000s, SpaceWire applications have grown steadily and have 
led to the development of a large variety of SpaceWire 
implementations based on different ICs and CODEC IP, 
conceived independently by different agencies, labs and 
industrials of the Space Community. 

Taking into account that the ECSS-E-ST-50-12C 
specification lacks detailed requirements concerning in 
particular the lower levels of the standard, it has become a real 
challenge to assess the compliance of a SpaceWire interface. In 
his current state, the chapter 5 of the ECSS standard only 
provides some basis for the SpaceWire Physical Layer (as 
highlighted in previous equivalent analysis like [10]). 

It is even more essential that newly higher protocols have 
been added since (RMAP, CPTP, RDDP, …) or are currently 
under development (SpaceWire-D, SOIS, …), allowing more 
complex or critical communications to take place on 
SpaceWire links or networks. 

It is in this context that this study has been carried out, 
aimed at complementing the current standard and providing 
complete and suitable requirements and tests procedures to 
insure the compliance of SpaceWire interface for space 
applications, from Physical Layer to Packet Level. 

II. SPACEWIRE STANDARD BASIS 

The SpaceWire Standard ECSS-E-ST-50-12C calls for a 
Low Voltage Differential Signaling (LVDS) physical layer as 
defined in ANSI/TIA/EIA-644, Electrical Characteristics of 
Low Voltage Differential Signaling Interface Circuits. LVDS 
is the most common differential signaling interface. The low 
power consumption, minimal EMI, and excellent noise 
immunity are the features that have made LVDS an interface of 
choice for many applications. 

In its current definition, SpaceWire standard covers up to 
the network level of the layer-based OSI model, with slight 
differences in its organization: 
• Physical layer which gathers the signal and physical level 

specifications in a ISO/OSI sense, including : signal 
voltage levels, signal encoding, noise margins, data rates 
Connectors and PCB wiring 

• Data link layer which lists all the character, exchange and 
packet level specifications in an ISO/OSI sense, including 
data and control characters specification, flow control, 
error detection and link error recovery. 

There are different means to ensure compliance with the 
standard, from a physical and electrical tester (as the 
SpaceWire Margins Tester presented in [4]) to Base Functional 
Model-oriented approach for testing and verification of 
SpaceWire IP-Blocks Interface, as in [1]. Although SpaceWire 
standard has helped reduce incompatibility problems at the data 
link and physical layers, there is still the potential for problems 
at this level. In particular, in some cases the physical layer 
specification defined in the standard is not fulfilling all 
requirements of a specific application, and remains incomplete 
(for instance with regard to common mode range, jitter, bit 
error rate, …). 

 Moreover test and verification of interfaces includes 
different subsets of SpaceWire standard layers, which makes 
even harder to cover all the possible implementations and 
application’s specific needs.  
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III.  SPACEWIRE VALIDATION TEST PLAN  

From this perspective, the first task of this study was to 
establish a SpaceWire Validation Test Plan (SVTP), through a 
working group led by DTSO and composed by CNES and the 
two main space-industrial actors Astrium-F and TAS-F, in 
order to cover all the ECSS standard specifications (from 
character level to packet level), and also to complement it with 
regard to the physical and electrical requirements. In the latter 
case, some additional tests were specified in the SVTP, which 
introduces a group test classification, at signal level, based on 
input and output signals. The main requirements added in that 
section of the SVTP concern common mode, noise, Rise / Fall 
time, Amplification / Attenuation, Skew, Jitter, BER and 
dynamic output signal balance tests (see below for further 
details). 

The methodology offered through this SVTP is willingly 
and substantially based on the approach used for the MIL-
STD-1553 Validation Test Plan. This document is built on 
these main sections: 

• Section 2 is the presentation of the documentary 
reference system, and Section 3 shows a general 
description of SVTP perimeter, 

• Section 4 shows the set of requirements that a 
SpaceWire interface shall fulfill, and also deals 
with guideline rules for designing and 
implementing a SpaceWire Interface (referring 
either to ECSS standard (ECSS-Q-ST-70-08 or 
ECSS-Q-ST-70-26) or implementation feedback 
gathered among the SpaceWire users community). 
It provides useful recommendations for PCB and 
backplane tracking as well as conceptual advises 
to system designer (such as fail-safe extension 
feature like described in [11]). 

• Section 5 presents hardware setup for test 
execution, section 6 lists the corresponding test 
procedures and section 7 gathers through a table 
all requirements and the method that will be 
applied on each test,  

• Section 8 contains the traceability matrix between 
SVTP requirements and ECSS requirements, and 
section 9 is for appendixes. 

 
Fig. 1.  SVTP Common mode offset requirements 

Taking the example of the common mode offset test at the 
input level of the UUT, according to the SVTP (based itself on 
LVDS standard), each LVDS input shall be tolerant to a 
common mode voltage through a range from 0.2V to 2.2V with 
a maximum of ±1V ground noise. The recommended voltage 
applied to the receiver is between ground and 2.4 V with a 

common mode range of 0.05 V to 2.35 V, like depicted in Fig. 
1.  

For testing the compliance of the UUT, the hardware setup 
corresponding to this test is based on the SVTP general test 
setup configuration for testing SpaceWire Inputs, and relies on 
a specific signal disrupter (offset generator injected at the input 
level) as illustrated in Fig. 2. below. 

 

 
Fig. 2.  Hardware setup and signal disrupter for SVTP Common mode offset 

test 

Offset values with 250mV ±10% step are injected onto 
TX1-D± and/or TX1-S± and expected VCM common voltage 
read at RX2-D± and/or RX2-S± inputs is measured. VCM is 
computed as (RX2-D+ + RX2-D-) / 2 or (RX2-S+ + RX2-S-) / 
2). The corresponding SVTP procedure is presented in Fig. 3. . 

 
Fig. 3.  SVTP Procedure for Common mode offset test 

The next section of the SVTP gathers in a table all the 
validation methods applicable for this test, with standard 
terminology (A: Analysis - I: Inspection - D: Demonstration - 
F: Frequency = sYstematic/Unitary/Several). 

IV.  GROUP TEST CLASSIFICATION &  DESCRIPTION 

Two main categories have been specified in the SVTP, for 
considering independently the input and output level of a 
SpaceWire Interface, mainly based on [6]. The main tests 
addressed in the Input Level Group Test concern:  

• Voltage span or differential input voltage 
threshold 
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• Bias tolerance or common mode voltage tolerance 
• Rise and Fall time tolerance 
• Common and differential mode noise tolerance 
• Common and differential impedance/ground 

properties 
• Failsafe properties verification 

The latter test is not treated as an “execution test” like the 
others but rather with a design rule due to the black-box testing 
principles (the UUT is only accessible through his outside 
connector and not on his internal interface). 

The Output Level Group Test gathers the following 
compliance tests:  

• Offset voltage and balance measurements: this 
measure is of particular interest for measuring 
design margin since SpaceWire isn’t DC balanced. 

• Output swing 
• Jitter and skew  
• Overshoot and undershoot 
• Rise and Fall time characterization 
• Dynamic Output Balance 
• Common and differential impedance/ground 

properties 
Furthermore two more tests have been added in the SVTP: 

• Eye pattern test: as presented in Fig. 4. , there is a 
number of measurements that can be made and 
extract information from the eye diagram at 
termination resistor level (offset voltage, output 
swing, jitter, rise/fall time,). In the SVTP, this is 
used to correlate the previous individual 
measurements and also to measure margins on 
these parameters.  

 
Fig. 4.  Eye pattern measurements 

• BER test  
BER testing is very time-intensive: the time length of the 

test is determined by the data rate and also the desired 
performance bench mark. For example : for achieving a correct 
BER (Bit Error Rate) < 10-12 without noise injection, the test 
has to be run for @ 1,38 hours at maximum data rate (200 
Mbit/s) or @ 27,7 hours at default data rate (10Mbit/s).  

To minimize the time required for the BER Test, method 
similar to MIL-BUS procedure has been adopted [5] : the test 
is launched while stressing this communication link. Every bit 
error, time test is increased by transferring more data bit or stop 
test. The noise test shall run continuously until the total number 
of data received by the UUT exceeds the required number for 

acceptance of the UUT or is less than the required number for 
rejection of the UUT. The measurement is computed 
automatically by the tester: each data transmitted by the tester 
is returned by UUT on the worst path, i.e. a cable of maximum 
length (defined for the equipment) at maximum data rate with 
pseudo-pattern sequence for data for optimizing Inter Symbol 
Interference. 

It should be noted that prior to executing the compliance 
tests provided by the SpaceWire Validation Test Bench, the 
UUT shall enter a specific Test Mode at SpaceWire Interface 
Level, in which the UUT returns all data packets received on 
his receive end-point: as recommended in [4], the loop-back is 
implemented at the SpaceWire CODEC level (Fig. 5. ) to 
insure better results, in particular for BER testing. Currently 
the SVTP specifies that this Test Mode shall be entered either 
when receiving a specific time code sequence from the HOST 
(referred to as Initialization Sequence) or simply by setting a 
bit in a configuration register after power-up. 

 
Fig. 5.  Loopback implementation for error reporting level & measurement 

method  

V. VALIDATION APPROACH 

Considering the needs for assessing the compliance of a 
SpaceWire Interface (flight-model or board interface 
validation, AIT-AIV procedures, including late investigations 
allowing limited access to the SpaceWire interface), a black-
box approach has been adopted: the SpaceWire interface is 
only available at his external interface (connector only) and not 
internally at component level. 

For that matter, the SpaceWire Conformance Tester (SCT) 
from Star-Dundee provides a wide range of tests to probe and 
to insure the compliance with the higher levels/layers of the 
standard (from character to exchange levels). Indeed even if 
some low-level (link or bit-level) tests are proposed through 
this tool, it doesn’t provide an acceptable coverage of the 
physical and signal layers : [2] it is more likely intended for 
debugging purposes, to the attention of hardware and software 
engineers developing and using SpaceWire systems.  

Using SCT to cover upper layers of the standard is coherent 
with the black-boxing testing philosophy: the conformance 
tester has no knowledge of the internal structure or behavior of 
the UUT and can only investigate conformance by stimulating 
the UUT in different ways and then analyzing the visible 
behavior. 

Taking into account the features and capabilities of a the 
SCT, the remaining key need towards SpaceWire Interface 
Validation resides in physical and electrical layers testing, 
according to the SVTP requirements previously established, 
which can’t be addressed with the Star-Dundee tool.  
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VI.  SPACEWIRE VALIDATION TEST BENCH 

In order to better fulfill all the SVTP requirements taking 
advantage of the strengths of existing tools, the prototyping of 
the SpaceWire Validation Test Bench relies partly on the SCT 
with regard to the data link layer compliance tests (as it 
provides the best ECSS specifications coverage for this layer), 
complemented with a specific part to address the remaining 
SVTP requirements at physical and electrical level of the 
interface.  

 
Fig. 6.  SpaceWire Validation Test Bench Architecture 

The overall architecture of the SpaceWire Validation Test 
Bench is therefore based on the following subsystems or 
components, as depicted in Fig. 6. :  

• SCT from Star-Dundee for executing compliance 
tests from character level up to packet level  

• Host SpaceWire Traffic Generator from DTSO for 
executing compliance tests at electrical and 
physical level 

• An HMI interface implemented using 
LabWindows/CVI on Windows PC, to control. 

According to the tests to be performed, a set of metrology 
equipments have to be added like Scope, Ohmmeter, Noise 
generator, any material for observed physical signals. 

Special attention must be paid to the performances of the 
equipment, the required characteristics being specified in the 
SVTP. For instance, for a 200Mbit data rate, an adequate 
oscilloscope should have at least 500 MHz wide bandwidth 
with sampling frequency greater than 2 GHz, with wide 
bandwidth differential probe (1GHz). 

The Host SpaceWire Traffic Generator is built around two 
main parts: a digital subsystem, and an analog subsystem, as 
depicted in Fig. 7. . The architecture and conception of the 
SpaceWire Validation Test Bench allows to apply (at input 
level) or characterize (at output level) the worst physical layer 
conditions the UUT SpaceWire link can tolerate for a given 
error rate, making possible to easily evaluate margins of the 
design. 

 
 

 

 
Fig. 7.  Host SpaceWire Traffic Generator architecture & bread boarding 

VII.  TEST BENCH HOST-MACHINE INTERFACE 

The HMI implementation, as depicted in Fig. 8. , is based 
on configurations file (conf, input, output), which makes the 
user test environment much more flexible and easy-to-use   :  

• « config.ini » constitutes the main configuration 
file, organized in different subcategories, for 
instance : [COMMUNICATION] for configuring 
the HMI interface with the test bench, 
[SPW_PARAM] for configuring the UUT 
SpaceWire Link, [TEST_PARAM] allowing the 
user to identify and select a particular subset of 
tests, depending on the validation perimeter aimed 
for the UUT. 

• Input configuration files depending on the data 
rate range of the UUT, user has to select the right 
configuration file depending on the reception data 
rate of the UUT. These files contain all the 
predefined parameters for a specific data rate 
(according to the SVTP specifications), allowing 
the user to adapt these parameters to its particular 
needs (rising and falling time, jitter and skew 
criteria,). 

• Output files which correspond to the log outputs 
of the SVTF and the detailed reports established 
during the tests execution. 
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The HMI main features are the following:  
• Each test is independent and can be bypassed if 

needed or impossible to do (for example, if we 
cannot unplugged 100 Ohms resistor on UUT 
inputs).  

• Each test is based on parameters which can be 
changed according to user requirements.  

• Each test result is printed on HMI with colors 
code (grey: not passed / green : test passed / red: 
test failed) 

• Each value of observed signal is filled through 
HMI panels 

• The global sanction of SpaceWire conformance is 
printed in a file and screenshots are added to the 
final report. 

 

 
Fig. 8.  SpaceWire Validation Test Bench HMI  

VIII.  TEST BENCH CONSTRAINTS &  LIMITATIONS  

The limitations of the current test bench prototyping, 
mainly due to technical constraints or depending directly on the 
SVTP orientations, are listed below:  

• Other hardware parameters like EMC, ground plan 
tests, environmental tests, high frequency noise 
shall be treated at mission/equipment level. 

• Transmission & Reception data rate of the test 
bench are limited between 2Mbps up to 160Mbps.  

• Skew and jitter test limitations, due to the 
limitation of the FPGA technology, which provide 
limited resources in term of internal delays (high-
precision programmable delay element). The max 
data rate limitation results from these constraints 
which have led to the development of different test 
bench configuration files (in particular in term of 
FGPA bitstreams) depending on the data rate 
range of the UUT ([2Mbps, 10Mbps], [10Mbps, 
20Mbps], ...) for optimized performances. 

• Regarding the SVTP noise tolerance requirements, 
the method using a bulk current injection probe 
has revealed some limitations mainly due to the 
test equipment performances and capabilities: it 
didn’t allow to precisely control the injected noise 
level as required, unlike a noise generator setup 
which has been used instead. For noise sensitivity 

measurements, [3] recommends the capacitive 
coupling (injection with an external function 
generator through a capacitor) or a bulk current 
injection method in which an external function 
generator is previously coupled with a RF 
amplifier before injection through a bulk current 
probe. 

• Limitations intrinsically due to the black-box 
testing principles (in particular for fail-safe tests, 
or for tests that require having access to the 
internal hardware resources of the UUT Interface) 

 
In the frame of the final task of the study, the test bench has 

also been validated and operated on CNES products (based on 
the CEA SpaceWire IP CODEC, licensed by CNES), and is 
foreseen to be also evaluated and valorized on Astrium 
product, like SCOC3 or OSCAR equipment. 
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Abstract—The new generation meteorologic satellite of China 
selected SpaceWire as the best solution to satisfy the desire for 
standard and simple interfaces among instruments of spacecraft. 
Data generated by science instruments and are sent to 
intellectualized data processor for checking，multiplexing and 
formatting. Using SpaceWire as the interfaces between science 
instruments and intellectualized data processor, we can obtain 
many benefits, such as having flexible speeds on links, easing 
connection and control, simplifying the whole network architecture, 
etc. Thanks to SpaceWire router, several input links can route to a 
same out port, multiplexing them into a data stream, and we can 
save a lot of memory space. The intellectualized data processor can 
check the data from the out ports of SpaceWire router, and 
diagnose whether the SpaceWire packets is correct. If there has 
incorrect packets, the intellectualized data processor will deal with 
them intellectually and transmit the wrong status to Ground Station. 
This paper describes the SpaceWire network of payload instruments 
and how the intellectualized data processor works. 

Index Terms—satellite, SpaceWire, data processor 

I. INTRODUCTION 
FY-4 is the second generation of Meteosat geostationary 

meteorological satellite, the main development objectives are: 
satellite attitude stabilization mode is the three-axis stabilized 
which improve the time resolution observations and regional 
mobile detection capability; improve imaging device 
performance, in order to strengthen the ability of monitoring 
weather systems; development and microwave detection 
Atmospheric Sounding solve three-dimensional high-orbit 
remote sensing; the development of extreme ultraviolet and X-
ray solar observation, to enhance space weather monitoring and 
warning. 

The payload equipments of the satellite are the two-
dimensional scan of 10-channel imager, the atmospheric 
vertical interferometric detector, the lightning imaging device, 
and the CCD camera. 

At present, many kinds of bus are applied to spacecraft for 
data transmission, telecommand and telemetry, such as MIL-
1553B, CAN, RS485 and RS422. The outburst feature of the 
these bus is that the data transfer rate is very low, less than 
1Mbps as usually. And there are more and more equipments on 
the spacecraft which the data speed is more than 1Mbps. 

Therefore we need a high-speed data bus to satisfy this 
requirement. 

In terms of the interfaces of traditional equipments, once 
connecting the cables, the paths of transmitting data are fixed. 
And the information among the electronic equipments can’t 
flow freely and share for each other. If there has a router on the 
spacecraft like that the Ethernet router in our office, we can 
solve this problem and make the information flow freely 
among the electronic equipments on satellites.  

There is another problem should be solved is that many 
kinds of  electronic equipments on satellite and the system 
functions are very complicate, so the test and verification for 
Electronic system is a great challenge, especially finding  and 
locating the faults.  To solve this problem, it is necessary to 
develop the intelligent aerospace electronic equipments which 
have the function for health monitoring and maintenance. 

In order to solve the two problems mentioned above, we 
developed the intellectualized data processor base on 
SpaceWire successfully. Using the standard SpaceWire 
interface simplified and unified the interfaces of equipments, 
and the SpaceWire router breaks the limit between the 
traditional electronic equipment to provide information 
transmission path is fixed, make the device information sharing 
possible. And the router provide more SpaceWire links, this 
can realize the transmission link redundancy and fault isolation 
between the equipments. The data processor also has intelligent 
data judgment and processing functions, provide the functions 
of telemetry data monitoring system widely. 

 

II. THE DATA PROCESSOR ROUTING FUNCTION AND 
ADVANTAGE BASE ON SPACEWIRE 

The intellectualized data processor has used the AT7910 
which produced by ATMEL as the SpaceWire router. The 
AT7910 ASIC chip has eight bidirectional SpaceWire 
interfaces and Two External Interfaces, and data rate from 2 up 
to 200 Mbps in each direction of  SpaceWire link. In the The 
intellectualized data processor, there are five SpaceWire 
interfaces are used, as showed in figure 1. 
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Figure 1 Data Processor Block Diagram 

 
The port1 to port4 of SpaceWire router are connected to the 

payload equipments, and the local interfaces port9 and port10 
are connected FPGA.  

Using the SpaceWire router, compared with the traditional 
data processor, there are following advantages at least: 
(1) Simplified the system interfaces. Using the standard 

SpaceWire interfaces, unified the connection within the 
electronic system, the SpaceWire cable can be 
interchangeable, providing convenience for system 
interconnection and the interface definition. 

(2) The data transmission paths are more flexible, the 
performance of link redundancy is more outstanding. Four 
SpaceWire ports connected with the payload equipment 
scan fully interchangeable, the payload equipments only 
need specified by the PORT9 or PORT10 sends the data to 
the data processor, without attention from PORT1 to 
PORT4 which port access. Due to the routing function, 
payload equipments can be set the corresponding target 
address, communicate with each other through the 
SpaceWire router. In addition, the data processor, port 8 
connected as a backup interface. When the fault of any 
link PORT1 to PORT4 occurs, you can easily transmit the 
link data to the backup equipment through PORT8, which 
can improve the reliability of data transmission. 

(3) Providing the flexibility of Routing configuration, can 
provide the onboard network management function. The 
routing chip configuration can be completed by the local 
PORT9 or PORT10, or by SpaceWire port through the 
remote configuration commands. Based on the function of 
routing chip configuration, the link rate can be set to any 
SpaceWire interface, and the any SpaceWire port can be 
opened or closed according to the needs. In addition, the 
parameters of the SpaceWire router can be setted by the 
SpaceWire node through SpaceWire links. 

(4) Providing the function of data multiplexing. Using the 
routing function, when the data packets come from several 
SpaceWire links, and routed to the one output port, the 

data packets are multiplexed in a data stream. Because the 
SpaceWire data packets are packet EOP or EEP, it can 
easily find the start and the end of the data packets. And it 
doesn’t need extra storage memory to multiplex the data 
by user. 

 

III. INTELLIGTENT PROCESSING OF THE DATA PROCESSOR 
The intelligent processing functions of the data processor 

we developed are mainly manifested in the following aspects: 
(1) the local configuration and route configuration for 

SpaceWire router. 
(2) The intelligent judgment and processing of the instructions. 
(3) The intelligent judgment and processing of the high-speed 

payload data. 
(4) The function  of  health monitoring. 

 

A. The variety configuration modes of SpaceWire router 

                              Figure 2  the variety configuration modes of  
SpaceWire router 

The electronic system based on SpaceWire network, the 
correct configuration of the nodes and router is very important. 
And if we can modify the configuration parameters of the 
SpaceWire nodes and routers when it need to, it will be very 
convenient to operate the equipments onboard and can 
maximize the system functions. As showed in figure2, the 
SpaceWire router has at least three configuration modes: 
(1) Local configuration mode. When the data processor is 

powered or reset, the FPGA can configure it as system 
default mode. 

(2) Remote configuration mode by SpaceWire links. The 
SpaceWrie remote nodes can configure the SpaceWire 
Router by SpaceWire links if it needs to need change the 
work mode, such as link speed, link on/off, ect. 

(3) Configure the router work mode by telecommand  for the 
ground station. The data processor can receive the 
telecommands which retransmitted by others equipments, 
and change the router work mode if it is required. 
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B. The intelligent judgment and processing of the instructions. 
The traditional data processor just passively accepts 

instructions and executes the instructions. Instruction sender 
cannot know whether these instructions are correctly received 
by data processor. This approach is not conducive to situation 
of the fault condition problems. 

In order to solve this problem, the data processor receives 
the instructions, and checks the correctness of every 
instructions format and the check-sum, only the correct 
instruction will be executed. Whether instruction is correct or 
not, the data processor will return the check the results to the 
digital command sender. Thus, the sender can judge whether 
instruction is sent successfully by the return instruction packet 
content, if there has transmission error, the sender can 
determine what kind of error is. The intelligent judgment and 
processing of the instructions can effectively improve the 
reliability and safety of the instruction transmission. 

 

C. The intelligent judgment and processing of the high-speed 
payload data 
Before processing the high speed data from the SpaceWire 

links of the payload equipments, the data processor will check 
the data packets at first. The content which will be checked 
includes logic address checking, protocol type checking, the 
counter continuity of the data packets checking and the length 
of the data packets checking.  

If the logic address or the protocol type of the data packet is 
error, the data processor will discard the incorrect data packet. 
If the counter of the data packets is not continuous, the data 
processor just gives a flag to show that the data packet received 
is not continuous. If the data length is not correct, the data 
processor will cut the longer data packet into the specified 
length, and fill the shorter data packet into the specified length. 
The longer data packet truncation is easy in implementation, 
but how to fill the shorter data packet into specified length is a 
little complex.  

The following analysis will show the possibility of filling 
the shorter packets into specified data length in theory. 

Hypothesis, there have N channels data will be routed to 
the same out port of the SpaceWire router, the data rate of the 
channel i is Vi, and 1≦i≦N, i is integer. The output rate of the 
router port is V, and The data length of packets from N 
channels is the same, L bits.  

In order to ensure that the packets are processed and 
transmitted correctly, it must enquire the inequality 1. 
Otherwise, the data will be lost. 

VVN

i i  1
              （1） 

Suppose that when the data processor had checking the 
length of the data packet, and finds the channel s has a shorter 
data packet, the data length is Ls, and Ls <L. the data rate of 
channel s is Vs. The short The data processor will fill the data 
length from Ls to L. Then the output data amount of the out 
port per second is: 
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In order to ensure the data is not lost, it should meet the 
inequality 3 as showed below. 
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After testing, if the length of the short packet meets the 

inequality 4, the data process can fill the short packet into the 
specified length without data loss. 

 

D. The function  of  health monitoring 
The on-board intelligent data processor base on SpaceWire 

router has the function of collecting the health states 
extensively. This includes the following: 
(1) Monitoring the state of the SpaceWire router. Such as link 

speed, link on/off state, link errors and some key 
parameters of router. 

(2) Monitoring the execution of instructions. After checking 
the received instructions, the data processor return back 
the check results to the instructions sender, and after 
executing the correct instructions, the data processor also 
can send the execution results by telemetry. 

(3) Monitoring the high speed payload data packets. The data 
processor will check the correction of the received high 
speed payload data packets, such as whether the logical 
address is correct, whether the protocol type is correct, etc. 

 

IV. CONCLUSION 
This paper introduced that using SpaceWire router on 

traditional data processor, what simplifies the aerospace 
electronic systems within the interfaces, provides more flexible 
interconnection method for the information transmission, and 
easy to realize redundant backup at link level. The data 
processor has some intelligent functions such as supporting a 
variety of ways to configure the parameters of SpaceWire 
router, and can realize on-orbit maintenance. Increasing the 
intelligent judgment of instructions receiving and processing, 
which enhance the reliability and safety of the data processor.  
The system health monitoring makes it more convenient for 
work and ground test. 

The intelligent processing and maintenance of Aerospace 
electronic equipment will be an important direction for future 
development. Especially in deep space exploration and 
emergency task, intelligent processing and maintenance 
function is more important. We developed intelligent data 
processor based on SpaceWire routing has carried on the 
beneficial attempt and explore in this aspect. 
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Abstract—SpaceWire is a standard for on-board satellite 

networks chosen by the ESA as the basis for future data-handling 

architectures. Because SpaceWire does not use the bus-shared 

arbitration, no collision would happen in the link. However, 

congestion may occur when simultaneous input port data attempt 

to share one output port of the router. Therefore, the arbitration 

scheme in SpaceWire router plays an important role on real-time 

performance. This paper researches on real-time performance 

simulation of SpaceWire router with three polling arbitration 

schemes. According to SpaceWire protocol, a SpaceWire 

simulation model based on OPNET Modeler is proposed, and 

with the functionality of OPNET Modeler, the 

network/node/process models are set up. And then three polling 

arbitration schemes such as FULL polling, EQUAL polling and 

WEIGHTED polling, are proposed in router node. After that, the 

validation of the simulation model is presented. And finally a 

simulation case on typical application is presented. The 

simulation focuses on the ETE delay of the packets, when 

aforementioned three polling schemes are implemented. The 

simulative results indicate that a suitable polling scheme can 

obtain better real-time performance.  

Index Terms—SpaceWire, real-time, simulation, OPNET.  

I.  INTRODUCTION 

SpaceWire is a standard for on-board satellite networks 

chosen by the ESA as the basis for future data-handling 

architectures 
[1]

. Since SpaceWire does not use the bus-shared 

arbitration, no collision would happen in the link. However, 

congestion may occur when simultaneous input port data 

attempt to share one output port of the router. Therefore, the 

arbitration scheme in SpaceWire router plays an important role 

on real-time performance 
[2]

.  

This paper researches on real-time performance simulation 

of SpaceWire router with three polling arbitration schemes 

such as FULL polling (FP), EQUAL polling (EP) and 

WEIGHTED polling (WP). According to SpaceWire protocol, 

a SpaceWire simulation model based on OPNET Modeler 
[3]

 is 

proposed. And then three polling arbitration schemes FP, EP 

and WP, are proposed in router node. To verify the 

effectiveness of the aforementioned simulation model, an 

analysis method is presented. And both simulation and analysis 

have the consistent results. Finally a simulation case on typical 

application is presented. The simulation focuses on the end-to-

end (ETE) delay of the packets, when aforementioned three 

polling schemes are implemented. The simulative results 

indicate that a suitable polling scheme can obtain better real-

time performance. 

 II.  OVERVIEW OF THE SPACEWIRE 

A. SpaceWire Protocol 

SpaceWire is an emerging standard for on-board satellite 

networks, which uses serial, bi-directional, full-duplex links, 

with speeds for data high-speed transmission ranging from 2 

to 400 Mbps. The newest SpaceWire Standard ECSS-E-50-

12C is specified for physical connection to implement high-

speed data transmission and data exchange. It comprises six 

levels as follows: Physical Level, Signal Level, Character 

Level, Exchange Level, Packet Level, and Network Level.  

B. SpaceWire Network 

SpaceWire network is composed of point-point links, 

nodes, and routers. SpaceWire node is the source or 

destination of a packet. SpaceWire router provides a means of 

routing packets from one node to other nodes. SpaceWire 

offers unprecedented flexibility in the choice of network 

topology to match the mission requirements 
[4]

. It involves 

point to point, chains, rings and trees, even complicated 

topologies such as multi-dimensional chains and toroid. Figure 

1 gives a specific example of SpaceWire network topology 

architecture 
[5]

. 
 

Instrument*

5

LA41

LA52

LA53

LA54

LA60

Router

1

Memory

Processor

LA70

LA80

Router

2

Instrument

2

Instrument

4

Instrument

3

Instrument

High Rate

equivalent to 

SpaceWire node  

180



 

 

Fig. 1 An example of SpaceWire network topology architecture 

C.  Polling Arbitration Schemes in Router 

SpaceWire routers enable packet arriving at input port to be 

transported to the corresponding output port according to its 

destination address. When simultaneous input port packets 

attempt to share one output port of a router, it may cause 

congestion. Therefore, a scheduling mechanism can be 

proposed to schedule these input queues. 

Because SpaceWire has no specify definition on the 

scheduling mechanism, in this paper, we propose polling 

scheduling mechanism, which is simple, and can be used 

between interfaces of different data rate for the SpaceWire 

routers. And the arbitration scheme model in router can be 

seen in figure 2. 
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Fig. 2.  Arbitration scheme model in router. 

III.  OPNET SIMULATION ON SPACEWIRE  

Based on the above-mentioned SpaceWire standards and 

polling arbitration scheme, a simulation model of SpaceWire 

network can be setup to evaluate the ETE delay of SpaceWire 

networks. The simulation model involves several aspects such 

as SpaceWire node model, router model and network model. 

A. SpaceWire Node Model 

SpaceWire node is the source or destination of a packet. It 

can be a processor, memory unit, sensor or some other units 

connected to a SpaceWire network. SpaceWire node can be 

designed in OPNET as shown in fig.3.  

upper_src

manager

xmt rcv

 
Fig. 3 SpaceWire node model 

Where, 

Upper_src is a generator module to create packets. It will 

produce packets at a certain period and certain length, and 

then send them to the manager module. 

Manager is a message processing module. It can receive 

packets generated in the upper_src module, and use a user-

defined process model to assign destination addresses to the 

packets or segment them. It can also retrieve packets arriving 

from the point-to-point receiver. Upon receiving a packet, it 

uses the same process to calculate the packet's end-to-end 

delay and write the value to a global statistic. Then, manager 

sends them to the point-to-point transmitter of the node. 

XMT / RCV is a point-to-point transmitter/receiver pair for 

each node, allowing packets to be sent or received from other 

nodes via attached links. They work as a pair of 

communication ports of SpaceWire node. 

B.       SpaceWire Router Model 

SpaceWire router is designed to connect many nodes 

together and provides a means of routing packets from one 

node to other nodes. In OPNET, SpaceWire router is designed 

with Polling scheduling mechanism and path addressing, as 

shown in fig. 4. 
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Fig.4 SpaceWire router model 

Where, 

Rcv0 ~ 7: receivers, which receive packets from other nodes 

via attached links;  

Input_FIFO_0~7: input queues, which provide internal 

packet queuing facilities to store these packets, and then send 

them to the Crossbar_Switch.  

FIFO_0~7: output queues, which store the packets waiting 

for being transmitted by the corresponding output port.  

Xmt0 ~ 7: transmitters, which send the packets to the 

adjacent links.  

Crossbar_Switch: Processing module, the core of a router, 

is used to determine the output port to route a packet to by 

checking its destination address. Additionally, it provides a 

means of queue scheduling to schedule the input queues, who 

request for the same output port, in order to solve the 

competition problem. We propose polling arbitration scheme 

for this module. And the process model represents the 

arbitration behavior of output queue in the SpaceWire router. 

Polling arbitration scheme can be implemented by finite state 

machine in OPNET. 

C. SpaceWire Network Model 

The SpaceWire Network Model is setup according to the 

topology described in fig. 1. The network topology consists of 

seven nodes, two routers and several SpaceWire links. Where, 

LA41, LA52~ LA54, LA60, LA70, and LA80 are working as 

nodes. Among them, LA70 is a mass storage, the destination 

of LA41, LA52 ~ LA54, LA60 and LA80. As a processor, 
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LA80 is used to transmit the packets coming from LA54 to 

LA70 for storage. LA60 collects packets from sensors, and 

then sends them to LA70 mass storage. 

We assume that the link can work properly, and the buffer 

capacity is set to infinite. 

IV.  VERIFICATION  

In this section, an analysis method is proposed to verify the 

effectiveness of the aforementioned simulation model. 

A.             the Scenario Parameters 

The scenario parameters are set as in Table I. 

 

 

 

 

 

 

 

 

 

 

 

 

B. Model Verification 

Ref. [6] proposes a method to compute the end-to-end delay 

of a packet in a SpaceWire network. The method of 

computation is based on the idea that in a SpaceWire network, 

the delivery of a packet can be divided into two phases: being 

transmitted through the SpaceWire links and being routed 

across the routers. We take the maximum delay for each input 

link and add those values to the delay for the packet from 

itself. As the source and destination of the packet do not cause 

any delays and no collision would happen in the link, the 

worst case delay for packet occurs in the router. 

The maximum ETE delay: the worst case delay occurs 

when the output port is already in use by another packet, and 

there is one or more packets coming from other ports may 

already be waiting for the same output port to become free.    

The delay is denoted as
maxd . 
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Where,  

n     is the number of routers in the SpaceWire network. 

l      is the number of the links that the packet follows. 

Tf /C is the delay of each link, which is calculated by packet 

length/link transmission speed.  

SF   is the set of packet flows that have the same source as f.  

fin    is the packet flow that use the link lin . 
j

lin
U   is the set of packet flows that use the links (except lj) 

attached to the router j. 

lj       is the ordered list of the links the packet flow f follows.   

Now, we mainly consider about the packet ETE delay 

impacted by the packet length. For simplicity, it is supposed 

that there are only LA52 and LA53 sending packets. Then we 

analyze the impact of the parameter on the packet ETE delay. 

 
Table II shows that the deviation between the simulation 

results and exp.(1) is not more than 1.505%, which indicates 

that the OPNET simulation results are consistent with the 

analysis results. This verifies the validity of the simulation 

model.  

V. SIMULATION AND ANALYSIS 

In this section we discuss the relationship between the ETE 

delay and the packet length for specific scenario and specific 

message flows, when the arbitration scheme in router is set to 

FP, EP and WP, respectively. 

 

A. Simulation Scenario & Message Parameters 

The scenario parameters are setup as the same as in Table I, 

and the network topology is setup as in section III.C. And the 

message parameters are shown in Table III. The period of 

LA53 and LA52 are both set to be fixed on 200us. The packet 

length of LA52 is 4Kbits. And the packet length of LA53 is 

set 10K, 15K, 20K, 25K, 30K, 36K(unit: bits) respectively. 

According to three polling schemes, the corresponding polling 

factors are defined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Simulation  

Figure 5 presents the relationship between the ETE delay of 

LA52 and the packet length of LA53 when the arbitration 

TABLE I 

SETTING THE SCENARIO PARAMETERS 

Symbol Quantity Value 

Ts Simulation time 100s 

S Simulation seed 10 

BER Link bit error rate 0 

C Link bandwidth 200Mbps 

Ti 
Packet transmission 

starting time 
Exponential distribution 

(mean value:0.01s) 

dsw Scheduling delay P(packet length)/C 

 

 

TABLE II 
COMPARISON ON MAXIMUM ETE DELAY 

LA53 LA52 LA53 

packet 

length 

Maximum delay Maximum delay 

exp.(1) opnet deviation exp.(1) opnet deviation 

(Kbits) (us) (us) (%) (us) (us) (%) 

0.1 100.5 100.056 0.442 81 80.682 0.393 

4 120 119.906 0.078 120 119.742 0.215 

8 200 196.991 1.505 220 217.802 0.999 

16 360 359.49 0.142 420 419.283 0.171 

30 640 639.468 0.083 770 768.999 0.13 

36 760 758.027 0.260 920 918.506 0.162 

 

 

TABLE III 
SETTING THE MESSAGE PARAMETERS 

 LA52 LA53 

Polling 

arbitration 
scheme 

Packet 

Length 
Period 

Polling 

factor 

Packet 

Length 
Period 

Polling 

factor 

FP 4Kbits 200us 4Kbits 
 

variable 

10 Kbits 

15 Kbits 

20 Kbits 

25 Kbits 

30 Kbits 
36 Kbits 

 

200us 
= Packet 
Length 

WP 4Kbits 200us 400bits 200us 800bits 

EP 4Kbits 200us 400bits 200us 400bits 
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scheme in router is set to FP, EP and WP, respectively.  

 
Fig. 5 The ETE delay of LA52 versus the packet length of LA53 

Figure 5 shows that: 1) For FP, the ETE delay of LA52 

increases sharply from 134.87, 182.46, 240.17, 289.75, 329.66 

to 396.71 (unit: us) when the packet length of LA53 increases 

from 10, 15, 20, 25, 30 to 36 (unit: Kbits). 2) for both EP and 

WP, the ETE delays of LA52 almost do not change, and 

the delays of two schemes are all less than 50us. Both of them 

are significantly less than the ETE delay of FP. 3) FP has the 

highest ETE delay among the three polling arbitration 

schemes, while the delay of EP is slightly smaller than that of 

WP. 

Figure 6 presents the relationship between the ETE delay of 

LA53 and its packet length when the arbitration scheme in 

router is set to FP, EP and WP, respectively.  

 
Fig. 6 the ETE delay of LA53 versus the packet length of LA53 

Figure 6 shows that: 1) For FP, the ETE delay of LA53 

increases sharply from 170.58, 243.92, 317.75, 319.57, 

465.41to 553.99 (unit: us) when the packet length of itself 

increases from 10, 15, 20, 25, 30 to 36 (unit: Kbits). 2) for 

both EP and WP, the ETE delays of LA53 both increase 

slowly, while the delays of this two schemes are significantly 

smaller than that of FP. 3) FP has the highest delay among the 

three polling arbitration schemes, while the ETE delay of EP 

is slightly smaller than that of WP.  

 

C. Result  

Based on the specific scenario and specific message flows 

defined in Section V, we can infer the following results. First, 

the FP has the highest ETE delay among the three polling 

arbitration schemes, and the delay strongly depends on the 

packet length. That is to say, the FP has the worst delay 

performance among the three polling arbitration schemes. 

Second, the ETE delay performances of the other two schemes 

are almost similar, although the ETE delay performance of EP 

is slightly better than that of WP. 

VI. CONCLUSION 

In this paper, a real-time performance simulation of 

SpaceWire router with three polling arbitration schemes such 

as FULL polling (FP), EQUAL polling (EP) and WEIGHTED 

polling (WP) is researched. According to SpaceWire protocol, 

a SpaceWire simulation model based on OPNET Modeler is 

proposed, and three polling arbitration schemes FP, EP and WP, 

are proposed in router node. After that, an analysis method is 

presented to verify the effectiveness of the aforementioned 

simulation model. Finally a simulation case on typical 

application is presented, and the simulative results indicate that 

a suitable polling scheme can obtain better real-time 

performance. 
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Abstract—SpaceWire, an on-orbit high-speed network, has lots 

of useful characteristics which are high speed, full-duplex, 

convenience of setting up, flexible topology and open-protocol. 

Now SpaceWire has become the new generation of on-orbit data 

bus recommended by ESA and NASA, and was successfully 

applied  

At present, the space industry in China is developing at high-

speed, and a number of satellites are planning or preparing to 

launch. SpaceWire bus with its excellent performance has been 

paid more and more attention and studied by Chinese space 

scientists. This paper reviews the current research situation of 

SpaceWire Technology in China, introduces the possible 

application scene of SpaceWire in China spacecraft, and analyses 

the requirement of the new generation high-speed bus in Chinese 

space missions and the applicable situation of the SpaceWire. In 

the end, this paper summarizes the problems which were found 

in Chinese researchers work on the SpaceWire, and concludes 

their advice and wishes. 

key word: SpaceWire, China, Spacecraft Electronics. 

I. SPACEWIRE STATE OF THE ART IN CHINA 

SpaceWire as an on-orbit high speed network, provides a 

unified high speed data-handling infrastructure for connecting 

together sensors, processing elements, mass-memory units, 

downlink telemetry subsystems and electronic ground support 

equipment (EGSE), and has lots of useful characteristics, such 

as high speed, reliability, low power consumption, structure 

simple etc.[1] SpaceWire protocol is open and flexible to be 

compliant with possible future higher demanding needs, has 

broad prospects for development. 

At present, more than 10 research institutes are carrying out 

study on SpaceWire technology, which principally includes 

National Space Science Center , Chinese Academy of 

Sciences(NSSC,CAS), Beijing Institute of Control 

Engineering(BICE), Beijing Institute of Space Mechanics and 

Electricity(BISME), Harbin Institute of Technology(HIT), 

Capital Normal University(CNU), Xi’an Microelectronics 

Technology Institute(XMTI) etc. Through statistics on Chinese 

engineering and technology literatures, as recently as five 

years, the topics with regard to SpaceWire are more than 40 

articles, which involve the field of study as shown in Table 1.  

TABLE I.  STATISTICS ON CHINESE SPACEWIRE ARTICLES  

Fields QUANTITIES 

Summarizes 4 

Components 13 

Test & Verification 3 

Upper layer protocols 1 

Onboard Equipments 2 

 

Is obvious from the previous table, the research on 

SpaceWire is still at primary scenario in China, which is 

mainly reflected in the following 2 aspects. 

First, a lot of work are still focused on summarizes and 

introduction, development on elementary components (such as 

Codec, Router), prototype design on point-to-point 

transmission application, there are wide gaps compared to 

advanced research and application, such as network application 

which interconnects with routers, hardware and software 

design on SOC. 

Second, SpaceWire hardware structure is relatively simple 

to Switched Ethernet and IEEE-1394, the current FPGA design 

method has been very mature. Many research institutes choose 

the Codec IP and Router IP for research objectives, their 

production levels are different, but have the widespread 

problem is lack of succession and full verification, are far away 

from on-orbit space application.  

According to the situation which we grasp, currently, 

outstanding SpaceWire productions in China are as shown in 

Table 2. 

TABLE II.  REPRESENTATIVE SPACEWIRE PRODUCTS IN CHINA  

SpaceWire 

productions 

research 

institutions 
Features Description 

SpaceWire 
Codec IP  

NSSC,CAS 

FPGA: A3P1000,Std; Function: 
Compliance with ECSS-E-ST-50-12C, 

configurable low-power consumption 

mode;  Performance: up to 200Mbits/s 

BISME FPGA: Virtex-5 LX110T; Function: 
Compliance with ECSS-E-ST-50-12C;  
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Performance: up to 300Mbits/s[2] 

SpaceWire 

Router IP 
NSSC,CAS 

FPGA: A3P1000, Std; Function: 8-ports 

Router, Compliance with ECSS-E-ST-50-

12C, Priority based, round-robin 

arbitration ， Group adaptive routing; 

Performance: up to 200Mbits/s, switching 

latency is 100~125ns 

PCI-
SpaceWire 

interface card 

NSSC,CAS 

FPGA: APA600; Function: transmission of 

data and time-codes, monitor and record 

status, link fault Injection；Performance: 

up to 100Mbits/s  

HIT 
Function: transmission data; Performance: 

up to 100Mbits/s[3] 

SpaceWire 
communication 

prototype  
NSSC,CAS 

ASIC: AT7911e; Function: Half-duplex 
communication, transmission of scientific 

data and control commands; Performance: 

140Mbits/s 

II. MAIN SCRAPE OF SPACEWIRE APPLICATION IN CHINA 

SpaceWire has been used in more than 30 space missions. 

With the development of comprehensive national strength, a 

number of satellites are planning or preparing to launch in 

China. But so far, SpaceWire is not yet used in any spacecraft 

in China. Toward this situation, we will attempt to investigate 

and analyze its reason. 

In the present limited demand, the advantage of SpaceWire 

is not obvious. In Chinese spacecraft, with the widespread use 

of the network structure is high reliable 1553B or dual-CAN as 

control bus. 1553B is very mature and almost all satellites are 

widely used in China. So it is the first choice of the on-orbit 

data network with higher prestige. The CAN often gets the 

favour of small satellites. China is also often used RS-422 at 

high data rate transmission application scene. When network 

needs to further improve the data rate, First choice would be 

LVDS connection to constitute several point-to-point links, but 

not be SpaceWire. Investigate its reason, currently in Chinese 

spacecraft, the demand of high data rate is only limited to a few 

imaging science instruments, the data rate of whole network is 

not high. Therefore, individual instruments adopt special 

“point-to-point” LVDS connection already can meet the 

mission, and the need of standard upper layer protocol is 

greatly weakened. 

Costly and complex design on circuit board. According to 

SpaceWire user guide as an example, Each SpaceWire node is 

composed of one AT7911e, two dual-port RAMs and one 

processor. Although SpaceWire has higher reliability than 

LVDS, it has higher cost and complexity. The design fees of 

SpaceWire interface might occupy a very high proportion in 

whole funds of instruments, which let to the designer difficult 

to choose SpaceWire. In addition to expensive besides, 

SpaceWire interface also can lead to volume, weight and 

power consumption is higher, also can take up the whole 

instrument more resources. 

The standard maturity is relatively low, especially for 

control bus in spacecraft. Compared with 1553B, IEEE-1394 

and switched Ethernet, ECSS-E-ST-50-12C only supports the 

data link layer of OSI reference model. Despite the RMAP 

transport layer protocol has been standardized, continuously 

put forward some ideas and design of upper layer protocol, 

such as SpaceWire-RT, SpaceWire-D, SpaceWire-PnP, 

SpaceFibre etc, but in addition to RMAP, these protocols are 

still in draft stage, lack of documents and supported chips. In 

addition, the chips integrated RMAP are rarely, therefore, 

Although Chinese engineers want to solve practical 

engineering problems of reliability and real-time of 

transmission, the protocol status greatly restricted the solution 

to the problem, leading engineers reluctant to use SpaceWire.  

III. THE FUTURE OF SPACEWIRE IN CHINA  

Currently in china, for promoting the SpaceWire 

application, we believe that there are two ways. On the one 

hand, through the integration of protocol control IP and 

interface IP, to develop design of SOC, which can save cost 

and power, size and weight of circuit board, improve the 

availability of SpaceWire. The other hand, SpaceWire as an 

open protocol stack, designer and researcher should is not only 

as technology trackers and imitators, but also actively involve 

in the development of SpaceWire upper layer protocols, 

accelerate the standardization of various upper layer protocols 

in draft stage. 

SpaceWire has been successfully applied in many 

spacecrafts from ESA, NASA and JAXA, which indicates its 

performance and functionality obtained international 

recognition of the major space research institutions, represents 

the development trends of on-orbit data network.  We have 

abundant reason to believe that SpaceWire application in 

Chinese spacecraft will be achieved in the near future. 
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Abstract—SpaceWire is an onboard data-handling network for 

spacecraft which offers high- speed, low power, simplicity, low 

cost, and architectural flexibility. SpaceWire coder/decoder 

(Codec) which uses the DS encoding method to serialize 

SpaceWire characters for communication over the SpaceWire 

link. Standard SpaceWire Codec can alter data signalling rate 

(DSR) in the Run state, but the data signalling rate is not 

adjusted according to the type of transmission character, which 

will cause unnecessary Power loss. 

We designed and implemented a low-power SpaceWire Codec 

IP core, it satisfies the ECSS-E-ST-50-12C protocol, and can 

work through the configuration registers in the standard and 

low-power modes. In low-power mode, When the transmit 

interface does not have N-Chars and Time-Codes to send, the 

Codec will automatically adjust the data signalling rate to 

10Mbps, thereby reducing the operating power consumption. 

The IP core is implemented in an Actel A3P1000 

approximately 4% of the logic resources and is up to 200Mbits/s 

in Std grade of FPGA, the DSR conversion delay is less than 

100ns. By Star-Dundee's SpaceWire PCI-2 and SpaceWire Link 

analyser to validate, the IP core has good compatibility with 

standard SpaceWire equipment, and can reduce consumption by 

about 56%. 

key word: SpaceWire, Low-power, Codec, IP. 

I. INTRODUCTION 

Since 2003, CSSAR, CAS has carried out the widespread 

and in-depth research on ESA standard ECSS-E-ST-50-12C. 

Currently who has been independently developed products 

including multi-port SpaceWire communication terminal 

based on AT7911e, Codec IP core and Router IP core, 

SpaceWire-PCI interface card, all have obtained successful 

application. 

This paper introduces a configurable low-power 

consumption Codec IP core improved from current IP, it 

provides and achieves a low-power consumption design in run 

state of codec. The final experimental results show the power 

consumption has obvious reduced, meanwhile, the IP has good 

compatibility with standard protocol terminal and up to 

200Mbits/s data signalling rate.  

II. THE ANALYSIS OF EXISTING CODEC POWER CONSUMPTION 

According as ECSS-E-ST-50-12C, the standard Codec IP 

core or ASIC can operate at any data signalling rate between 

the minimum data signalling rate and the maximum possible 

data signalling rate. [1] The delivered character is separated 

into two types: link-characters (L-Char) and normal-characters 

(N-Char). The recover clock from Data-strobe signal through 

XOR circuit. Data transfer process shown in Figure 1. 

Fig. 1.  Data transfer scenes between standard SpaceWire nodes 

Figure1 shows three data transfer scenes were simplex, full-

duplex and idle (do not send N-Chars and Time-Codes). Since 

the data signalling rate of node A and node B are pre-

configured, therefore in idle scene, nodes still maintained the 

same data signalling rate, which will cause unnecessary Power 

loss. 

In order to reduce the power loss on idle scene, SpaceWire 

router AT7910e of Atmel Corporation provides two special 

modes to save power, they are request mode and silence mode. 

[2] It can automatically start on request mode if the source port 

attempts to send data, and disable on silence mode when it no 

longer has any data to transfer. The work scene as shown in 

figure 2, but through further analyzes shows that this approach 

has some drawbacks: 

 When the source port has data to be sent, it needs at 

least 20us for link initialization, is not suitable for real-

time data and time-codes transmission applications; 
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 When no N-chars have been transmitted after timeout 

period, router can disable the link to save power, but it 

is only suitable for simplex communication, has 

significant limitations. 

Fig. 2.   AT7910e’s low-power loss strategy 

III. A DESIGN METHOD OF LOW-POWER CONSUMPTION 

CODEC 

The power consumption and operating frequency have 

proportional relationship. According to experimental results 

indicated that data signalling rate for 10Mbits/s (idle) and 

200Mbits/s (full-duplex), the power consumption of single 

Codec was higher than about 4mW and 70mW, compared with 

standby power consumption. Thus, if no N-chars or time-codes 

to send, the codec maintain links through slow data signalling 

rate(i.e.10Mbits/s) to transmit Null and FCT, which can also 

save power obviously, meanwhile, solve two drawbacks of 

AT7910e on request mode and  silence mode, one is high link 

initialization latency expenses, the other is not suitable for the 

duplex communication. The data transfer scenes shown in 

Figure3. 

By the scene 2 of figure 3, when node A sends data in 

simplex communication mode, node B is slow data signalling 

rate to send FCT or Null. The FCTs offered by node B need to 

ensure non-stop data transmission from node A, thus, data 

signalling rate on link both sides must satisfy the formula 1. 

Since by the formula, when data signalling rate of node B is 

10Mbits/s, Maximum data signalling rate of node A is 

200Mbits/s. 

 

In low-power consumption Codec IP core, the output DS 

signals generated by three modules, Inc, invalid data generation 

module (Unvalued data, Ud), data signalling rate conversion 

module (DSR conversion, Dc) and valid data generation 

module (valued data, Vd). In Ud module, the input clock is 

10MHz, DS signals generated by single data rate (SDR) 

encoding method, it only produces Nulls and FCTs characters, 

may realize the link initialization. In Dc module, maximum 

input clock is 100MHz and has same phase with Ud’s, DS 

signals encoding method also is SDR, it can complete 

remaining bit-stream from Ud’s to reduce data signalling rate 

switching delay. In Vd module, the input clock is the same as 

Dc’s, DS signals encoding method is dual data rate (DDR), it 

can produce all the SpaceWire characters. Figure 4 is DS  

Fig. 3.  Data transfer scenes of low-power Codec 

Fig. 4.   DS signals generator block diagram 

IV. IMPLEMENTATION AND RESULT 

The IP core is implemented for Actel A3P1000 with std 

grade. The main features and performance are as follows:   

 The logical resource approximately is 4%, 

communication data rates up to 200Mbits / s; 

 The IP core can be configured on standard mode and 

low-power consumption mode, all have good 

compatibility with standard SpaceWire terminal; 

 When input clock of Vd and Dc is 100MHz, the data 

signalling rate conversion delay is not higher than 

100ns, and through testing all 120 kinds of switching 

process, the result is correct, Figure 5 is simulation 

waveform of a switching process; 

 Compared with the existing Codec chips, the power 

consumption improve can amount to 56%.  

V. CONCLUSION 

The low-power codec can adjust data signalling rate 

according to the type of transmission characters, when no valid 

data to be sent, it can reduce data signalling rate to save power. 

Compared with AT7910e, it has better flexibility and 

performance, can be used for full-duplex communication 

 (8 ) 10 4 high lowDSR DSR
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Fig. 6.  Time-codes transmission on low-power consumption mode (End A:PCI-2, End B: Low-power -Codec) 

70ns

 

Fig. 5.  Simulation waveform of a switching process 

 

especially. Through experiments, its compatibility and 

performance parameters are good. Is foreseeable that, if 

SpaceWire router IP core uses it, will lead to more substantial 

power improvement. 
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ABSTRACT:  

In SpaceWire standard , decoding circuit belongs to the 

receiver and it corresponds to the Data-Strobe encoding circuit. 

Based on higher-order logic theorem prover HOL4, this paper 

applies theorem proving, one of the formal methods, to verify 

the SpaceWire decoding circuit. And the paper focuses on the 

properties of DataValid in the decoding circuit. Firstly, this 

paper extracts the relevant properties of DataValid on the 

basis of SpaceWire standards. These properties are described 

in higher-order logic. Then analyze the VHDL design codes of 

the circuit and model it logically according to the realized 

function of the codes. Finally with the aid of HOL4 it is 

validated that the model of the circuit design can satisfy the 

properties faithfully. 

KEY WORDS:  

SpaceWire standard; formal verification; theorem proving; 

HOL4 

I. INTRODUCTION 

In recent years, SpaceWire protocol has got wide attention 

and rapid development in theory and technology applications. 

It can be extensively found in aerospace domain，open field, 

mines, nuclear power station and other harsh or dangerous 

environment. Because of SpaceWire’s vital importance, any 

tiny errors in system design are likely to produce huge 

economic losses and casualties. Therefore it is very necessary 

to verify the design of SpaceWire. However, the traditional 

methods, simulation and testing are based on test cases which 

are impossible to cover all the cases for huge and complex 

systems [1] [2]. Formal verification which is based on some 

specifications or attributes uses mathematical methods to prove 

the correctness or incorrectness of system. And the verification 

is complete for the properties to be verified. This paper applies 

theorem proving, one method of formal verification, to analyze 

the behavior of system , model the system logically and then 

prove the properties of model mathematically with the aid of 

higher-order logic proof tool HOL4. 

Decoding circuit is the receiver’s key circuit in SpaceWire 

standard. It is related to the Data-Strobe (DS) encoding circuit 

in transmitter [3]. The key point of the verification is formal 

modeling. 

The paper is organized as follows: Chapter Ⅱintroduces 

the method of formal verification in details which includes 

decoding specification and implementation. Then the result is 

shown in  Chapter Ⅲ . The paper comes to an end with  

conclusions and future work in Chapter Ⅳ. 

II. METHOD 

In order to ensure the design of DataValid meets the 

requirement of SpaceWire standard, the paper converts the 

properties of DataValid into logical description by using 

higher-order logic language. The process is normally called 

decoding specification. Then VHDL design codes are 

abstractly modeled by corresponding logical predicates which 

can describe the realized functions of the codes [4]. And the 

model can explicitly shows the characteristic of clock, the 

order of code execution and the behavior. Then the paper 

draws logical diagrams which can indicate the relationship 

among predicates clearly. This model is called decoding 

implementation. 

 The paper mainly takes advantage of goal-guiding method 

which is one obvious characteristics of HOL4. This approach is 

known as strictly logical reasoning [5]. In addition, relevant 
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tactics and axioms obtained from HOL4 are used to verify 

whether the implementation satisfied the requirement of 

specification. 

A. DECODING SPECIFICATION 

Specifications indicate the temporal properties or functions 

of the system to be verified. The receiver firstly needs to 

decode the data and the decoding process is finished in 

decoding circuit. This paper focuses on the specifications of 

DataValid in decoding circuit. 

DataValid is an important signal. It can check whether the 

received link signal is effective and many operations must be 

based on its signal value to continue downward [2]. Decoding 

circuit obtains the signal DataValid through logical operations 

of the signal DataIn and StrobeIn. When the value of 

DataValid is high, the received data is valid. On the contrary, 

the received data is invalid. 

Property 1: 

As long as the reset signal is T, the output signal 

DataValid is F. “T” means high level and “F ” means low level. 

t. reset t ==>（datavalid  t = F）                                       (1) 

“t ” means for all t ; “==> ”means implication. 

Property 2: 

There are five clock delay in the output. If reset signal is 

T at time t+5 or t+4 or t+3, the output signal DataValid is F. 

If reset signal is F at time t+5 or t+4 or t+3 and is T at time 

t+2, the output signal DataValid is equal to the logic XOR 

gate of the signal DataIn and StrobeIn at time t+2. At other 

time DataValid is always equal to the logic XOR gate of 

DataIn and StrobeIn each at at time t+2 and at time t+1. 

t.  datavalid(t+5) = 

If  reset(t+5) \/ reset(t+4) \/ reset(t+3)  then  F 

else if  reset(t+2)  then   

XOR  (d(t+2) )  (s (t+2) ) 

else 

XOR4  (d(t+1))  (d(t+2))  (s(t+1))  (s(t+2))                             (2) 

The definitions of predicates “XOR” and “XOR4” in 

property 2 is shown as follows. 

Definition 1: 

|- a b. XOR a b = ¬a /\ b \/ a /\¬b                                           (3) 

The predicate “XOR” is used to formalize the logic XOR 

gate of two signals. 

Definition 2: 

|- a b c d. XOR4 a b c d = 

 (¬a/\ b/\c/\d) \/ (a /\¬b/\c/\d) \/ (a/\b/\ ¬c/\d) \/ (a/\b/\c/\¬d) \/ 

(¬a/\ ¬b/\ ¬c/\d) \/ (¬a/\¬b/\c/\¬d) \/ (¬a/\b/\ ¬c/\ ¬d) \/  

(a/\¬b/\¬c/\¬d)                                                                           (4) 

The predicate “XOR4” formalizes the logic XOR gate of 

four signals. “¬” means negation. 

According to the combination of property 1 and property 

2 the paper gets the formal descriptions of decoding 

specifications. 

B. DECODING IMPLEMENTATION 

According to the design codes of decoding circuit in 

SpaceWire, this paper draws a related structure diagram and 

then simplifies it which the output only has signal DataValid. 

The structure diagram is shown in Fig 1:  
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ResetClock
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Reset

Clock
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DataValid

 Fig 1: The structure diagram 

Definition 3: 

|- out. ONE out  = t. out t = T                                            (5) 

The predicate “ONE ” means its output is always true. It 

is used to formalize the operation in which the output is 1 at 

any time. 

 Definition 4: 

|- inp out. NOT (inp,out)  = t. out t = ¬inp                         (6) 

The predicate “NOT” means its output is the negation of 

input.  

Definition 5: 

|- sw a b out. MUX (sw,a,b,out) = t. out t =  

( if sw t then a t else b t)                                                          (7) 

The predicate “MUX” formalizes the case statement 

“IF…THEN… ELSE…”. 

Definition 6: 

|-inp out. REG (inp,out) = t. out t =  

( if t = 0 then F else inp (t – 1 ) )                                             (8) 

The predicate “REG” has the function of register which 

has one clock delay. 

Definition 7: 

|- rst a out. DFF (rst,c,out) = ∃x a b. REG (c,x) /\ MUX 

(rst,b,x,d) /\ ONE a /\ NOT(a,b)                                              (9) 

The predicate “DFF” has the function of asynchronous D 

flip-flop. It is used to formalize the component “FDC” which 

is called in design code of simple_recovery in fig 1. The 
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PROCESS (Reset, Clock) 

VARIABLE NoX : STD_LOGIC; 

BEGIN 

IF  Reset = '1' THEN 

DataValid                 <= '0'; 

DataRisingEdge_delayed    <= '0'; 

DataFallingEdge_delayed   <= '0'; 

StrobeRisingEdge_delayed  <= '0'; 

StrobeFallingEdge_delayed <= '0'; 

ELSIF rising_edge(Clock) THEN 

DataRisingEdge_delayed    <= 

DataRisingEdge; 

DataFallingEdge_delayed   <= 

DataFallingEdge; 

StrobeRisingEdge_delayed  <= 

StrobeRisingEdge; 

StrobeFallingEdge_delayed <= 

StrobeFallingEdge; 

NoX := 

(DataRisingEdge     AND    NOT 

DataRisingEdge_delayed)     XOR 

(DataFallingEdge     AND   NOT 

DataFallingEdge_delayed)    XOR 

(StrobeRisingEdge   AND   NOT 

StrobeRisingEdge_delayed)  XOR 

(StrobeFallingEdge  AND   NOT 

StrobeFallingEdge_delayed); 

DataValid <= NoX; 

END IF; 

END PROCESS; 

definition of “DFF” is obtained from the combination of 

definition3, 6 and 7. The main code of “FDC” is shown in 

Fig2. 

             

             

             

             

             

             

             

Fig 2: The main code of FDC 

Definition 8: 

|- a b out. AND2B (a,b,out) = t. out t =  ¬a t /\ b t         (10) 

The predicate “AND2B” formalizes the component 

“AND2B1” which is also called in design code of  

simple_recovery in fig 1. The main code of “AND2B1” is 

shown in Fig3. 

 

 

 

 

Fig3: the main code of AND2B1 

 This paper contacts the definitions of predicates above 

with logical operation “AND”. The signals in design codes are 

represented by existential quantifiers. Then the formal model 

of simple_recovery_d in Fig1 can be built. For the purpose of 

simplicity d, reset, d1, d2 are treated as replacement for 

DataIn, Reset,DataRisingEdge,DataFallingEdge respectively. 

And the paper uses e0, d0, x0, x1, x2, x3, x4, x5, a1, a2 as 

substitutes for the signals in design codes. Based on the formal 

model of simple_recovery_d the paper uses line instead of 

logical operation “AND”, then draws a logical diagram which 

can clearly reflect the relationship among the predicates. The 

model of simple_recovery_s in Fig1 can also be got by the 

same way. The logical diagram of simple_recovery_d is 

shown in Fig 4. 
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Fig4: the logical diagram of simple_recovery_d 

Because of the design code’s length, this paper gives the 

main code of DataReconstructor in Fig 5. DataReconstructor  

is one part of decoding circuit  as Fig 1 shows.  Its output is the 

signal DataValid . 

 

Definition 9: 

|-a b out. AND (a,b,out) = t. out t = a t /\ b t                    (11) 

The predicate “ AND” indicates the logic AND gate. 

Definition 10: 

|- a b out. XORING (a,b,out) =t. out t = XOR (a t) (b t)  (12) 

The predicate “XORING” is equal to the function of 

logic XOR gate and corresponds to Definition 1. 

Definition 11: 

|-  a b c d out.  XOR4ING(a,b,c,d,out) = t. out t =  

XOR4 (a t) (b t) (c t) (d t)                                                      (13) 

The predicate “XOR4ING” corresponds to the Definition 

2. 

After finishing the definition 9, 10 and 11, the formal 

model of DataReconstructor can be establised with the similar 

method as Fig 4 shows. At the same time s1, s2, d3, d4, s3, s4, 

datavalid are used to replace StrobeRisingEdge,StrobeFalling- 

Edge, DataRisingEdge_delayed, DataFallingEdge_delayed， 

ARCHITECTURE behavior OF AND2B1 IS 

BEGIN  

    O <= (NOT I0) AND I1; 

END behavior; 

ARCHITECTURE behavior OF FDC IS 

BEGIN  

PROCESS (C,CLR) 

BEGIN    

IF  (CLR='1') THEN  

Q<='0'; 

                 ELSIF (C'EVENT AND C='1') THEN 

Q<=D; 

END IF; 

END PROCESS; 

END behavior; 
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StrobeRisingEdge_delayed,StrobeFallingEdge_delayed,Data-

Valid respectively. And the paper substitute a3, a4, a5, a6, m1, 

m2, m3, m4, n1, n2, n3, n4, n5 for the signals in the design 

codes. The logical diagram of DataReconstructor is shown in 

Fig 5. 
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 Fig5: the logical diagram of DataReconstructor 

Now the formal model of decoding implementation can 

be obtained by combining the model of simple_recovery_d , 

simple_recovery_s and DataReconstructor. 

III. RESULT 

After having finished the formalization of specification 

and implementation, the paper applies goal-oriented reasoning 

in HOL4 and the proof is interactive. The initial goal which 

implementation can imply specification is set. 

According to the definitions, the initial goal is divided 

into several subgoals and then the subgoals are proved in turn. 

If every subgoal has been proved, the initial goal is proved. In 

the meantime, the related tactics and tacticals in HOL4 are 

also used. In this paper, the result shows the initial goal is 

proved. 

IV. CONCLUSIONS AND FUTURE WORK 

The paper applies theorem proving to verify that the 

design codes of decoding circuit can satisfy the specification 

of SpaceWire standards. Besides, the formal model based on 

the function of VHDL design codes is effective and it also can 

be used in other hardware design verification. Furthermore, 

this method can help the designer to find errors in the early 

design stage and has important practical significance. 

Theorem proving emphasizes man-machine interaction 

which is different from model checking and may have the 

problem of heavy workload. In the future, the research will use 

model checking to prove sub-module. Then gather and process 

the results with the aid of theorem proving. That is to say the 

research will focus on combing theorem proving with model 

checking to verify other key circuits of SpaceWire standard. 
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Abstract — The SpaceWire networks are broadly used in 

embedded and onboard systems, where low latency and  jitter are 

critical. These characteristics are also important for networks with 

SpaceFibre channels. Jitter increases buffer sizes, which memory 

volume increases energy consumption, system cost and weight. It is 

very important in space applications.  

High jitter presence complicates systems, where a synchronization 

of different blocks or packets ordering is required. Examples of such 

systems are systems of image processing, video stream from cameras 

processing and information from groups of sensors collecting.  

Jitter reduction in systems of a stream broadcasting or image 

processing allows to reduce receiver buffer size and simplify process 

of frame restoring. Many factors influence at jitter: network 

structure, data processing algorithms of switches, data packet length, 

presence and characteristics of other data streams and etc.  

In this paper we show dependencies between network parameters 

and jitter value. We present a set of rules that allows to minimize 

jitter value by adjustable network parameters changing. Jitter 

minimization allows to calculate buffer sizes more accurately in 

network and network components development. 

Index Terms — SpaceWire, jitter, delay, jitter estimation. 

I. INTRODUCTION 

Delay and jitter are very important in the transmission of 

data of different types. For example, it is video and audio 

information. These parameters are critical for synchronization 

of various system components. Information about jitter and 

delay ranges allows to optimize communication system design, 

to calculate size of buffers and do not use extra buffer space. 

Buffer is required to restore packets order   arriving from the 

source.  

Standard SpaceWire[1] does not define the quality of 

service (QoS). Therefore it does not contain methods to control 

the parameters defining the QoS. However, if several 

constraints in the network are specified and additional terminal 

nodes/switches functionality is implemented, the value of the 

delay and jitter will be within the prescribed limits. 

In this paper, we propose a method that will help to reduce 

the value of jitter in  data transmission with different 

throughput requirements. 

II. TERMS 

In this paper we will use the following terminology. 

Guaranteed class of service – packets for which throughput 

on each switch port is guaranteed. 

Non-guaranteed class of service - packets for which 

throughput is not guaranteed. System allocates throughput  for 

packets with guaranteed class of service first. The remaining 

throughput can be allocated for packets with non-guaranteed 

class of service. If remaining throughput is 0, then packets 

from non-guaranteed class of service are not processed by a 

switch. 

Guaranteed period (T) - the time during which the 

throughput is guaranteed. It is defined by the network 

administrator.  

Сi – throughput for class of service with identifier i. 

Transmission time of packets with class of service i (Tsci) – 

this is part of time, during which packets with class of service i  

can be transferred in guaranteed period. This time can be 

calculated using  the following formula: 

100

T*C
T i

sci 
 

III. DESCRIPTION OF THE METHOD 

Changes to the standard are not required for use of the 

proposed mechanism. It's necessary to determine the limit size 

of packet and implement additional functionality in switches. 

Let us put that class of service is uniquely determined by 

logical address of the packet. On the switch we need to store 

additional information about the required throughput. 

The total value of the throughput for guaranteed classes of 

service on one port of switch must not  exceed 100%. If user 

plan to employ control codes in system, the required 

throughput must be taken into account. 

All packets are placed into a single buffer space because 

SpaceWire credit scheme does not provide individual credits 

for different data streams. The speed of packet (with specified 

class of service) moving along the network is not taken into 

account here. 
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Fig. 1 Packet processing scheme 

Network administrator should also set transmission delay 

parameters for each class of service in the ports of switch. 

Depending on the required throughput  the interval  between  

transmission of two adjacent packets of a given class of service 

is set. If the interval is equal to 0, then the packets are sent one 

after another without additional delays in the switch. This will 

lead to the packets with one class of service  accumulation and 

the flow uniformity property will be lost. 

bt  - transmission time of one Nchar. It depends on the 

system frequency and speed of the channels. 

SizePacket  - packet size in bytes. 















btSizePacket

TC
NumPacket  - maximum number of 

packets to be transmitted in the guaranteed period.  

NumPacket

T
Tout  - period of time, which is allocated for 

one packet transmission.  

deltaTime- the time between arrivals of two adjacent 

packets with same class of service at the destination. 

IV. RESULTS 

Researches of the proposed method were performed using 

the model DCNSimulator [2]. Several networks were built in 

the simulation environment. They are presented in Fig. 2 - Fig. 

3. 
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Fig. 2 Network № 1 
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Fig. 3 Network  № 2 

Packets are transmitted via a single output port of the 

switch in the network № 1. It allows to explore packet streams 

distortion  characteristics. 

The structure of the network № 2 allows to research 

distortion characteristics of packet flows in the input port, 

which occurs due to the fact that the preceding packet from the 

input port can’t move to the output port immediately because 

this port is processing another packet. 

These two types of distortions are the main types of data 

flow distortions that can occur in  SpaceWire network. It’s 

possible to calculate packet transmission delay and jitter value 

if the information about data flow characteristics change after 

passing through sectors of first and second type and number of 

such sectors on the path from source and destination is 

available. On the other hand, the constraints on these 

parameters (transmission delay and jitter value) can be taken 

into account during network development process and data 

transmission routes determination. 

Two types of researches were made using network 

structures show above: using mechanism of traffic smoothing 

and keeping its characteristic of uniform arriving at the 

receiver side and using mechanism of throughput guaranteeing 

only. 

Research №1. For the structure of the network № 1 (Fig. 

2), each of the data sources synchronously generates one 

packet every 21 microsecond. Sources identified as TN 

1_1,1_2,1_3. Sources send data to the destinations. 

Destinations are identified as TN 2_1,2_2,2_3. Data 

transmission channels speed is 100Mb/s, devices frequency is 

25MHz. Packet size is fixed and its size is 64 bytes. Simulation 

time is 8 ms.  During this time  1139 packets are transferred. 

Packets are generated uniformly every 21 microsecond, 

therefore the ideal time between  neighboring packets arrival to 

the destination   is 21 microsecond. In the figures Fig. 4 - Fig. 

6. you can see how the time between arrivals of two adjacent 

packets at the destination for packets with different classes of 

service changes when mechanism of traffic smoothing is used  

and when  not. Jitter value when using traffic smoothing 

mechanism is approximately 6.6 times less then without it. 
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Fig. 4 Research №1. Packets with class of service 0 

 

Fig. 5 Research №1. Packets with class of service 1 

 

Fig. 6 Research №1. Packets with class of service 2 

Research №2. For the network structure № 2 (Fig. 3), each 

of the sources of the data synchronously generates one packet 

every 26 microsecond. Data is transmitted along the routes of 

the corresponding color on Fig. 3. The speed of data 

transmission channels is 100Mb/s, devices frequency is 

25MHz. Packet size is fixed and its size is 64 bytes. Simulation 

time is 4 ms.  During this time 1232 packets are transferred. 

Packets are  generated uniformly every 26 microsecond, 

therefore the ideal time between neighboring packets arrival to 

the destination is  26 microsecond.  

In the figures Fig. 4 - Fig. 6. you can see how the time 

between arrivals of two adjacent packets at the destination for 

packets with different classes of service changes when 

mechanism of traffic smoothing is used  and when  not. Jitter 

value when using traffic smoothing mechanism is 

approximately 3 times less then without it. 

 

Fig. 7 Research №2. Packets with class of service 0 

 

Fig. 8 Research №2. Packets with class of service 1 

 

Fig. 9 Research №2. Packets with class of service 2 

 

 

Fig. 10 Research №2. Packets with class of service 3 
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Fig. 11 Research №2. Packets with class of service 4 

 

Fig. 12 Research №2. Packets with class of service 5 

 

Fig. 13 Research №2. Packets with class of service 6 

 

Fig. 14 Research №2. Packets with class of service 7 

V. CONCLUSION 

According to the Research 1 and 2, it can be concluded that 

the proposed mechanism can reduce jitter, to keep the data 

flow characteristics. Thanks to this mechanism jitter in 

SpaceWire network can be made predictable and customizable. 
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Abstract—The results of simulation and measurement of 

the physical implementation of the SpaceWire-RT compatible 

transceiver units are discussed. These transceivers work at 

rates ranging from 5 Mbps up to 1.25 Gbps. The issues of 

electrical isolation, implementation, impedance matching and 

the selection of the physical transmission medium are 

considered. Different variants of the transmitter 

implementation in terms of power consumption to meet the 

requirements of impedance matching are compared. 

Transceivers are manufactured in CMOS 180 nm technology 

at JSC Mikron (Russia), employing topological approaches 

used for radiation-tolerant circuits. The variants of the 

implementation of transceivers with data rates up to 20 Gbps 

are proposed, including the use of 130-90 nm technologies. 

IndexTerms—SpaceWire-RT, Transceivers, Physical Layer, 

Technology Scaling, Impedance Matching. 

I. INTRODUCTION 

Currently «ELVEES» R&D CENTER works hard on the 

next-generation SpaceWire-RT standard specification and 

implementation. 

The first thing that attracts attention in the analysis of new 

requirements for transceiver of SpFi-CML subsystem [1] – is 

an exceptionally large range of rates - from 0.1 to 20 Gbps in 

the medium term and up to 50 Gbps in the longer term at the 

data transmission over twisted-pair cable up to 5 m. 

Apparently, building transceivers for various sub-ranges of 

rate may differ. The draft protocol SpaceWire-RT actually 

fixes this situation, sharing LVDS transceivers (optional SpFi-

LVDS) with rates up to 600 Mbps and CML transceivers 

(optional SpFi-CML) with the above rates. Some 

implementations of transceivers[2], [3]  in CMOS technology 

with standards130 nm –250 nm suggests that the required 

data rates of up to 1.25 Gbps and up to 5 Gbps (depending on 

space and power constraints) are feasible. 

An important objective is to limit the power consumption 

of the transceivers at no more than 200 mW. This is a strict 

requirement, because given the transmitter output voltage of 

2 V just the power output to the line (100 Ohm) would be 40 

mW, not including the losses in the matching circuit. Analysis 

of characteristics of the transceivers, available from Texas 

Instruments with the rate of up to 3.125 Gbps [4], showed, that 

their power consumption is in the range of 400 ... 700 mW.  

Another goal is to extend the communication range up to 

100 m, at least for selected configurations. While SpW itself is 

a relatively lightweight protocol, it is strongly preferable to 

keep SpaceWire-RT also such. It suggests keeping up with 

two-level signaling and avoiding power and space hungry 

complicated digital signal processing. In this case, the protocol 

would be suitable for inter-chip communication on-PCB as 

well.  

This implies the following activities: 

 selection of the transmitter circuit solutions (line driver 

namely) that provide greater efficiency; 

 analysis of the possibility of decreasing the output signal 

level of the transmitter, which can simultaneously improve 

the electromagnetic compatibility of the system; 

 seeking for solutions to further simplify cabling. 

II. CABLE CHARACTERIZATION AND SYSTEM SIMULATION 

In order to estimate the practical limits of the 

communication range and available data rates, different 

samples of common cables have been S-parameters measured 

and their linear models  developed. Samples include: 

 8 m CAT5 STP; 

 6 m RG-58; 

 1 m 50 Ohm thin coax. 

For all samples S11, S12, S21, S21 were recorded in the 

frequency range of 300 kHz – 13 GHz. For STP also cross-

talk at near and far end was measured. 

With the media models at hand, a number of analyses were 

carried out: 

 eye diagram based estimate of the maximum 

communication range for different data rates and 

media types; 
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 TX side pre-emphasis and RX side equalization in 

order to increase range and rate; 

 feasibility of duplex communication over the single 

coax cable. 

Simulation results of the ideal TX and RX blocks then 

used to verify their respective implementations. 

Simulation results of the transmitter is shown on fig. 1. 

The simulation involves also the 8 m UTP transmission line  

and the matched receiver. 

 

Fig.1. Eye diagram at the output of the transmitter, PEX 

model, 1250 Mbps 

Eye diagram at the receiver input is shown on fig. 2. One 

can see that the eye is open at 1250 Mbps. Other simulations 

show that the practical limit of the UTP line length at this 

speed, without equalization and pre-emphasis, is about 20 m. 

These results are in good agreement with the experimental 

ones. 

Fig. 2. Simulated eye diagram at the input of the receiver. 

Media: 8 m CAT5 UTP 

In order to justify the requirements to the input 

characteristics of the receiver in the absence of decoupling 

transformer and to estimate the symmetry of the transmitter 

output, common mode signal was also simulated (fig.3). The 

common mode may also be critical to electromagnetic 

compatibility depending on application. 

Fig. 3. Common mode signal at RX input 

III. POSSIBLE IMPLEMENTATIONS OF CML-COMPATIBLE 

DRIVER COMPOSED OF WITH REDUCED POWER 

CONSUMPTION 

In the transmitter-receiver pair  the driver in the transmitter 

has the most significant power consumption. 

Common SpaceWire-RT transmitter physical  layer 

implementation is based on CML logic. Despite the obvious 

advantages, this circuit has relatively high power 

consumption, as the considerable part of the supply current 

passes through the terminating resistors. At the same time, the 

performance requirements for transceivers SpFi-CML at the 

physical layer can be fully satisfied by using CML-logic as 

well as VML-logic. Equivalent output circuit of CML- and 

VML-drivers are identical and both exhibit a voltage source 

with the output impedance of 100 Ohms. 

Another VML-style driver advantage, compared to CML 

drivers, is the possibility to decrease the supply voltage down 

to 1 V and below while maintaining sufficient output voltage 

swing. This facilitates utilization of deeper sub-micron 

technologies (90-130 nm) in order to further increase the 

communication rate. 

IV. STRUCTURES AND CHARACTERISTICS OF THE DEVELOPED 

TRANSCEIVERS 

The transceivers were designed for the SpFi-CML 

subsystem of SpaceWire-RT protocol, which contain digital 

parts with a supply voltage of 1.8 V. All designed devices 

manufactured with CMOS 180 nm technology. 

A. The analog  part of the transmitter and  receiver 

The adjustable driver was designed for research purposes 

(fig.4).  Output signal level can be changed by varying supply 

voltage AVDD of VML-cascade in the 1.8-3.3 V range. The 

designed VML-driver has the Data Rate (DR) of up to 1.25 

Gbps. Line impedance matching achieved with the external 

circuitry. 
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Fig.4.The adjustable driver 

 

Although is not optimal for production, this approach 

allows independent variation of both output swing and line 

impedance matching for testing and investigation purposes. 

The receiver is capable of 1.25 Gbps data rate with the 

sensitivity of ±30 mV. 

Total estimated dissipating power (TDP) of both 

transmitter and receiver analog blocks is from 85 mW to 

170 mW, depending on operation conditions. Power 

consumed by these units at the lower boundary supported 

transceivers speed range is less than 100 mW.  

B. The structure and characteristics of the transmitter 

Block diagram and interface of transmitter IP block 

shown in fig.5. The composition and functions of the main 

blocks of the transmitter: 

 BR – parallel 10-bit buffer register. Takes TXD [9:0] 

code group at the rising edge of CLK –provided 

EN=1. If EN = 0 BR contents does not change. 

 PLL – frequency synthesizer of bits Fbit. 

 P2S –converts the content of BR into a sequence of 

DATA bits, starting from bit 9 (MSB). 

 C – switch. In normal mode (LB_EN =0) Data = 

DATA, LB_OUT = 0. In LoopBack mode 

(LB_EN=1) Data=LB_IN, LB_OUT=DATA. 

 TX – output driver. Converts the sequence of digital 

bit Data to differential pair of analog signals TXP, 

TXN. If PWDn =0 or EN = 0 outputs TXP, TXN are 

set to high -Z.  

Data rate is selected by the code at on the control inputs 

SPEED: 

DR =5, 10,...(step5) ...125 Mbps- the lower rate range; 

DR = 312.5,625, 1250Mbps-upper rate range. 

The frequency of the characters (parallel 10-bitcode 

groups) - DR/10. Reference frequency- CLK =125 MHz. 

 
Fig.5. The structural circuit and interface of the transmitter 

C. The structure and characteristics of the receiver 

Block diagram and interface of receiver IP block shown in 

fig. 6.The composition andfunctions of the mainblocksof the 

receiver: 

 RX–input differential amplifier. Converts the 

differential signal RXP, RXN to digital DATA. 

While PWDn =0 or when the input signal is absent 

(RXP ≈ RXN) is set DATA to 1. 

 C –switch. In normal mode (LB_EN = 0) Data0 = 

DATA, LB_OUT = 0. While LoopBack (LB_EN = 

1) Data0 = LB_IN, LB_OUT = DATA. 

 CDR –restores CLK = Fbit and synchronized bit 

sequence Data from the input bit sequence Data0 

("Clock and Data Recovery"). Controls the 

synchronization mode (using REFCLK = 125 MHz): 

CDR_MODE [1:0] - management, LOCK [1:0] –the 

indicator of capture frequency and phase. Restores 

CLK = Fbit and synchronized bit sequence Data 

from the input bit sequence Data0 ("Clock and Data 

Recovery").  

 ALG – contains a 10-bit shift register that stores the 

current sequence of bits Data (basic function block). 

Synchronizes (CLK/10) output data parallel code. 

With permission (ALIGN_MODE), detects 

COMMA sequence, aligns the boundaries of 10-

bitcode groups (cyclic shift numbers of digits) that 

has a flag  COMMA_DET =1 and the error signal 

ALIGN_ERROR =1 (before alignment boundaries 

are not aligned). 

 BR –buffer 10-bit register of output data RXD [9:0]. 

 

Fig.6.The structural circuit and interface of the receiver 

 

The total estimated power consumption of the digital part 

of the transmitter and the receiver is less than 30mW, that fits 

well the total  SpFi-CML power budget. 

D. Topology and the placement of the transceivers on chip 

Dimensions  of IP blocks of the transmitter and receiver on 

the chip are the same - 470 × 395 μm ², square - 0.186 mm
2
 

(including 2 elements of ESD protection ). Block sizes and pin 

locations allow for direct attach each of them standing side by 

side with two analog pin elements (fig.7). 
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Fig.7. Topology of the transceivers on chip 

V. PHYSICAL LAYER PROFILES SPECIFICATION PROPOSAL 

The ongoing SpaceWire-RT standard specification 

combines, from the one hand, the wide range of transmission 

rates, and from the other, the requirement of galvanic isolation 

between transmitter and receiver. 

Readily available transformers don't provide sufficient 

bandwidth (~ 1 MHz — 5 GHz) to cover the entire rate range. 

On the other hand, different data rates suggest different media 

types and application conditions. It seems natural to identify 

and denote the set of parameters, nominating those conditions, 

and specify them as a separate profiles withing the same 

standard. 

Profile A. Most suited for standard CAT5 UTP/STP media 

and communication range of up to 60 m @ 125 Mbps data 

rate.  

Profile B.  Similar to Profile A, but with increased data rate 

and reduced range. As the transformer is a limiting factor to 

data rate range, the minimum rate is also increased.  

Profile C. Is targeted the to data transmission within the same 

PCB or between PCB's of the same device. As the galvanic 

isolation requirements mostly eliminated in this configuration, 

simple capacitor decoupling may be used. Hence the 

maximum data rate and wide rate range, if needed. 

Profile D. This profile is distinct from the others in that it uses 

a single coaxial cable (RG-58 or like) for full duplex data 

communication. Unlike UTP/STP, this cable is specified over 

a much wider frequency range, has lower insertion loss and 

dispersion. Together these provide for higher data rates at 

longer distances. Depending on the cable model, its weight per 

meter may also be substantially lower than that of UTP. As a 

drawback, this profile requires echo cancellation circuitry at 

each side. Also, voltage difference between the ends should be 

limited for human safety reasons. 

Profile E. Implies data transmission over the optic fiber. 

Galvanic isolation is intrinsic and the rate is virtually 

unlimited. 

VI. CONCLUSION 

This article presents analysis of the SpaceWire-RT 

protocol requirements for SpFi-CML subsystem on twisted 

pair. The possibility and feasibility of VML-transceivers 

compliant physical layer transceivers with CML-transceivers 

and have compared them with several advantages, including 

the power consumption. The results of development of 

transceivers with data rates in the range of 5 Mbps ...1.25 

Gbps, overlapping needs of SpFi-CML subsystems of second 

generation. The directions of further development of the 

standard are offered. 
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I. BACKGROUND: SPACEWIRE BACKPLANE FOR GROUND 
TEST EQUIPMENTS 

JAXA, Osaka University, and Japan Space Systems have 
been developing a SpaceWire backplane system for ground test 
equipments based on Micro Telecommunications Computing 
Architecture (hereafter, uTCA) as explained in Nomachi et al. 
(this conference). Development involved not only a uTCA 
shelf but also a generic SpaceWire FPGA card and 28-port 
SpaceWire router card which can be inserted to the ordinary 
AMC (advanced mezzanine card) slot the dedicated controller 
slot (i.e. MicroTCA Carrier Hub slot), respectively. Typical 
outlook of this backplane system is presented in Figure 1. 

Each AMC slot provides 4 SpaceWire links connected to 
the 28-port router via the backplane tracks, and therefore, 
inserted SpaceWire FPGA cards can communicate each other. 
The backplane link topology is shown in Figure 2. Our generic 
SpaceWire FPGA card also provides 4 external SpaceWire 
connectors on the front panel. Since the number of cards can be 
easily increased just by inserting a new card to available slots, 
this system is highly modular and scalable. The maximum 
operational link rate of all the SpaceWire links in the 
SpaceWire Backplane system is 200 MHz.  

Combined with the generic SpaceWire FPGA card, this 
backplane system can be used as a development platform for 
SpaceWire-based ground support electronics and/or a simulator 

for a large-scale SpaceWire network. 

II. SPACEWIRE TRAFFIC GENERATOR 
As an application of the SpaceWire uTCA Backplane 

system, aiming at a packet injection test for a multi-port 
SpaceWire router or a large-scale network, we implemented a 
traffic generation logic on the generic SpaceWire FPGA card. 
One or more Traffic Generator modules inserted to a uTCA 
shelf compose a SpaceWire Traffic Generator system together 
with control software on a computer. The system block 
diagram of SpaceWire Traffic Generator is presented in 
Figures 3. Development of SpaceWire Traffic Generator is 
supported by JAXA and the product is available from 
Shimafuji Electric. 

Commercially available uTCA shelves typically offer 6 or 
12 AMC slots, and therefore, the number of external 
SpaceWire ports can be extended, with a step of 4, up to 24 or 
48 depending on the shelf. These numbers allow SpaceWire 
Traffic Generator to be used for high-traffic tests of a large 
SpaceWire router or even a network. These external SpaceWire 
ports support Tx link frequencies of 200/n MHz where n is a 
natural number. SpaceWire links over backplane operate at 200 
MHz by default for providing small latency and high data 
transfer speed for control purposes. 

A typical operation flow of Traffic Generator is presented 
in Figure 4. In the following sections, we describe details of 

Fig.1 An example outlook of SpaceWire Traffic Generator 
enclosed in a 6-slot uTCA shelf. In this picture, 5 SpaceWire 
Traffic Generator modules are inserted, i.e. 20 external test ports 
are available. Two modules connected by a thick cable are 
power supply and distribution modules. 

Fig.2 Topology of the backplane SpaceWire connection for a 
typical 6-slot backplane rack. 4x6=24 links from the backplane 
and 4 from the front panel of the router module are interconnected 
by the 28-port router shown in purple. A picture of the generic 
SpaceWire FPGA card is also shown. 
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packet transmission, reception, triggering functions, and 
dedicated control software.  

III. PACKET TRANSMISSION 
Packet transmission from the Traffic Generator external 

SpaceWire port is controled by Tx packet descriptors whose 
structure is shown in Figure 5. Figure 6 illustrates an overview 
of packet transmission procedure. The control software on the 
computer writes Tx descriptors to the Tx Descriptor FIFO of 
the Traffic Generator, and the Tx logic will send packets by 
consuming and interpreting the descriptors stored in the FIFO. 
The Tx Descriptor FIFO has a depth of 1024 descriptors, and 
can be further updated during packet transmission. 

Packet content should be written to the onboard SDRAM 
before starting packet transmission. The Traffic Generator does 
not manipulate packet content, and therefore, users should 
construct valid packets on the control computer  when any 
upper layer protocol, sucha as RMAP or GRDDP, is necessary. 
In addition to ordinary SpaceWire packets, Timecode 
characters can be emitted by setting the “Mode flag” field 
properly. 

The “Tx Wait” paramter in the descriptor which defines 
wait duration between the completion of packet transmission 
for the current descriptor and start of the next descriptor. In 
addition to this descriptor-to-descriptor interval, there are 
several types of parameters can be modified via registers to 
globally control transmission speed, i.e. configurable NULL 

Traffic Generator module
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Fig.3 A block diagram of SpaceWire Traffic Generator. Each Traffic Generator card is attached to the 
backplane, and has 4  SpaceWire links connected to the router in the MCH module.   

(Up to 6 or 12 modules depending on shelves.) 

Write packet content 
to SDRAM.

Write Tx descriptors.

Set packet 
transmission trigger.

Read Rx descriptors.

Read received packet 
content from SDRAM.

Write packet content 
t o S D R A M ( i f 
necessary).

Write Tx descriptors 
(if necessary).

Clear packet 
transmission trigger.

If there is more packets 
to be transmitted.If packet transmission 

is completed.

Fig.4 A flow chart of a typical operation of Traffic Generator. 
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interleaving and fixed wait interval for Tx descriptor 
consumption.  

Definitions of individual fields of the Tx descriptor are as 
follow:  
• Tx Descriptor ID: 7-bit arbitrary number which can be used 

to identify Tx descriptor. This ID is recorded, combined with 
time information, in the Tx Log FIFO when packet 
transmission defiend in this descriptor is completed. 

• Tx Memory Address: A pointer to packet content stored in 
the SDRAM Tx packet area. 

• Mode Flag: A 2-bit flag that determines end-of-packet 
marker type or Timecode. 00 = no EOP/EEP, 01 = 
terminated with EOP, 10 = terminated with EEP,  11 = 
Timecode. 

• Timecode value: Timecode with this value will be emitted 
instead of ordinary packet when Mode flag is 11. 

• Tx Length: Length of packet content. 
• Tx Wait: A 2-bit flag and a 14-bit counter. The flag 

determines resolution of the counter. 00 = 5ns, 01 = 1us, 10 
= 1ms, 11 = 1s. Extraction of next descriptor will be delayed 

Tx Descriptor

Tx Descriptor FIFO
(depth = 1024)

Control 
Software

on PC

via RMAP Write

Tx 
Manager

Tx Descriptor

via on-chip bus
Trigger

Tx FIFO

SpaceWire CODEC

Packet Content

SDRAM
(Tx Data area 128MB)

via RMAP Write

Packet Content

via on-chip bus

(1) Write packet content (2) Write Tx descriptors

Fig.6 A flow chart of the packet transmission procedure. 

Rx Descriptor

Rx Descriptor FIFO
(depth = 1024)

Control 
Software

on PC

via RMAP Read1

Rx 
Manager

Rx Descriptor

via on-chip bus

Rx FIFO

SpaceWire CODEC

Packet Content

SDRAM
(Rx Data area 

16-48MB per port)

via RMAP Read

Packet Content

via on-chip bus

(3) Read packet content (2) Read Rx descriptors

(1) Arrival of packet

1Delayed reply can be used 
as an option for emulate 
interruption (and to avoid 
frequent polling by software).

Fig.7 A flow chart of the packet reception procedure. 

 

Fig.5 Structures of Tx and Rx packet descriptors. Tx descriptors are generated by the control software and 
written to the Tx descriptor FIFO on the Traffic Generator module. Rx descriptors are created by the receiver 
logic when a packet (or timecode) is reived, and read out by the control software. Data contained in a packet 
is stored in SDRAM, and addresses are pointed by the “Tx Memory Address”  or the “Rx Memory Address” 
fields. 
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by 14-bit counter * resolution (2-bit flag). 
• Tx Repeat Count: A 16-bit counter that specifies the 

number of repeated execution of the current descriptor. 
Every outgoing packets will be time-tagged (times of 

emission of first and last bytes), and recorded as Tx Log. Local 
time has a 5ns resolution and 32-bit width (0-21.4s). 

Note that the Traffic Generator is designed to operate over 
the Packet layer of the SpaceWire standard, and therefore, it is 
not capable of Character/Signal level manipulation such as bit-
error injection or DS-signalling error injection.  

IV. PACKET RECEPTION 
Packet receive process is described in Figure 7. When a 

packet is received at Traffic Generator, an Rx descriptor which 
has the structure presented in Figure 5 will be created, and 
stored in the Rx Descriptor FIFO which has 1024 descriptor 
depth. Received packet content will be stored in the SDRAM 
which is used as a 16-MB ring buffer by default (the size can 
be modified from 0-48MB). Reception of a timecode character 
also results an Rx descriptor that has Mode flag = 11 and 
timecode value in the “Timecode value” field. No data will be 
written to the SDRAM. 

To read the received packet content, control software should 
read the Rx descriptors from the FIFO, and then read the data 
from the SDRAM. When the Rx Descritptor FIFO is full, the 
either of the following operations are performed by the receive 
logic depending on a configuration (changeable via register) ; 
(1) received packets are simply discarded, and number of 
discarded packets are recorded (i.e. sink mode), or (2) the 
SpaceWire link is blocked by not replying FCTs.  

V. CONTROL SOFTWARE 
Shimafuji Electric developed control software for Traffic 
Generator whose screenshot is presented in Figure 8. The 
software provides GUI interfaces for each functions of Traffic 
Generator, such as filling Tx Descriptor FIFO, filling Tx 
packet content to the SDRAM, triggering packet transmission, 
reading Rx Descriptor FIFO, and reading received packet 
content from the SDRAM. 

The software also provides an easy scripting language to 
generate Tx Descriptors for fast test case generation, and an 
example script is shown in Figure 9. 

 
The software has been deployed together with Traffic 

Generator for testing the realtime performance of SpaceWire 
Middleware implemented on the SpaceCard flight computer 
(Mitsubishi Heavy Industry) in Feb. 2013. The flexible packet 
transmission functions which is also fairy accurate in time (5-
ns resolution) was very effectively used  in the test. 

VI. CONTROL SOFTWARE 
JAXA, Osaka University, and Shimafuji Electric have been 

developing a SpaceWire Traffic Generator system which is 
highly-scalable in terms of SpaceWire port number (e.g. 4-24 
in 6-slot uTCA rack).  

We consider that SpaceWire uTCA Backplane and 
SpaceWire Traffic Generator are potentially useful test beds for 
all SpaceWire-related developers, and will make these 
available internationally through our collaborators.

 

TxDescriptor Mode=EOP TxAddress=0x00000800 Length=100 Repeat=1 Wait=0ms 

TxDescriptor Mode=Continuous TxAddress=0x00001000 Length=100 Repeat=3 Wait=10us 

TxDescriptor Mode=EEP TxAddress=0x00002000 Length=10 Repeat=1 Wait=0ms 

TxDescriptor Mode=Timecode Timecode=0x03 Wait=0ms 

Fig.8 A screenshot of the Traffic Generator control software. 

Fig.9 An example script which generates 4 Tx descriptors. Three of them are for a 100-byte packet terminated with an 
EOP,  a 100-byte packet with no end-of-packet marker (repeated 3 times, wait 10us after single transmission), a 10-
byte packet terminated with an EEP. The last line generates a timecode character with a time-code value of 0x03. 
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Abstract— SpaceWire-D is a time-triggered protocol developed 

for SpaceWire to provide deterministic transmission and real-
time constraint for RAMP packets. According to SpaceWire-D, 
any RMAP packet has to be assigned into a time slot; and 
transmission of the packet is required to meet the real-time 
constraint—the transmission has to be completed before the end 
of the time slot. 

The assignments of the packets constitute a schedule table that 
should be predetermined and held by the nodes in a SpaceWire 
system. However, because of the complexity of the network 
communications and the massive packets in a real SpaceWire 
system, a schedule table that ensures all the packets meeting the 
real-time constraint is hard to be determined. To take this issue, 
we propose a Simulated Annealing based scheduling method of 
RMAP packets for SpaceWire-D. The method choses paths for 
the packets, assigns packets to the time slot with respect to the 
real-time constraint. The proposed method is evaluated by the 
simulations and the effectiveness is shown in the experimental 
results. 

Index Terms— Relevant indexing terms: SpaceWire, 
Networking, Spacecraft Electronics, Real-time scheduling.  

I. INTRODUCTION 
SpaceWire has been developed as a network standard for 

spacecraft, and widely used by aeronautical organizations and 
companies. Within a SpaceWire network, the nodes are 
connected through low-cost, low-latency, full-duplex, point-to-
point serial links and packet switching wormhole routing router. 
It utilizes asynchronous communication and allows speeds 
between 2 Mbit/s and 400 Mbit/s [1].  

SpaceWire provides a means of sending packets of 
information from a source node to a target node. Remote 
Memory Access Protocol (RMAP), a standard communication 
protocol for SpaceWire network, is used to specify the 
packets[2]. However, transmission of the RMAP packets on a 
spacecraft always has high real-time requirement. Hence the 
need for deterministic transmission of information arises, and 
providing this determinism for SpaceWire networks is essential. 
For this reason, SpaceWire-D, a time-triggered protocol 
developed for SpaceWire, has been proposed to provide the 
deterministic real-time transmission [3].  

Based on SpaceWire-D, a schedule table is constructed, in 
which the system time is divided into time slots, and any 
packet in the system is assigned to a deterministic time slot 
with the real-time constraint—transmission of the packet must 
be completed before the end of the time slot. 

However, because of the complexity of the network 
communications and the massive packets in a real SpaceWire 
system, such a schedule table that ensures all the packets 
meeting the real-time constraint is obviously hard to be 
determined without an efficient scheduling method. 

To take this issue, in this paper we propose a scheduling 
method of RMAP packets for SpaceWire-D. In detail, first, we 
provide an algorithm to calculate the worst-case latency (WCL) 
of packets in a time slot to guarantee the real-time constraint. 
Second, we propose a Simulated Annealing (SA) based 
scheduling method to obtain a schedule table with respect to 
the real-time constraint. Particularly, considering the 
redundancy requirements, both the WCL calculation algorithm 
and the scheduling method allow the system to hold redundant 
path for packets transmission. The proposed method is 
evaluated by the simulations and the effectiveness is shown in 
the experimental results. 

The remainder of this paper is organized as follows. 
Chapter II introduces the system model. Chapter III presents an 
algorithm for calculating the WCL of packets in a time slot. 
Chapter IV proposes the scheduling algorithm. Evaluation of 
the proposed scheduling algorithm is shown in Chapter V, and 
followed by Chapter VI that concludes the paper and discusses 
future works. 

 

II. SYSTEM MODEL 
We assume an object system is composed of nodes, routers 

and links, as the format specified in [1], in which each node is 
able to send and receive packets. Based on SpaceWire-D, time 
code is used to distribute system time over a SpaceWire 
network. The interval between two adjacent time codes is 
defined as a time slot. A packet has to be transmitted during a 
pre-determined time slot. The deterministic transmitting 
information of all packets is included in a scheduling table, 
held by each node that may send packets in the system. 
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In general, a time slot will be used by different applications 
to send their packets.  To classify their transmissions, we 
define a channel as a logic group that holds the information 
used by an application to transmit its packets [4]. A channel 
has a unique source node that sends packets of the application, 
whereas it may have multiple targets node for receiving the 
packets.  Packets of a channel can be sent from the source to 
any one of the targets. The path from a source to target is the 
sequence of the links between the source and target. It is 
assumed that a path must be pre-determined.  

In order to avoid that the fault of one link breaks all the 
transmission, redundant paths are usually configured between a 
source and a target, which are the paths between the source and 
target without sharing any links. The redundancy is the number 
of the redundant paths, which is determined by the application 
and limited by the links. For example, if there are 3 paths θ1, θ2, 

θ3 between a source and a target without sharing any links, the 
maximum redundancy from the source to target is 3. While if 
the application configures paths with redundancy 2, then there 
are 3 candidates can be chosen—{θ1, θ2}, {θ1, θ3} and {θ2, θ3}.  

The following steps give a method to obtain all the 
redundant paths candidates with redundancy n from a source to 
a target (it is assumed that n is less than the maximum 
redundancy): 

1) Search for all the paths from the source to the target 
according to Algorithm 1.(The parameters, paths, passedLinks 
and passedRouters, are initialized to empty)   

2) Group every n paths of the result of setp 1. For each 
group, if its paths do not have sharing links, add the group of 
paths into the candidates.  

III. CALCULATION OF THE WORST-CASE LATENCY 
In a time slot, a packet is sent to any target of the channel 

stochastically. Hence the latency spent on transmitting all 
packets of a time slot is not unique. In order to guarantee the 
real-time constraint for a time slot, it has to obtain the worst-

case latency (WCL) spent on transmitting all packets of the 
time slot.  

Calculation method of the WCL is illustrated in this chapter. 
We will first explain calculation of latency of transmitting a 
single packet with a deterministic path. Then it is extended to 
show calculation of WCL of all packets in a time slot.  

A. Latency of Transmitting a Single Packet 
Assume a packet τi is transmitted with a deterministic path. 

The latency of τi is the sum of following elements:   
• i

smdtT : The delay occurred at the source before 
transmission of τi. 

• i
srtT : The time spent on sending τi completely. 

•  i
rmdtT : The delay occurred at the target, which is the 

interval between τi is received and the reply of τi is 
started to send. 

• i
rrtT : The time spent on sending the reply of τi 

completely. 
i
smdtT and i

rmdtT are determined by the source and target. i
srtT  and 

i
rrtT  are calculated by following formulas according to the type 

of τi, referring to the packet format specified in [2]. 
1) when τi is a RMAP write packet 

Tsrt
i = 10 × (Ri + Pi + Di +17)

S
+TpdRi

Trrt
i = 10 × (Ri + 8)

S
+TpdRi

 (1) 

2) when τi is a RMAP write packet 

Tsrt
i = 10 × (Ri + Pi +16)

S
+TpdRi

Trrt
i = 10 × (Ri + Di +13)

S
+TpdRi

  (2) 

3) when τi is a RMAP write packet 

Tsrt
i = 10 × (Ri + Pi + 25)

S
+TpdRi

Trrt
i = 10 × (Ri +17)

S
+TpdRi

  (3) 

In the formulas, Di is the transmission data length. S is the 
minimum line speed (M bit/s) in the transfer section. Ri, Pi and 
Tpd are obtained according to the deterministic path of τi. Ri is 
the number of routers between the initiator and the target. Pi is 
the number of reply addresses (greater than Ri, and a multiple 
of 4). Tpd is network transmission delay time when packets are 
passing through the router.  

B.  WCL of Packets in a Time slot 
When more than one packet exist in a time slot, according 

to the definition of channel, each packet may be transmitted 
according to different paths stochastically. Therefore, 
calculation of the WCL has to consider the combination of all 
the paths. For example, assume that a time slot has N channels 
C1, C2, … CN; each channel CI has a set of packets {τi}I, and 
paths {θi}I. The combination thus is the Cartesian product of 
{θi}1, {θi}2, ..., {θi}I. 

Algorithm 1  Algorithm of searching all paths from  
                      source to target 
pathSearch(paths, passedLinks,  
                               passedRouters, source, target): 
1:   for all links starts from source do 
2:       passedLinksNew ← passedLinks appends link 
3:       if link connects to target then 
4:           paths ← paths appends passedLinks 
5:       else if link connects to router then 
6:           if router is not in passedRouters then 
7:                passedRoutersNew ← passedRouters          
                          appends router 
8:                paths ← pathSearch(paths, passedLinksNew,   
                         passedRoutersNew, router, target) 
9:            end if 
10:    end for  
11:  return paths 
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In each member of the combination, the packets are 
transmitted to a unique target according to a deterministic path. 
To calculate the WCL, first, we define segment as a group of 
packets, in which any packet has shared links with at least one 
anther packet. Therefore, the time spent on sending all the 
packets, defined as WCL of the segment, is the accumulation 
of their single latency, which is calculated by following 
formula. 

WCL = max
0≤i≤n

Tsmdt
i + Tsrt

i

i=0

n

∑ +max
0≤i≤m

Tdrmt
i + Trrt

i

i=0

m

∑   (4) 

In the formula, n is number of the packets; m is number of their 
replies. 

Second, because the packets of different segment can be 
transmitted simultaneously without any interference on each 
other, the WCL of the time slot is calculated by obtaining the 
maximum of the WCL of the all segments. 

Summarize above, we propose the calculation of WCL as 
follows:  

1) Calculate the Cartesian product of {θi}1, {θi}2, ..., {θi}I. 
2) Divide segments for each member of the Cartesian 

product.  
3) For each segment, calculate its WCL based on formula 

(4). 
4) Maximum of these WCL of segments thus is the WCL of 

the time slot.   

IV. PROPOSED SCHEDULING METHOD  
In this chapter, we propose the Simulated Annealing (SA) 

based scheduling algorithm. The scheduling algorithm choses 
redundant paths for the packets, assigns them to the time slot 
with respect to the purposes that it guarantees the packets in 
each time slot meeting the constraint, and keeps the number 
occupied slot number and the utilization as small as possible. 

First, we give a brief introduction of the SA algorithm. It 
shows that the neighbor searching and evaluating are the two 
main parts of the SA for achieving the scheduling. The 
neighbor searching explores new solutions of the paths and 
time slot assignment, whereas the evaluating utilizes a function 
to judge the new solutions and decide which one is the best. 
Therefore, in the second and third part of this chapter, we will 
explain how the neighbor searching is conducted, and what is 
the function selected for the evaluating, respectively.  

A. Simulated Annealing Algorithm 
The SA algorithm is a generic probabilistic metaheuristic 

algorithm for the global optimization problem. The advantage 
of SA is that it can locate a good approximation to the global 
optimum from a given evaluating function in a large search 
space[5].  

The pseudo code of the SA algorithm is given in Algorithm 
2.  It starts with an initial solution S0 and performs a maximum 
of kmax steps. At each step, it utilizes neighbor(S) to generate a 
new solution Snew, and Snew will be evaluated by EF(S). If the 
result of EF(Snew) is smaller than that of EF(Scur) (Enew < Ecur), 
current solution Scur is replaced by Snew. Otherwise, it decides 
whether or not to replace Scur with Snew probabilistically. The 
probability is usually according to the Metropolis principle [6] 

that accepts Snew depending on the difference between Enew and 
Ecur, as well as on a global parameter T (line 7 of Algorithm 2). 
T denotes the temperature, and it is gradually decreased with α 
(0 < α < 1) during the algorithm.  

In general, the probability of selecting Snew will be 
decreased as the temperature T is reduced. This feature of SA 
algorithm is effective to move away from a local optimal 
solution and improve the probability of finding the global 
optimal solution. Finally, Sbest corresponding to the Ebest is 
generated as the best solution. 

B. Neighbor Searching 
Although there are two searching objects of the 

scheduling—redundant paths and time slots assignment, it is 
possible to conduct them in the different round of the 
neighbor(S). For example, neighbor(S) searches for a new 
solution of redundant paths for a packet when the counter 
parameter k of SA is odd, whereas it searches for a new 
solution of time slot assignment when k is even.  

To search for new redundant paths of a packet, it chose a 
packet randomly, then randomly changes its redundant paths 
from its redundant path candidates obtained by the method of 
Chapter II. On the other side, when searching for a new 
solution of time slot assignment, it choses a packet randomly, 
then move this packet to another randomly selected time slot.  

C. Evaluating Function 
Evaluating function is responsible for determining how 

“good” a solution is with respect to the optimization 
purposes— guarantee the packets in each time slot meeting the 
constraint, and keep the number of occupied time slot and the 
utilization as small as possible. Let us start from analyzing the 
effects that a solution may affect on the results. According to 
the neighbor searching approach, a new solution can be 
classified to positive and negative. A positive solution may has 
one of the following 4 effects: 

1) Number of overflow time slots decreases. 
2) Utilization of overflow time slots decreases. 

Algorithm 2  Simulated Annealing Algorithm 
1:   T ← T0, Scur ← S0, Ecur ← EF(S0) 
2:   Sbest ← Scur, Ebest ← Ecur 
3:   k ← kmax 
4:   while k < kmax do 
5:       Snew ← neighbor(Scur), Enew ← EF(Snew) 
6:       Δ ← Enew − Ecur 
7:       if random[0, 1) < exp(Δ/T) then 
8:           Scur ← Snew, Ecur ← Enew 
9:       end if 
10:     if Enew < Ebest then 
11:         Ebest ← Enew 
12:     end if 
13:     k ← k + 1, T ← αT 
14:  end while 
15:  return Sbest 
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3) Number of normal using time slots decreases. 
4) Utilization of normal using time slots decreases. 

In contrast, a negative solution may has one of the following 4 
effects: 

1) Number of overflow time slots increases. 
2) Utilization of overflow time slots increases. 
3) Number of normal using time slots increases. 
4) Utilization of normal using time slots increases. 

In the above, the normal using time slots are the time slots their 
utilization ≤ 1; and overflow time slots are the time slots their 
utilization > 1. The utilization of time slot i is ratio of the WCL 
to the length of time slot i. 

The evaluating function should be able to precisely reflect 
the solution effects according to its results. Therefore, we 
chose it as follows.  

EF(S) = (Nl +1) Ui
S

i∈lo
∑ + Nlu

+ Ui
S

i∈lu
∏   (5) 

In the formula, Ui
S  is the utilization of time slot i in solution S. 

l, lu, lo denote all time slots, normal using time slots, and 
overflow time slots, respectively. Nl, Nlu denote the number of 
all time slots and normal using time slots, respectively.  

According to formula (5), positive 1) is corresponding to 
the best result—the smallest value of the formula among the 8 
situations, and then is the positive 2). The worst is the negative 
4).  

V. EXPERIMENTS AND RESULTS 
To evaluate the effectiveness of the proposed scheduling 

method, we utilize the method to schedule packets of a 
SpaceWire system and show the results in this chapter. The 
evaluated SpaceWire system is provided by a Japanese 
aeronautical organization, which is composed of 4 routers and 
4 nodes. There are 4 channels in the system, which transmit 
total 86 packets. Each of the channels has one source and 2 
targets. For the source to each target, redundant paths with 
redundancy 2 are provided.  

The results are shown in TABLE.I. It is assumed that the 
system time is divided into 8 time slots and repeats infinity. 
Length of each time slot is 5ms. The left two columns are the 
results of randomly scheduling—paths and time slots of all the 
packets are assigned randomly. The right two columns are the 
results of the proposed scheduling method. The results show 
that two time slots, time slot 3 and 7, do not meet the real-time 
constraint under randomly scheduling. Whereas the proposed 
scheduling method guarantees the constraint for all the time 
slots, and the occupied time slots number is decreased— time 
slot 4 has not been used.  

TABLE I.  RESULTS OF THE PROPOSED SCHEDULING METHOD 

Randomly Scheduling Proposed Scheduling 
Time slot  Utilization Time slot  Utilization 

0 0.724 0 0.9156 
1 0.913 1 0.7728 
2 0.532 2 0.9488 

3 1.139 3 0.87 
4 0.471 4 0 

5 0.631 5 0.959 
6 0.588 6 0.991 
7 1.265 7 0.657 

 

VI. CONCLUSION  
In this paper, we proposed a Simulated Annealing  (SA) 

based scheduling method for RMAP packets. The method 
choses redundant paths for the packets, assigns them to the 
time slot with respect to the real-time constraint. The method is 
evaluated by the simulations. The results show that the 
proposed scheduling method guarantees the constraint for all 
the time slots, and decreases the number of occupied time slots 
as well as the utilization.  

In future work, we plan to examine the scheduling 
algorithm in more complex systems. Moreover, the 
investigation of configuring the SA parameters in order to 
obtain better performance is also considered. 
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Abstract—A real-time recording system which adopted 

SpaceWire and RMAP (Remote Memory Access Protocol) has 

been developed for an asteroid probe HAYABUSA2.  It exploits 

the deterministic scheduling scheme formalized for SpaceWire by 

SpaceWire-D draft standard.  Since the captured precise image 

of the surface of a target asteroid is to be recorded during 

autonomous touch-down sequence, the recording system 

synchronized with the attitude and orbit control subsystem 

(AOCS) with the deterministic scheduling scheme.  The scheme 

has also enabled the data recorder to inherit the priority based 

packet recording function developed for prior HAYABUSA 

without any change. 

Index Terms— SpaceWire, Data Recorder, Networking, 

Spacecraft Electronics. 

I. INTRODUCTION 

HAYABUSA2 is an asteroid probe planned to be launched 

in 2014, and aims at sample-return from a C-type asteroid 

considered to contain organic or hydrated materials.  Figure 1 

shows the image drawing of HAYABUSA2 on an asteroid. 

The precise captured image of  the surface of a target 

asteroid is to be recorded in the onboard storage during the 

autonomous touch-down and take-off sequence in parallel.  

Therefore the real-time recording capability synchronized with 

the attitude and orbit control subsystem (AOCS) is required. 

The transmission system between the data recorder and 

AOCS are based on the network design criteria developed for 

JAXA/ISAS scientific satellites [1], [2], [3], [4].  The 

deterministic implementation scheme of SpaceWire, which has 

been established by SpaceWire-D draft standard, enabled 

synchronous operation between satellite bus system and 

mission payload. 

Real-time synchronized image capturing system with 

optical sensors developed for scientific purposes and a data 

recorder is realized by adopting deterministic implementation 

scheme. 

 

II. DATA RECORDER ARCHITECTURE 

Data Recorder (DR) design is closely tied to the mass 

memory modules, which are high-density memory modules 

with  unique stacking technology and optimized for 

SpaceWire/RMAP interface devices.  The stack structure of 

DR is fabricated with bus connectors, which resulted in 

eliminating back planes. 
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Fig. 3.  The outlook of DR 
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Fig. 2.  The communication protocol layer of DR 

Figure 2 shows the outlook of DR. Its A6 size has been 

realized by exploiting following technologies; 

- Stack memory module was developed and qualified 

through JAXA programs. The memory module 

comprises eight 512Mbit SDRAM chips manufactured 

by ELPIDA, and stacked 

through NEC’s low profile 

JAXA-authorized stacking 

technology. 

- A6 size memory board 

provides 16Gbits on a single 

board with additional memory 

modules for Reed-Solomon 

CODEC equipped on the same 

board.  Single symbol (8 bits) 

error in SDRAM induced by 

radiation effects is corrected 

automatically and 

transparently by scrubbing the 

memory (i.e., reading out 

values and rewriting correct 

ones).  

- Priority based file access 

function through simultaneous 

record and reproduce operation 

are provided. 

- Each module has built-in 

current monitoring circuitries 

against single event latch up. 

- Fully SpaceWire compatible 

interface with RMAP function 

has been realized with an embedded SpaceWire router, 

which enables congestion-free data collection both for 

pull and push scheme. 

The data recorder has an original protocol stack which is 

complied with the SpaceWire-D draft standard protocol stack 

[5], [6].  Figure 3 shows the data recorder protocol stack and 

the SpaceWire-D draft standard protocol stack.  The figure 

shows that the data recorder handles RMAP in deterministic 

way.  The data recorder has no implementation for SpaceWire-

D and SpaceWire-R in itself, and these two protocol layers are 

accommodated in the optical navigation camera electronics 

(ONC-E) and the sensor digital electronics (DE).  ONC-E and 

DE compile mission data collection plan, and the plan is 

delegated to the DR for its initiator mode operation. 

In order to exploit the deterministic implementation scheme 

with SpaceWire and RMAP protocol, the priority based file 

system is provided. The data structure consists of a volume 

group (or record), a memory manager, logical volumes (or 

files), physical extents (or partitions) and blocks (or sectors).  

These are configurable by commands prior to the onboard 

operation of the DR through ground station operation.  The 

architecture is shown in figure 4.  Volume group (or record) is 

an entire region to compose a system. This supports 

subordinate concepts of logical volumes and is implicitly given.  

Memory manager configures its recording memory area. It also 

arranges volume groups.  Logical volumes (or files) are 

variable length storage area which consists of physical extents.  

Physical extents (or partitions) are continuous region of 

variable length area, which are composition elements of logical 

volumes.  Physical extent consists of blocks.  Blocks (or 

sectors) are fixed length size memory are, and they are 

minimum recording units and composition element of physical 

extents. 

Since the priority based packet recording function are 

inherited from prior HAYABUSA asteroid probe, the file 

system is configured as fixed length partitions.  Each partition 
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Fig. 4.  The data structure configuration of DR 

corresponds to a category number, which is shown in the 

secondary header of Space Packets.  The category number is 

associated with the priority for recording and reproducing. The 

priority mechanism is developed for prior HAYABUSA 

asteroid probe with its original communication protocol.  

Whereas thanks to the deterministic scheme of the data 

recorder, its inherited priority based recording and reproducing 

function of prior HAYABUSA are applied without any change 

with SpaceWire/RMAP protocol.. 

Technical features of DR are shown in table 1. 

TABLE I.  DATA RECORDER TECHNICAL FEATURES 

Parameter Value 

Memory Size 

Synchronous DRAM: 

16Gbits at BOL 

12Gbits at EOL 

Recording data rate 
39Mbps [Effective value] 

15Mbps [Requirement] 

Reproducing data rate 
25Mbps [Effective value] 

15Mbps [Requirement] 

SpaceWire port 

Telemetry/Command: 2ch 

Recording: 7ch 

Reproducing: 2ch 

Size 142(W) x 150(D) x 107(H) (mm) 

Mass < 2.32kg 

Power consumption < 11.5W 

III. REAL-TIME RECORDING SYSTEM 

Figure 5 shows the diagram of the real-time recording 

system of HAYABUSA2.  The data handling subsystem of 

HAYABUSA2 inherits the prior HAYABUSA asteroid probe. 

HAYABUSA employed original onboard communication 

protocol PIM (Peripheral Interface Module transmission 

protocol).  So we developed protocol bridges for the translation 

between PIM and SpaceWire.  The protocol for accessing the 

interface of each components and the scheduling scheme is 

close to RMAP (Remote Memory Access Protocol) and 

SpaceWire-D, so the development of those protocol bridges 

were straight-forward. 

Although the AOCS of HAYABUSA2 accommodates 

SpaceWire interfaces and connected to legacy onboard devices 

with PIM interfaces through protocol bridges, the operation 

scheme is the same as its predecessor.  As a result the ground 

station operation is the same as that for prior JAXA/ISAS 

scientific satellites.   

Sensors are controlled by the DE and ONC-E.  DE and 

ONC-E have communication lines with the attitude and orbit 

control processors (AOCPs) and the DR.  These lines features 

the deterministic implementation specified in SpaceWire-D 

draft standard. DE and ONC-E are working synchronously 

with AOCPs and which enables synchronous operation of 

sensor control functions and data recording. The scheme has 

been established through the activity of the SpaceWire user’s 

group, Japan [7].   

Thanks to SpaceWire backplane implementation fabricated 
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Fig. 5.  Synchronous communication block diagram of AOCS and DR 

in the DE and the ONC-E, image buffer memory located inside 

the sensor signal processor is connected with mass memory 

modules in the data recorder through SpaceWire and RMAP 

protocol.  Even though the size of the scientific mission image 

captured by optical sensors are changed, the synchronization 

scheme between image memory buffer inside the sensor signal 

processor and the data recorder is maintained through the 

deterministic communication implementation, and no image is 

to be lost with the priority based flexible file system of the data 

recorder 
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Abstract—The paper considers radiation tolerant remote 

terminal controller with serial SpaceWire communication 

channel, that used for connection of peripheral devices to 

SpaceWire network. Its architecture, main features and various 

system applications are presented.  The results of tests are 

introduced.  

Index Terms— Remote terminal controller, SpaceWire, 

peripheral interfaces. 

I. INTRODUCTION  

The, SpaceWire technology [1] is getting the most used 

and intensively developed technology for spacecraft computer 

networks as it enables to build a communication infrastructure 

for all onboard equipment on basis of single network. 

Design of on-board systems on the SpaceWire technology 

developers has to solve the problem of connecting different 

peripheral devices to a SpaceWire network. Usually modern 

(all the more the old ones) electronic devices do not have 

opportunity to connect into SpaceWire network directly. So, 

the first question that engineers ask is “What should I use to 

integrate my nice device into a SpaceWire network?” After 

some investigation, in many cases the second question rises 

itself: “Why should I use this big bridge to integrate my very 

nice device into a SpaceWire network? Ok, this bridge is very 

intellectual and even has a microprocessor inside, but it’s n-th 

times bigger and heavier than my very very nice device…” 

In this article a simple Remote Terminal Controller ASIC  

RMR-02P is suggested to solve the problem of integrating 

peripheral devices in SpaceWire network. The controller 

provides very efficient, low power opportunity to provide 

connection of a wide range of peripheral devices, such as 

ADC, DAC, FLASH memory, different controllers and 

sensors, to high throughout, noise-immune SpaceWire 

network without using extra components (microcontrollers, 

memory circuits, FPGA, receiver-transmitters etc). 

 

II. APPLICATION 

The SpaceWire remote terminal controller ASIC RMR-

02P provides light-weight SpaceWire connectivity for simple 

slave devices: ADC, DAC, peripheral controllers, sensors, 

actuators, etc. Due to hardware implementation of the 

protocols and flexible slave device interfaces the RMR-02P 

does not require external memory and glue logic chips. No 

special software programming is needed as well.  

The RMR-02P has the following features: 

 Dual-port ECSS-E-50-12С SpaceWire controller 

 SpaceWire data rate from 2 to 300 Mb/s 

 Built-in ANSI/TIA/EIA-644 LVDS transceivers with 

100 Ohm impedance matching resistors 

 Built-in hardware implemented RMAP (ECSS-E-ST-

50-52С) and Distributed Interrupt Protocol 

 Two programmable universal 16-bit parallel ports, 

supported different modes: master, slave (mailbox), 

GPIO/SPI-master 

 Maximum data rate of the parallel port 32 MB/s 

 Maximum data rate of the SPI-master port 25 Mb/s 

 16-bit Intel/Motorola microcontroller interface  

 Maximum data rate of the microcontroller interface 32 

MB/s 

 Ceramic 112-pin package 26.7x26.7 mm 

III. DESCRIPTION 

The simplified functional diagram of the RMR-02P is 

shown on the figure 1. 
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Figure 1: RMR-02P functional diagram 

 

The RMR-02P contains the followingfunctional blocks: 

 SpaceWire – dual-port SpaceWire controller  

 UPP – universal parallel ports 

 µP – microcontroller interface 

 MX – IO multiplexer 

 CTRL – control circuitry 

 SPI – debugging slave serial port interface 

The dual-port SpaceWire controller provides connectivity 

to the SpaceWire network. Built-in ANSI/TIA/EIA-644 

LVDS transceivers with 100 Ohm impedance matching 

resistors simplify system integration. The controller supports 

two protocol for control and data transfer implemented in 

hardware: Remote Memory Access Protocol (RMAP) [2] and 

Distributed Interrupt Protocol (DIP) [3]. 

Two SpaceWire ports are designed to be used in high 

reliable systems with redundant SpaceWire connections. Both 

ports are equivalent. An internal router transfers data between 

the SpaceWire ports and chip’s internal bus as well as between 

the SpaceWire ports themselves. This allows to build different 

redundant connection structures, e.g. Star (see figure 2) and 

Ring (see figure 3). In the both cases, single hop failure does 

not fail system connectivity.  The main advantage of the Ring 

connection structure is much smaller cable-ware than for the 

Star one.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Star connection 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Ring connection 

 

Two 16-bits universal programmable parallel ports (UPP) 

provide connectivity to a wide range on external passive (i.e. 

without microprocessor or microcontroller) devices. Each of 

them can be independently programmed in the following 

modes: 

 Master mode 

 Slave mode (mailbox) 

 GPIO/SPI mode 

In the Master mode, the UPP operates as a 16-bit 

bidirectional parallel master ports with Intel-style control 

signals, ready signal and interrupts request signal. The 

waveform of the port   is programmable: setup and hold times, 

CS signal duration, idle time between accesses, access timeout 

can be configured via the SpaceWire ports. A 128-entry 

internal FIFO allows RMAP packets of up to 256 byte 

payload. Another FIFO related feature is early read by request 

or FIFO readiness. The distributed interrupts can be generated 

by the number of events: external interrupt signal, FIFO 

readiness, FIFO overflow/underflow error, access timeout 

expired.  

In the Mailbox mode, the UPP operates as a 16-bit 

bidirectional parallel slave ports with Intel-style control 

signals, ready signal and interrupts request signal. Many 

features of the Master mode - programmable waveform, 

internal FIFO, external interrupts request are similar to the 

Master mode. The difference is that in Mailbox mode the 

external device writes to and reads the RMR-02P port. 

In the GPIO/SPI-master mode, the UPP operates as SPI 

master and 16 general purpose IO signal. Each of the 16 

GPIOs can be independently configured as an input, output or 

SPI chip select signal (i.e. up to 16 chip select signals can be 

used for SPI).  The distributed interrupts can be generated on 

state changing of any GPIO signal configured as an input as 

well as SPI operation finishing. 

The microcontroller interface of the RMR-02P has 16 bit 

data bus, 16-bit address bus, Intel or Motorola-style control 

signals with a READY/ACK signal, two chip select signals 

and two external interrupts signals. The interface operated as a 

master such that the RMR-02P can simply replace 

microcontroller. The interface shares the same pins as the 
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parallel ports, so either the microcontroller interface or the 

parallel ports can be used. The waveform of the interface is 

programmable like in done in the parallel master port: setup 

and hold times, CS signal duration, idle time between accesses 

and access timeout are configurable. 

The microcontroller interface of the RMR-02P supports 

RMAP packets of up to 256 byte payload with address 

increment and without address increment.  

The RMR-02P has two special signals controlled via the 

SpaceWire ports which facilitate system integration. The 

RSTO output signal is pulse generating signal under 

SpaceWire control. It is designed as a reset signal for external 

devices. The duration and the polarity of the RSTO signal are 

programmable. 

The CLKO output is continues clock generating signal.  It 

is designed as a clock signal for external devices. The period, 

on and off state are controlled via the SpaceWire port. The 

maximum and minimum period of the CLKO is 25 MHz and 

0.4 MHz. 

The ancillary SPI-slave port is designed as a debugging 

interface. It can be used to control the RMR-02P instead of the 

SpaceWire ports. 

IV. RESULTS  

The RMR-02P was designed on Radiation Tolerant 

standard cell and memory libraries of R&D Center ELVEES. 

It was manufactured on 180 nm CMOS process and assembled 

in 112-pin ceramic package (see figure 4). 

The chip has a small area and low power consumption (see 

table 1). Power consumption was measured at maximum 

SpaceWire data rate and at supplies voltage of peripheral 

buffers and digital core equal 1.8 and 3.3V consequently.  

Testing of the chips demonstrated full functionality and 

good performance results (see table 2 and table 3). The TID 

and SEU/SEL test are to be done as the next step.  

The RMR-02P chips are available for evaluation. 

 

 
Figure 4: RMR-02P in CQFP-112 package 

 

TABLE I.  AREA AND POWER CONSUMPTION 

Instance Area, mm Power, mW 

SpaceWire

RMAP IP 
CORE 

2.1×2.0 95 

RMR-02P 4.0×4.0 230 

TABLE II.  SPACEWIRE LINK DATA RATE 

Cable 

Length, 

m 

Maximum SpaceWire rate, Mbit/s 

Receive Transmit 

1 300 300 

10 300 300 

20 200 100 

TABLE III.  PERIPHERAL INTERFACES DATA RATE 

Peripheral interface Maximum data rate, Mbit/s 

SPI-master 25 

Parallel port 256 

Mailbox 200 

µP 256 

 

V. CONCLUSION 

The article presents the RMR-02P ASIC which has been 

designed for connecting a wide range of peripheral devices 

into SpaceWire networks. The RMR-02P ASIC has been 

manufactured on 180 nm CMOS process and successfully 

tested. 

Currently, the RnD Center ELVEES works on the next 

generation of a remote terminal ASIC. In particular, it will 

include support of the Streaming Transport Protocol [4] for 

high efficient integration devices which generate or consume 

continuous data flow, e.g. fast ADC and DAC.  

REFERENCES 

[1] ECSS_E_50_12C. SpaceWire – Links, nodes, routers and 

networks. – European Cooperation for Space Standardization 

(ECSS), 2008 

[2] ECSS-E-ST-50-52С. SpaceWire – Remote memory access 

protocol. – European Cooperation for Space Standardization 

(ECSS), 2010. 

[3] Sheynin Y., “Distributed Interrupts in SpaceWire 

Interconnections”, 8th SpW WG meeting, Noordwijk, January 

2007  

[4] Yuriy Sheynin, Elena Suvorova, Felix Schutenko, Vladimir 

Goussev, “Streaming Transport Protocols for SpaceWire 

Networks”, Proceedings of the 3rd International SpaceWire 

Conference, June 2010. 

 

 

215



DCNSimulator – Software Tool for SpaceWire 

Networks Simulation 
Session: SpaceWire networks and protocols 

 

Poster Paper 

 
Artur Eganyan*, Elena Suvorova*, Yuriy Sheynin*, Alexey Khakhulin**, Igor Orlovsky** 

 

 
*) Saint-Petersburg State University of Aerospace Instrumentation  

Saint-Petersburg, Russian Federation 

artfla@rambler.ru, suvorova@aanet.ru, sheynin@aanet.ru  

 

**) Rocket and Space Corporation Energia after S.P. Korolev 

4A Lenin Street, Korolev, Moscow area, 141070, Russia 

Alexey.Hahulin@rsce.ru, Igor.Orlovsky@rsce.ru 

 

 
Abstract — In the paper we present the Digital Communication 

Network Simulator (DCNSimulator) – a tool for design, system-

level simulation and analysis of networks. We show how we have 

used this tool to simulate and analyze a real onboard SpaceWire 

network from Russian missions and projects. 

I. INTRODUCTION 

The Digital Communication Network Simulator 

(DCNSimulator) is a tool for design, system-level simulation 

and analysis of networks. 

DCNSimulator is based on Qt and SystemC. It consists of 

the simulation engine and libraries of network components. 

The simulation engine is the general part that could work for 

simulation of any network. Libraries of network components 

are specific for particular network standards and could 

represent network components at various details level – from 

general virtual components to cycle-accurate models of 

particular devices. Simulated device models are written in 

C++. Application software algorithms could run at end nodes 

thus generating realistic traffic for the simulated network. The 

simulator also allows users to design networks graphically in 

MS Visio. The DCNSimulator runs in Windows and doesn’t 

require any other third party software for its operation. 

The previous version of this tool was described in more 

details in [1]. In the current DCNSimulator version we have 

improved simulator efficiency, performance and usability. We 

have also added more detailed information of channels 

workload and search of particular packet by different 

parameters: content, sending or receiving time, latency interval. 

An example of a real spacecraft network investigation with the 

DCNSimulator is presented in the article. 

II. SPACEWIRE NETWORKS 

The DCNSimulator with its library completely supports 

SpaceWire networks. It implements all levels of the SpaceWire 

standard (excluding signal and physical ones) and provides 

models of a terminal node, a routing switch and a channel 

(parameterized point-to-point link), from which networks can 

be composed. It also supports error imitation for channels and 

devices.  

With this tool, SpaceWire networks can be analyzed at the 

levels of characters and packets. So one can analyze control 

codes and data packets propagation, channel workload and all 

errors occurred in channels. The simulator displays appropriate 

charts, statistics and information about every transferred code 

and packet. 

III. CASE STUDY 

Here we show an example of the real network which was 

analyzed with the simulator. This is a fragment of a spacecraft 

network shown in fig. 1. Its photo is in fig. 2, and traffic of this 

network is described in table 2. The abbreviations are 

explained in table 1. 
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Figure 1 Fragment of spacecraft network (rectangles are terminal nodes and rounds are routers) 

 

 

Figure 2 A fragment of a conventional spacecraft network cabling (photo) 
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TABLE I.  ABBREVIATIONS  

ATS Automated Test System 

OREC Onboard Radio Engineering Complex 

OS Onboard Systems 

CBOC Control Block of Onboard Complex 

RV Re-entry Vehicle 

EB Engine Bay 

CEB Computer of the EB 

RRV Router of RV 

REB Router of EB 

ISS International Space Station 

CC Cosmonaut Consoles 

OMS Onboard Measurement System 

RMS Radiation Monitoring System 

BS Bearing System 

CS Communication System 

TS Telemetric  System 

CCM Central Computing Machine 

CRRV Central RRV 

CREB Central REB 

TABLE II.  NETWORK TRAFFIC, IN MBIT/S 

             Receivers 

Senders 
ATS OREC CBOC CEB ISS CC OMS TS CCM 

ATS - - - - - - - - - 

OREC - - - - - 2 - - 5 

OS - - - - - 1 1 - 3 

CBOC - - - - - - 0.5 - 0.08 

CEB - - - - - 0.1 2 - 2 

ISS - - - - - 25 3 - 2 

CC 25x3 - - - - - 2 - 0.2 

OMS 5 - - - 3 0.1 - - 5 

RMS - - - - - 1 1 - 1 

BS - - - - - - 0.1 - - 

CS - - - - - - 0.2 - - 

TS - 25 - - 25 25 0.1 - 0.01 

CCM 5 5 0.08 2 2 5 1 0.01 - 

 
Channels rate is 125 Mbit/s. Any 25 Mbit/s and 25x3 

Mbit/s in the table is a maximum video traffic which is 

generated all the time (uniformly) and transferred as frames 

of 1 Kbyte length. The rest traffic is generated every 200 ms. 

Packets between CBOCs and CCM have the highest priority. 

Each CBOC sends and receives to/from CCM one packet of 

64 byte length, every 200 ms. There are 4 CBOCs on each 

RRV and 5 CBOCs on each REB. 

Our goal was to verify that: 

1. Latency of packets  between CBOCs and CCM is ≤   

10 ms. 

2.  Latency of video frames is ≤ 100 ms. 

3.  The network is not overloaded. 

We have created the network model with the 

DCNSimulator and simulated it for 1 second. We supposed 

that any big message is transferred as a group of 1 Kbyte 
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packets. The general chart which displays latency of all 

packets is shown on fig. 3. This chart was expected because 

a lot of traffic is simultaneously sent every 200 ms. It also 

shows that the network is highly loaded every 200 ms but not 

overloaded – otherwise we would see continuously 

increasing latency.  

Video frames (which are sent all the time) are transferred 

as shown on fig. 4. So latency of any video frame doesn’t 

exceed 100 ms, but it “jumps” because video has no priority. 

In larger scale (fig. 5) and by statistic (fig. 6) we can see that 

the most of the frames are transferred even no longer than 

0.5 ms (0.14 ms in average). 

 

 

 

 
Figure 3 Latency of all transferred packets 

 

 
Figure 4 Latency of video frames 
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Figure 5 Latency of video frames in larger scale 

 

 
Figure 6 Statistic for latency of video frames 

 

  
Figure 7 Latency of packets for CBOCs -> CCM (on the left) and CCM -> CBOCs (on the right) 

 
The statistics for packets from CBOCs and the CCM (fig. 

7) shows that these packets are transferred for no longer than 

10 ms (4 ms in the worst case), as required. We can also see 

that packets from CBOCs have much worse average latency. 

This is basically because CCM receives not only short 

packets from CBOCs but also 1 Kbyte packets from other 

terminals. And in spite of the priorities, packets from CBOCs 

can be delayed (for example, because some packet has 
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occupied the CRRV -> CCM channel before anyone else). 

So one of the weak places in the network is the CRRV -> 

CCM channel; it can be improved by adding one more link 

along  with a group-adaptive routing, [2]. 

We have also found that every 200 ms workload of some 

channels goes down for a while, and then grows back. It can 

be explained because some packets simply stop and wait in 

the CRRV until a lot of generated traffic passes. For 

example, the channel between the RRV2 and the CRRV is 

shown on fig. 8. But there is no such thing for CRRV’s 

output channels because traffic goes out of this router 

continuously (fig. 9). 

 

  

 

 
Figure 8 Workload of the channel RRV2 -> CRRV, in percent 

 

 
Figure 9 Workload of the channel CRRV -> RRV5, in percent 

 

IV. CONCLUSION 

The DCNSimulator is intended for system-level 

simulation of different networks. Here we have used it to 

simulate a fragment of the spacecraft network, and verified 

that it works as required. Its utilization in practical spacecraft 

networks design and investigation showed its efficiency and 

usefulness.  
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Abstract—In this paper the cold redundant SpaceWire link 

used to communicate the Energetic Particle Detector onboard 

Solar Orbiter with the spacecraft is described. The main 

objective of the Solar Orbiter mission is to address the central 

question of heliophysics: How does the Sun create and control the 

heliosphere? The spacecraft is equipped with a comprehensive 

suite of ten instruments including in-situ and remote instruments. 

The Energetic Particle Detector or EPD is part of the in-situ 

payload. EPD is responsible for studying suprathermal and 

energetic particles with different energy ranges, covering from 

2keV to 200 MeV/n. This instrument is composed of four sensors, 

developed by universities and research centers across Europe 

and USA. All sensors are connected to the Instrument Control 

Unit or ICU, which acts as an interface among them and the 

spacecraft. The ICU is made up of a Common Data Processing 

Unit and a Low Voltage Power Supply. The CDPU processes and 

temporarily stores data captured by the EPD sensors, and also 

processes telecommands sent by the spacecraft. The LVPS 

provides a switchable power source for the CDPU and the EPD 

sensors. Communications between the satellite’s computer and 

EPD instrument will be carried out using the CCSDS protocol 

over SpaceWire. This work explains the implementation of the 

EPD instrument, including  the use of SpaceWire and other 

higher-level protocols in order to ensure correct communications 

with the satellite. 

Index Terms—ESA, Solar Orbiter, Energetic Particle Detector. 

I. INTRODUCTION 

In order to better understand the impact of the Sun’s 

behavior in the inner Solar System, the European Space 

Agency has devised the Solar Orbiter mission. Solar Orbiter 

will study the inner Solar System, studying not only the Sun 

but also the particles surrounding the spacecraft during the 

mission, performing a series of remote and local observations 

while facing extreme environmental conditions. This study will 

be carried out while the satellite develops an elliptical orbit 

around the Sun [1]. For complying with the mission objectives, 

the satellite contains ten instruments, which will perform the 

aforementioned observations and the study of the interstellar 

conditions and the Sun activities. One of these instruments is 

the Energetic Particle Detector (EPD), which will study the 

characteristics of the suprathermal and energetic particles 

surrounding the spacecraft. This instrument is composed of 

four sensors that will study particles with different ranges of 

energy. Control of the instrument is performed using an 

Instrument Control Unit (ICU). Some of the tasks of this unit 

are to receive and process data fed by the sensors and to 

process telemetry and telecommands. Data communications 

between the ICU and the satellite’s computer is carried out 

using a SpaceWire link. This link is also used for 

synchronizing the data transfer between the EPD sensors and 

the ICU.  

II. OVERVIEW OF EPD 

As mentioned earlier, EPD is composed of four sensors that 

measure the energy of particles located nearby the satellite. In 

detail, the range of energy levels that each EPD sensor is able 

to measure is as follows: 

 

 SupraThermal Electrons, Ions, and Neutrals (STEIN): 

Approximately 3 to 100 keV for suprathermal particles, 

approx. up to 40 keV for ions and approx. up to 10 keV 

for neutrals [2]. 

 SupraThermal Ion Spectrograph (SIS): Approx. 0.008 to 

10 MeV/nucleon for He to Fe [3]. 

 Electron and Proton Telescope (EPT): 20 to 400 keV 

for electrons, 60 to 7000 keV for protons [4]. 

 HET: 300 keV to 20 MeV for electrons, 10 to 100 MeV 

for protons and approx. 20 to 200 MeV/nucleon for 

heavy ions (species dependant) [5]. 

 

Data generated by these sensors are fed to a set of two cold-

redundant Instrument Control Units (ICU) using Universal 

Asynchronous Receiver-Transmitter (UART) links where 

Low-Voltage Differential Signaling (LVDS) is used as the 

standard for the physical level signaling. LVDS was chosen 

because of its improved noise performance over standard (non-

differential) connections and due to its low power 

consumption. 

Figure 1 shows how the components of the EPD instrument 

are connected to each other and to the spacecraft. Each EPD 

sensor is connected to both ICU units (nominal and redundant), 

which are enclosed in the ICU Box. Data connections from the 

sensors go to the Common Data Processing Unit (CDPU) and 
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power connections to the Low Voltage Power Supply (LVPS). 

The CDPU not only receives power from the LVPS, it also 

controls the power supply of the sensors and reads the LVPS 

status. Both ICUs are connected to the spacecraft using two 

SpaceWire links, one for each unit. 
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Fig. 1.  Connection of the components of the EPD instrument inside Solar 

Orbiter.  

III. ICU HARDWARE 

 Each ICU unit is composed of two parts: the CDPU and 

the LVPS. Two ICU units are present in the EPD instrument 

operating as cold-redundant system. The CDPU receives, 

processes and temporarily stores data generated by the EPD 

sensors. In addition, it also receives telecommands from the 

spacecraft, processes them and sends telemetry data as a reply. 

Connection between each CDPU and the satellite is carried out 

using SpaceWire links operating at 10 Mbit/s. More 

information about the use of SpaceWire in EPD can be found 

later in this document. 

Each CDPU unit is composed of the following components: 

 

 A 32 Kbyte PROM memory, which stores the boot 

software. 

 A 1 Mbyte EEPROM memory that stores the 

application software and the data required for the 

correct operations of the EPD sensors. 

 A 2.5 Gbit SDRAM memory. The application 

software is deployed in this memory during the boot 

process and after that it is executed from here. In 

addition, the data provided by the EPD sensors are 

stored in this memory until it is transmitted to the 

Earth. This memory also contains the information 

necessary for implementing the Error Detection and 

Correction (EDAC) functionality. 

 A radiation-tolerant FPGA, where all data processing 

and communications will be performed. 

 LVDS drivers and receivers for the UART and 

SpaceWire interfaces. 

 Additional interfacing components. 
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Fig. 2.  FPGA Block diagram. 

The FPGA handles data exchange between the EPD sensors 

and the spacecraft. For this reason, it contains the logic of 

several UART interfaces, a LEON2 processor and a SpaceWire 

interface, along with additional interconnection logic and 

memory controllers as shown in Figure 2. Connection of the 

LEON2 processor and the necessary peripherals is carried out 

using an Advanced Microcontroller Bus Architecture (AMBA) 

bus. In detail the FPGA, which operates at 20 MHz, performs 

the following tasks: 

 

 Reception of data from the EPD sensors. 

 Processing and compression of the received data. 

 Temporary storage of the resulting data in the 

SDRAM memory. 

 Reception of telecommands from the spacecraft. 

 Telecommand processing and replying. This includes 

transmitting data provided by the sensors to the Earth. 

 Control of the LVPS unit. This allows switching the 

power supply of the EPD sensors. 

 

To relieve the processor from the task of managing data 

transfer operations to and from the EPD sensors, an IP core has 

been developed. It provides a configurable amount of UART 

interfaces and an AMBA master peripheral interface with 

DMA capabilities. This makes it possible to maximize the 

resources dedicated to the sensors’ data processing. 

The LVPS adapts the spacecraft’s +28V power supply to be 

used by the EPD instrument. In addition, the power supplied by 

the LVPS to the EPD sensors can be switched on or off 

individually, following a command received from the CDPU. 

The LVPS also provides protection mechanisms, such as short-

circuit and under-voltage protection [6]. 

IV. EPD SPACEWIRE IMPLEMENTATION AND DATA TRANSFER 

Communications between the spacecraft and its instruments 

is carried out using SpaceWire links. Specifically for EPD, two 

SpaceWire links are provided by the spacecraft, one for each 

cold-redundant ICU. These SpaceWire links operate at 10 

Mbit/s. SpaceWire is not only used for data exchange, 

Timecode characters are used for synchronizing the data 

223



 

transfer from the EPD sensors to the ICU. In addition, 

communications among different Solar Orbiter’s instruments is 

also performed over this link. 

The SpaceWire codec used in the ICU EPD has been 

developed by our group [7]. This SpaceWire codec has been 

tested to work correctly at bitrates up to 300 Mbit/s and 

provides the basic functionality specified in the SpaceWire 

standard [8]. A wrapper component was implemented over this 

SpaceWire codec that provides the interface with the AMBA 

bus, DMA functionality for direct data exchange with the 

external memory without CPU intervention and improved data 

packet and Timecode handling. A block diagram of this 

component is shown in Figure 3. 
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Fig. 3.  Block diagram of the SpaceWire core used in the CDPU FPGA.  

Data exchange and error reporting in this component is 

based on transmission and reception descriptors. For data 

transmission, the software being executed in the LEON2 

processor prepares descriptors in external memory, which 

contain information such as the starting address of the data to 

be transmitted and its length. The software then configures the 

IP core so it knows that there are descriptors pending 

processing and where to find them. For data reception, a 

similar process is followed, but in this case the descriptors 

contain the position in memory where each received 

SpaceWire packet is to be stored and the maximum length 

allowed. 

After the component processes these descriptors, it updates 

them to report any errors that occurred during the data transfer. 

Exchange of telecommands and telemetry through the 

SpaceWire link is carried out using the CCSDS packet transfer 

protocol [9]. CCSDS data management is implemented in 

software. 

V. USE OF TIME-CODES IN EPD 

SpaceWire Timecode characters sent periodically by the 

spacecraft play an important role in the communication process 

between the ICU and the EPD sensors. A mechanism that 

allows synchronizing the transmission of data from the sensors 

to the ICU has been implemented. 

When the ICU receives a valid Timecode character over the 

SpaceWire link (one is expected each second), another IP core 

included in the FPGA is notified. This IP core then generates a 

1 Pulse-Per-Second (1PPS) pulse that is sent to each EPD 

sensor over dedicated LVDS lines.  The 1PPS is used to notify 

the sensors that they are authorized to send data. By defining 

the maximum amount of data that a sensor can send each time 

they receive a 1PPS pulse, we can determine the maximum 

amount of data that the ICU has to process in a period of time 

and, as a consequence, the amount of processing resources 

necessary in the system. 

VI. INTER-INSTRUMENT SYNCHRONIZATION AND BURST 

MODE 

In Solar Orbiter, instruments can share scientific data if 

necessary. This is possible thanks to the implementation of 

Packet Utilization Standard (PUS) Services [10] in the 

Spacecraft’s computer and its instruments. In this 

implementation, the instruments send scientific data to the 

Spacecraft using Service 3 packets. The satellite’s computer 

then processes the information received from all the 

instruments and sends them Service 20 packets with the 

resulting data. For EPD, this information may include a request 

to activate Burst Mode for one or more EPD sensors. 

Before explaining the functionality behind the Burst Mode, 

it is important to know that the EPD sensors capture scientific 

data with a fixed cadence (each second, samples are taken by 

these sensors and sent to the CDPU). For sending this data to 

the Earth, the CDPU composes telemetry packets by compiling 

ten samples taken by a sensor for each packet, which is then 

sent to the spacecraft. It must be noted that the compiling 

process, that basically is a data integration operation, reduces 

the amount of data that must be sent to the Earth. This mode of 

operation is called Nominal Mode. 

In addition to the telemetry data sent in Nominal Mode, 

during some specific periods of time, the CDPU may send high 

cadence scientific data from one or more EPD sensors. This 

mode of operation is called Burst Mode, and can be activated 

independently for each sensor for which this functionality is 

supported. In this scenario, the CDPU generates telemetry 

frames with high cadence data from a single sensor, so more 

information is available about that sample than in Nominal 

Mode. Figure 4 shows the difference between Nominal Mode 

of telemetry reporting and Burst Mode. 

 

CDPU

SAMPLE 1

SAMPLE 2

SAMPLE 3

SAMPLE 4

SAMPLE 5

SAMPLE 6

SAMPLE 7

SAMPLE 8

SAMPLE 9

SAMPLE 10 SENSOR 
SAMPLES

(NOMINAL MODE)
TO 

SPACECRAFT

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

DATA FROM 
SAMPLES 1 TO 10

DATA FROM SAMPLE ‘x’

(BURST MODE)

TELEMETRY FRAME

 
Fig. 4.  Telemetry frame generation using Nominal and Burst Modes 

Burst Mode can also be activated internally by one of the 

sensors present in the EPD instrument or remotely as a 

telecommand sent from the Earth. 
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VII. ICU TESTING ENVIRONMENT 

In addition to the development and implementation of the 

instrument’s hardware and software, a testing environment has 

been set up with the purpose of testing the CDPU’s 

functionality. 

A Unit Tester application has been developed for execution 

in a Personal Computer (PC). This application, combined with 

embedded software also developed specifically for testing 

purposes (which is executed by the CDPU), is a powerful tool 

to assist in testing the CDPU’s peripherals during and after the 

implementation process. 

In this test scenario, commands are sent from the test PC to 

the CDPU under test using a SpaceWire link. The content of 

these commands follows a protocol also developed specifically 

for testing the CDPU. This protocol not only allows specifying 

different tasks to be carried out using the set of peripherals 

available in the CDPU, but also allows ordering tests where 

several peripherals are interconnected. For example, a possible 

test could be to read data from the SPI interface (which is used 

for reading the LVPS status) and send it using one of the 

UART interfaces, while another possibility would be to tell the 

CDPU that, for each SpaceWire packet it receives, it should 

send an amount of reply packets specified in the received 

packet. More complex tests can be implemented if so desired. 

The PC application loads tests to be carried out from XML 

files. These files are human-readable, which eases the process 

of implementing tests or reading what an existing test is 

programmed to do. This application has been developed using 

the LabView environment [11]. To provide the PC used as a 

testing station with SpaceWire connectivity, a SpaceWire-USB 

Brick [12] from Star Dundee is used. 
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Fig. 5.  CDPU testing environment. 

Figure 5 shows the complete testing environment. The Unit 

Tester is connected to the CDPU through the SpaceWire 

interface as well as indirectly through its UART interfaces. An 

additional diagnostics board is used, which allows reading the 

values of the CDPU’s output signals or setting value to its 

input signals. This board also converts the LVDS signals used 

for the UART interfaces in the CDPU to the RS-232 standard 

for connection to the test PC. 

VIII. CONCLUSIONS 

Solar Orbiter will let us acquire a greater knowledge of the 

Sun’s behavior and the environmental conditions of the inner 

Solar System. This knowledge is very important for 

understanding the consequences of the Sun’s environmental 

conditions in Earth, and for better preparing future space 

missions for the hazards of the interstellar medium. SpaceWire 

plays a key role in this mission, providing a robust, high-speed 

link for data transmission that also allows for synchronization 

of the exchange of information between the CDPU and the 

EPD sensors. 
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Abstract— High speed evolution of onboard technologies 

leads to increasing of requirements to the algorithms, which 

provide administration, configuration and monitoring of 

network. The significant rise of number of devices in networks is 

caused by developing new algorithms for automatic network 

configuration without human intervention.  During interworking 

huge sets of devices it is necessary not only to initialize it. Log-

tracing and reconfigure every node and whole network are also 

urgent task. Therefore, the developing of algorithm for automatic 

network configuration and monitoring is high priority task. 

The paper gives the overview of configuration, administration 

and monitoring algorithms for modern onboard data transfer 

standards: InfiniBand, Fibre Channel, AFDX, MIL-STD-1553, 

SOIS and SPA. Definitions of terms of configuration, 

administration and monitoring are in the first and second part. 

The review of data transfer standards is in the third part. We 

consider only algorithms of administration, configuration and 

monitoring. Advantages and disadvantages are particularly 

explored. Also we analyze how it can be used with SpaceWire 

technology.  

Index Terms—Administration, configuration, monitoring, Plug 

and Play, InfiniBand, Fibre Channel, AFDX, MIL-STD-1553, 

SOIS, SPA, SpaceWire. 

I. INTRODUCTION 

The onboard network evolution and growing the number of 

devices in networks leads to creating new algorithms. Also 

need to take into account the wide variety of hardware, which 

may have a different interfaces, performance, features and 

capabilities. 

The algorithms respondent to the administration, monitoring 

and reconfiguration of the onboard network should not only 

initialize all the devices, but also track the status of each 

device during the all network working time, providing to the 

operator a log about whole network and each device. 

Algorithms can be completely different: centralized, 

decentralized, with input data and without, taking into account 

the error statistics, the presence of redundant channels and / or 

devices. 

But they are used a number of requirements and restrictions, 

such as: 

 Configure and network scan should not cause 

deadlocks; 

 The algorithm should work correctly on any network; 

 The algorithm should not significantly affect the ability 

of computer networks. 

According to the structure the algorithms can be divided into 

several stages: administration, monitoring and reconfiguration 

onboard computing network. 

Under the term of administration we understand that, if there 

is information about network devices send command for direct 

recording settings in them. If there is no input data, then to the 

administration stage the network discovering is added.  

After the first stage the tracking of the network state and 

each device begins. During the monitoring the output log file 

is created, reflecting the status of the devices, links, and error 

statistics occurring in the network. The monitoring includes 

testing devices and making conclusion on the base of the 

receiving results about their efficiency. 

If errors are found, it is necessary to take the decision about 

trying to restore settings or to transfer the management to the 

redundant device, if first device cannot be restored or the 

device is out of order. About the choice and actions are 

reported to the network operator through log files. All this 

actions are called reconfiguration of the network. This 

function will be called in the case of detection or disable 

devices, needs to input or output device in standby mode. 

 

II. MONITORING AND ITS SERVICES 

The monitoring function represents tracking the network 

state. It is executed continuously after network initialization. 

The monitoring checks intactness of network devices, 

backtraces the appearance new devices in network, guides 

statistical parameters which can be interested for network 

administrator, forms error report. 

Also one of the monitoring functions is tests, for example, 

device interrogating for detection fails or new devices. In case 

of finding out the fail, the message is sent to network 

administrator and forms an output report file. 
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For example, during test the terminal node, the connected 

ports (connection, speed) and possibility device to send packets 

are checked. During test the router, the connections and 

possibility to send packets are checked as well. In addition the 

router table, adaptive group registers are checked. 

In case of some fails the monitoring tries to dispose them 

by using configuration and administration tools and informs 

the network administrator. This stage is named network 

reconfiguration. Its initiator is signal from monitoring stage 

about appearance or disappearance device or several devices. 

This leads to creating new parameters and adjustments. 

III. OVERVIEW OF STANDARDS 

A. MIL-STD-1553 

This standard was developed for military purposes, and 

describes 1-megabit bus with time-division. Its special feature 

is the dual redundant data bus built on a "command-response" 

scheme. The second bus is backup bus, it is using when the 

primary fails. 

 

Fig.  1 Scheme of MIL-STD-1553 bus 

All the actions that occur on the bus are controlled and 

executed by the main bus controller. Remote terminals are 

connected to the bus and asked for the commands the 

controller. Remote terminals can be up to 31. Also in the 

network can be a monitor bus. 

The main function of the bus controller is controlling the 

flow of data for all transactions on the bus. The exchange of 

the data is taken place in the "command-response" mode; the 

device fully monitors the data transfer. It also detects and 

corrects errors that occurs on the bus and keeps log of errors. 

The controller records the changes in the network, and 

performs the appropriate actions, for example, connects the 

redundant devices. The bus can support several controllers, 

but at one time just one can work. 

The remote terminal is the interface intended for connection 

of the bus and a subnet. The subnet is connected through such 

remote terminal and can contain up to 31 subaddresses.  

Terminal cannot begin transmitting data until doesn’t asked be 

the bus controller. The remote terminal must be properly 

handles the protocol and electrical errors. 

The monitor of the bus listens to all messages on it and 

writes some. It can store data for analysis in real time or after 

some time. The monitor can store all bus traffic or only a part, 

including protocol and electrical errors. The monitor is usually 

used for bus testing [1]. 

Considering possibility of application of methods of the 

MIL-STD-1553 standard for the onboard systems constructed 

on the basis of SpaceWire devices, it is possible to draw the 

following outputs: 

 The standard MIL-STD-1553 controller analyzes and 

monitors the network. Algorithm is centralized, only 

one controller at the time can work. 

 The bus MIL-STD-1553 monitor is the passive device 

which realizes traffic and history storage and bus tests. 

In the on-board network Space Wire will be useful to 

apply such device to gather information about current 

changes in the network (connecting and disconnecting 

devices, errors). 

 Network built according to MIL-STD-1553, has a 

well-defined topology and the restriction on the 

number of devices. This condition is not reasonably to 

the Space Wire network. 

 Initially the network built according to MIL-STD-1553 

already set up and run. The main task is maintaining its 

performance. This condition is not always reasonably 

for Space Wire network. 

B. InfiniBand 

For the administration and monitoring of the network, the all 

network structure is divided into subnets. 

 

Fig.  2 IB Network and Subnetwork 

For the process of administration, configuration and 

monitoring, there are managers and agents that support a range 

of services. 

 

Fig.  3 IB Subnet Components 

A Subnet Manager is an entity attached to a subnet that is 

responsible for configuring and managing switches, routers, 

and channel adapters. And each node provides a Subnet 

Management Agent that the Subnet Manager access through 

an interface called the Subnet Management Interface. 

The manager can be in one of the following statuses: study, 

waiting, master or non-active. 
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Fig.  4 IB Manager Stages 

The first step is determining the master manager of subnet. If 

manager find out a node with a bigger ID then manager goes 

into waiting mode. In this mode it doesn’t configure the 

network. It only checks once in some time the operability of 

the master. If for some reason the master fails or doesn’t 

respond, then the manager again enters to the study state. He 

also enters this mode when receive a packet “study”. If he gets 

the package “disable”, then he needs to go into the "non-

active" state. In this case, it does not perform any action. He 

can go into a waiting state when receiving an appropriate 

packet. 

The master manager makes study of topology of a subnet, 

distribution of local addresses to the devices, compilation of 

paths to these devices, executes configuring of devices of a 

subnet and all subnet in case of appearance of new devices or 

switch-off the operating. 

Subnetwork agents are contained in everyone subnet 

devices, in channel adapters, routers and switches. They 

provide the opportunity to interact between the device and 

manager. By means of the agent the access to the configurable 

parameters is made. 

Control of IB provides a configuration and information 

collection about channel adapters, switches and routers, 

determination of topology and a subnet configuration. 

InfiniBand management defines a common management 

infrastructure for 

 Subnet administration - provides nodes with 

information gathered by the subnet manager and 

provides a registrar for nodes to register general 

services they provide. 

 Communication establishment and connection 

management between end nodes. 

 Mechanisms to discover and manage I/O devices 

“behind” channel adapters. 

 Configuration management - an authority for assigning 

I/O resources to hosts. 

 Performance management - monitors and reports well-

defined performance counters. 

 Baseboard management - provides for power & chassis 

management. 

 SNMP Tunneling (SNMP) - provides method for 

sending and receiving information between 

management agents and management applications. 

This includes Simple Network Management Protocol 

(SNMP), Desktop Management Interface (DMI), and 

Common Information Model (CIM) [2]. 

 

Fig.  5 IB Management 

It is possible to draw the following outputs about the 

InfiniBand standard: 

 The InfiniBand standard is centralized for subnets and 

decentralized for all system. 

 No restrictions on the topology, devices can be 

duplicated if it is necessary. 

 There is no need of continuous or periodic survey of 

devices, the agent being on the device reports about it. 

 Each subnet must support at least two managers, and 

each network device must support the work of the 

agents. Directly from the device manager does not 

work. 

At the InfiniBand standard is a row of advantages which can 

be used to implementation of algorithms of Space Wire. The 

using the agents in the network Space Wire are difficult 

because often terminal nodes are the sensors which aren't 

supporting installation on them the additional software. 

However, the switches may contain such software, adding to 

its function the monitoring of terminal nodes. The simple 

circuit of network monitoring can be created by the adding of 

manager to the network topology, which can process 

information from agents. 

C. Avionics Full Duplex Switched Ethernet (AFDX) 

AFDX combines concepts taken from asynchronous transfer 

mode and applies them to a variant of IEEE Std 802.3 

(Ethernet). At the physical layer, AFDX consists of a star-

topology, full duplexed switched Ethernet. 

In order to improve the reliability AFDX provides a 

redundant network scheme. 

Each frame is transmitted in parallel over two redundant 

networks and afterwards filtered by Redundancy Manager at 

the receiving End System. This shall reduce the probability of 

loosing frames and enable further operation even in presence 

of one faulty network [3]. 
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Fig.  6 AFDX Network 

Management of an AFDX network is handled via a network 

management function that communicates with each AFDX 

network component (equipment, subscriber, and switch) to 

monitor the health and status of the network. 

Network health is monitored via simple network 

management protocol (SNMP) agents running on each 

subscriber (line-replaceable unit (LRU)/partition) and end 

system (including the switch end system). Health status and 

errors are logged to the local MIBs, with status messages sent 

as requested by the network management function [4]. 

The main concept of SNMP protocol is that all necessary 

information for manage device is stored on that device in 

Management Information Base (MIB). 

MIB is the set of variables characterized the state of 

management object. These variables can reflect such 

parameters as number of packets, processed by device; state of 

its interfaces; time period of function this device, etc. 

For process the inquiries from control station received as 

SNMP packets the special module, named Management 

Agent, is existed. Agent receives SNMP packets and performs 

corresponding actions, for example, set value to parameter, 

update information in MIB. 

The Control Station can be workstation of network 

administrator, if there run some management module which 

supporting the SNMP protocol. 

The feature of this protocol is its simplicity. It includes just 

several commands. 

 The command GetNext-Request is used by manager to 

get value of the next object (without its name) during 

the several reviews the table of the objects. 

 The command Get-Response is used by SNMP agent 

for transmit to manager the answer on command Get-

Request or GetNext-Request. 

 The command Set is used by manager to change the 

value of some object. By using this command the 

device management is occurred. 

 The Trap command is used by agent to send the 

massage to manager about raising the special situation. 

 The SNMPv.2 adds to this set command GetBulk, 

which allows manager get several values of variables 

in one request [5]. 

This standard shows the high fault-tolerance by duplicate the 

flow of packets, but it demands the big hardware resources, 

because all devices between two end nodes are duplicated. 

Such approach can be used for SpaceWire networks. However 

the duplication all network can involve difficulties, because 

for onboard network is important to minimize the weight and 

power consumption, thus only very important parts of network 

can be duplicated. 

In network must exist and permanently function the 

Redundancy Manager. 

This standard doesn’t discuss where the network manager 

realized configuration and monitoring should be hosted. 

The SNMP protocol consists the minimum number of 

commands, offers the full access to variables of MIB different 

network devices and monitoring functions. 

The concept of storage information about device state on 

that device can be successfully applied to SpaceWire 

networks. In this case devices should hold self-testing 

software and the network manager produces interrogation its 

parameters. 

D. Fibre Channel 

Fibre Channel is the set of protocols for high-speed data 

transfer. Fibre Channel is complex protocol consisted of 5 

layers. On layer FC-3 the Management Services is placed. This 

is set of tools for access for management application to Fibre 

Channel network, its inner topology and configuration data. 

The management applications placed on network devices can, 

for example, indicate which ports can interact with each other. 

Other services allow management applications discover the 

behavior of interactions in Fibre Channel network. 

The standard Fibre Channel supports 3 types of topology 

defined the principles of interaction between devices: 

 Point-to-Point topology; 

 Arbitrated loop topology; 

 Switched-fabric topology. 

Physically, the Fibre Channel is an interconnection of 

multiple communication points, called N_Ports, 

interconnected either by a switching network, called a Fabric, 

or by a point-to-point link. A Fibre Channel "node" consists of 

one or more N_Ports. A Fabric may consist of multiple 

Interconnect Elements, some of which are switches. An 

N_Port connects to the Fabric via a port on a switch called an 

F_Port. When multiple FC nodes are connected to a single 

port on a switch via an "Arbitrated Loop" topology, the switch 

port is called an FL_Port, and the nodes’ ports are called 

NL_Ports. The term Nx_Port refers to either an N_Port or an 

NL_port. The term Fx_Port refers to either an F_Port or an 

FL_port. A switch port, which is interconnected to another 

switch port via an Inter Element Link (IEL), is called an 

E_Port. A B_Port connects a bridge device with an E_Port on 

a switch; a B_Port provides a subset of E_Port functionality. 

Many Fibre Channel components, including the fabric, each 

node, and most ports, have globally-unique names. These 

globally-unique names are typically formatted as World Wide 

Names (WWNs). 

The configuration is realized also with SNMP protocol 

which is described earlier in AFDX section. 

MIB Fibre Channel consists of 11 groups: 

 Instance Basic Group contains basic information about 

a Fibre Channel managed instance, including its name 

and description, the Fibre Channel function(s) it 

performs, and optional pointers to hardware and/or 

software components; 
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 Switch Basic Group contains basic information about a 

Fibre Channel switch, including its domain-id and 

whether it is the principal switch of its fabric; 

 Port Basic Group contains basic information about a 

Fibre Channel port, including its port name, the name 

of the node (if any) of which it is a part, the type of 

port, the classes of service it supports, its transmitter 

and connector types, and the higher level protocols it 

supports; 

 Port Stats Group contains traffic statistics, which are 

not specific to any particular class of service, for Fibre 

Channel ports; 

 Port Class23 Stats Group contains traffic statistics that 

are specific to Class 2 or Class 3 traffic on Fibre 

Channel ports, including class-specific frame and octet 

counters and counters of busy and reject frames; 

 PortLc Stats Group defines low-capacity (Counter32-

based) equivalents for the Counter64-based statistics in 

the Port Class23 Stats Group; 

 Port ClassF Stats Group contains traffic statistics that 

are specific to Class F traffic on the E_Ports of a Fibre 

Channel switch; 

 Port Errors Group contains counters of various error 

conditions that can occur on Fibre Channel ports; 

 Switch Port Group contains information about ports on 

a Fibre Channel switch. For an Fx_Port, it includes the 

port’s timeout values, its hold-time, and its capabilities 

in terms of maximum and minimum buffer-to-buffer 

credit allocations, maximum and minimum data field 

sizes, and support for class 2 and class 3 sequenced 

delivery. For an E_Port or B_Port, it includes the 

buffer-to-buffer credit allocation and data field size; 

 Switch Login Group contains information, known to a 

Fibre Channel switch,about its attached/logged-in 

Nx_Ports and the service parameters that have been 

agreed with them; 

 Link Basic Group contains information known to a 

local Fibre Channel management instance, and 

concerning Fibre Channel links including those which 

terminate locally [6]. 

The Fibre Channel standard unlike other standards allows 

organize high-performance network without redundancy. 

This standard is use the SNMP protocol for configuration 

and monitoring network devices. The 11 MIB groups are 

existed which provide all information about network and each 

device. The management applications are placed on devices. 

The using of management applications worked on devices for 

SpaceWire networks is not always possible, because some 

terminal nodes cannot support the addition software. 

E. Space Plug-and-Play Avionics (SPA) 

The Air Force Research Laboratory is developing a system 

for rapidly building spacecraft based on adapting “plug-and-

play” (PnP) approaches for use in space. This space plug-and-

play avionics (SPA) system is based on an interface-driven set 

of standards intended to promote the rapid development of 

spacecraft busses (platforms) and payloads. As such, SPA is 

an open systems framework, combining commercial standards 

with carefully chosen hardware and software extensions 

necessary for modern real-time embedded systems (e.g. fault 

tolerance, higher power delivery, self-description). 

Space plug-and-play avionics (SPA) is defined as an 

interface-driven standard (or set of standards) intended to 

promote the rapid development of spacecraft busses 

(platforms) and payloads. The SPA standard comprises an 

open systems framework, which combines core commercial 

standards (such as USB) with carefully chosen hardware and 

software extensions necessary for modern real-time embedded 

systems. 

 

Fig.  7 Vertically-layer software engineering model for PnP 

One abstraction of software engineering for PnP follows a 

vertically-layered, reminiscent of the well-known seven-layer 

open system interconnects (OSI). At the bottom of this stack 

are the PnP components themselves. The component layer 

connects into a “middleware” layer referred to as the satellite 

data model (SDM). Above this middleware is the application 

layer. Applications access the PnP object-services through 

API calls to the SDM, which enforces an insular discipline in 

systems development. It is not, for example, necessary to write 

code to control specific thermometers, which might require 

modification when different thermometers are chosen. Rather, 

this layered approach encourages device independence in 

application design, which is one of the principles that permit 

more rapid integration of components. It is possible to define a 

final mission layer, potentially as a script-driven interface to 

the application set.  

The key innovation in the PnP software architecture is the 

SDM. The goal of rapid satellite design, integration, and test 

requires that established, but time consuming, concepts be 

rethought and revamped. The SDM does not focus on the 

electrical transport mechanism, so in principle any number of 

SPA-x interfaces could be devised. Rather, the SDM is based 

on the transport of data.  

Ontology plays an important role in SDM. For the various 

aforementioned processes to understand each other, they must 

speak the same language. To do this, SDM requires a public 

Common Data Dictionary (CDD) whose contents are created 

by the community of process developers and managed as a 

public resource. The CDD concept is key to a data-oriented 

model, and it enables disparate teams to develop processes in 
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different places and times that are able to understand what 

data each produces or requires. It permits a community 

understanding for the development of the device xTEDS, as 

well as the applications that exploit them in the various SPA 

components.  

The SDM defines a series of interacting “function 

managers”: 

 Processor Manager – resident on each processor and is 

responsible for keeping that processor busy; 

 Data Manager – keeps track of all data available at any 

given time and supports data queries; 

 Task Manager – keeps track of active and pending 

tasks; 

 Sensor Manager – provides the PnP interface to the 

processing network; and 

 Network Manager – explores the network and 

maintains routing tables. 

The managers are logically a single function even though 

they can have a multi-instantiated distributed implementation. 

These “managers” support data access, task management, and 

network discovery. Data access accumulates descriptions of 

what data is produced by system processes and how that data 

can be accessed. Task management keeps track of what 

processes are executing on what processors and their statuses 

along with what additional tasks are needed. Network 

discovery determines what components are connected to the 

network, their addresses, and associated routing tables. 

The processor manager bears special mention. It is a special 

process resident on each processor (since SDM is intrinsically 

designed to be distributed onto networks) that handles task 

acquisition and execution along with providing basic support 

functions. These functions include messaging between 

processes, maintaining a real-time clock, and providing a 

periodic heartbeat to the system (i.e., the task manager). The 

special “per processor” process continuously monitors activity 

of the parent processor and periodically checks for the 

existence of pending tasks that can be executed by the parent. 

If any are found, the appropriate executables are loaded and 

run. While no operating system is required per se, the process 

can be multithreaded, handle interrupts, and utilize an 

operating system as appropriate based upon the specific 

processor [7]. 

The functions of administrating are divided between several 

managers: processor manager, data manager, task manager, 

sensor manager and network manager. Each manager is 

responsible for restricted set of functions, which increase the 

data processing. Also the stability of single manager increases.  

SPA use its own format of the packets, received information 

is described by xTEDS. 

SPA use its own logical addressing which have to be 

modified to use in other subnetwork. 

On SPA managers is placed the main work of service the 

network, storage data, paths and routing tables for different 

subnetworks. 

SPA has the SPA-S realization special for SpaceWire. 

F. Spacecraft Onboard Interface Services (SOIS) 

The SOIS standardized services are intended to be 

applicable to all classes of civil missions, including scientific 

and commercial spacecraft, and manned and un-manned 

systems. These standardized services may apply to military 

missions, although military security requirements have not 

been considered in their specification.  

On any given spacecraft, several types of data subnetworks 

may be used between specific data systems. The actual type of 

subnetwork used is determined by the required characteristics 

of the interaction between those entities. These may typically 

be categorized as: 

 Multidrop Buses providing connection to a central bus 

master and a number of slaves. Communication is 

generally asymmetrical and often involves low-level 

read and write access to slaves. The central control of 

bus traffic results in a highly stochastic traffic profile 

well suited to applications requiring bounded 

communications timing. 

 Point-to point serial interfaces used for instrument 

connection, possibly for bulk data transfer but also 

combined with instrument control. Again, these 

interfaces usually operate in a master/slave mode. 

 LANs used on larger infrastructures where hosts have 

generally equal computing power and have a diversity 

of communication requirements. Communication is on 

a peer-to-peer basis with a level of variability in delay 

due to resource queuing. 

 Point-to-point sensor and actuator interfaces used for 

gathering sensor readings or controlling spacecraft 

equipment. 

Onboard applications should not be concerned with the 

nature of these subnetworks, and so the SOIS concept aims to 

provide a solution by recommending that applications interact 

only with a well-defined set of standard onboard data services. 

 

Fig.  8 SOIS Layers 

SOIS services exist at three service interfaces: 

 An Application Support Layer service interface. 

 A Transfer Layer Service interface. 

 A Subnetwork Layer service interface. 

The Application Support Layer services provide a number of 

capabilities commonly required onboard a spacecraft, which 
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need not be limited to communications. The Application 

Support Layer services make use of the Subnetwork Layer 

services either locally or remotely over a network. The 

services are defined in terms of protocols, procedures, 

protocol data units and a Management Information Base 

(MIB). 

The Transfer Layer is assumed to be composed of extant 

CCSDS recognized protocols and services. 

The SOIS Subnetwork provides a set of SOIS-defined 

services which support upper-layer Application-Support and 

Transfer-layer entities. 

The services identified at the Subnetwork Layer are: 

 Memory Access (memory location read/write, includes 

block move)—providing direct access to device 

memory. 

 Time Distribution—providing transmission and 

reception of spacecraft time. 

 Packet—providing packet delivery over a single 

subnetwork. 

 Device Discovery—providing dynamic device 

recognition. 

 Test Service—providing establishment of subnetwork 

functionality and availability.  

As you can see, services attached to administration, 

monitoring and reconfiguration place on different layers. 

Consider it in details. 

On Application Support Layer the function Device 

Enumeration Service (DES) is placed. It supports a dynamic 

configuration. 

On Subnetwork Layer the functions Device Discovery and 

Test are located. 

The SOIS device discovery service provides the capability to 

detect devices becoming active following a change in the 

hardware configuration of the spacecraft. This may occur 

when a cold redundant device is powered on, for example.  

The Test Service is intended to be used for checking data 

system functionality and connectivity of the subnetwork. The 

service is used to check operation of the subnetwork aspects of 

the local data system as well as subnetwork connectivity to 

other data systems [8]. 

The present standard doesn’t have limitation on topology 

given an opportunity to create any topology in depend on 

network function. 

In standard is presented such services as detection of 

connection the new device, tests, dynamic configuration and 

network discovering. 

The adoption of automatic detection of connection new 

devices, dynamic configuration and test services are not 

unreasonable to add to SpaceWire network, this give us more 

opportunities for automation a network functions. 

IV. CONCLUSION 

Possibility of automatic network configuration is important 

factor in selection standard for onboard network. 

In depend on goals and resources the different standards 

and protocols, different algorithms of administration, 

configuration and monitoring can be used. 

During review the different standards, the set of addition 

for SpaceWire was detected. For example, efficiently to have 

the additional passive device which gather information about 

changes in network; the functions of router software responded 

to tracking the router state and connected to it nodes; the 

addition several managers greatly simplify administration, 

configuration and monitoring. For increasing the fault-

tolerance it is possible to duplicate important parts in the 

network. 
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Abstract— SpaceWire backplane for ground equipment has 
been developed based on micro TCA. Micro TCA is an industrial 
standard. It has a backplane for LVDS point-to-point data links. 
SpaceWire is implemented on the data links. Micro TCA system 
provides not only SpaceWire data links but also reliable power 
and cooling. It is applied to ground equipment such as test 
systems and prototype modules. 

Index Terms—Backplane, micro TCA.  

I. INTRODUCTION 
To develop satellite data handling systems, ground 

equipment has important roll. Prototyping of the modules, 
emulator modules and test equipment are needed. We have to 
handle many modules for testing the data handling system. 
Power cables and SpaceWire cables connecting those modules 
are often being mess. Compact system to hold those modules is 
needed to make the test and evaluation easy and reliable. 

COTS (commercial off-the-shelf) backplane systems are 
concerned for ground equipment. COTS backplane systems 
provide wide variety of products in cost effective way. They 
should provide LVDS point-to-point data link, good power 
supply and reliable cooling system. There are several 
backplane with differential point-to-point connections. Those 
are used for PCI express, Giga-bit Ethernet, Serial ATA and 
other serial protocols. Micro TCA is one of such backplane 
system [1]. We implemented SpaceWire on the differential 
point-to-point connection of micro TCA backplane. This work 
is supported by Jaxa and Japan Space Systems. 

We have been used Advanced TCA system, which is also 
serial backplane [2], for particle physic experiments on the 
ground. SpaceWire-microTCA is designed based on this 
experience. 

II. MICRO TCA 
Micro TCA is an industrial standard [1]. Micro TCA hosts 

AMC (advanced mezzanine card) modules. It can handle up to 
12 AMC modules. Each module has point-to-point connection 
to the dedicated controller (MCH: MicroTCA Carrier Hub).  

An AMC module has 20 AMC ports. Each port has LVDS 
transmitter and receiver connections. First 4 AMC ports are 

called “common option”. They are used for Gigabit-Ethernets 
and SATA connections. The next 4 AMC ports are called “Fat 
pipe”. They are usually used for PCI express or other standards. 
We assigned two SpaceWire port to Fat pipe region. The next 4 
AMC ports are called “Extended fat pipe”. They are also used 
for PCI express or other standards. We assigned two 
SpaceWire port also to Extended fat pipe region. The last 8 
AMC ports are called “Extended option”. They are not 
supported in COTS backplanes. Custom made backplane is 
needed to use Extended option region. So, we don’t use 
Extended option region for our application. Consequently, each 
AMC module has 4 SpaceWire connections, two in Fat pipe 
and two in Extended fat pipe. The port connection is shown in 
the table I. 

TABLE I.  AMC PORT ASSIGNMENTS 

 AMC 
port Signal Primary 

MCH 
Redundant 

MCH 

Common 
option 

0 1000BASE-BX A  
1  A 
2 SATA etc. B  
3  B 

Fat pipe 

4 SpaceWire-0 D D1-D12 

 5 S E1-E12 
6 SpaceWire-1 D F1-F12 
7 S G1-G12 

Extended 
fat pipe 

8 SpaceWire-2 D 

 

D1-D12 
9 S E1-E12 

10 SpaceWire-3 D F1-F12 
11 S G1-G12 

Extended 
option 

12 

   13 
14 
15 
17 

   18 
19 
20 

 
An AMC port of even port number is assigned to “D” in D-

S link. An AMC port of odd port number is assigned to “S” in 
D-S link. Fat pipe is connected to a primary MCH. Extended 
fat pipe is connected to a redundant MCH. Each MCH has 24 
(2ports × 12 AMC modules) SpaceWire connections. Figure 1 
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shows schematic view of SpaceWire connection on COTS 12 
slot micro-TCA backplane. 
 

 

 
Figure 1. SpaceWire backplane using commercial 
micro TCA backplane. Two MCHs are placed at 
the both end. 

 
In order to house less number of modules, 6 AMC slot 

system was developed.  One MCH has 24 SpaceWire ports. 
One MCH can handle up to 6 AMC modules. However, in 
micro-TCA standard, Extended fat pipe is not connected. It 
goes to a redundant MCH. Therefore, we developed custom 
backplane so as to connect all SpaceWire to one MCH. The 
port connection is shown in the table II. 

  

TABLE II.  AMC PORT ASSIGNMENTS (CUSTOM BACKPLANE) 

 AMC 
port Signal MCH 

Fat pipe 

4 SpaceWire-0 D D1-D6 
5 S E1-E6 
6 SpaceWire-1 D F1-F6 
7 S G1-G6 

Extended 
fat pipe 

8 SpaceWire-2 D D16-D7 
9 S E16-E7 

10 SpaceWire-3 D F16-F7 
11 S G16-G7 

 
Figure 2 shows schematic view of SpaceWire connection 

on the custom 6-slot micro-TCA backplane. 
 

 
Figure 2. 6-slot SpaceWire backplane using 
custom micro TCA backplane. All SpaceWire 
links are connected to one MCH on the left hand 
side. 

 
The 6-slot custom SpaceWire backplane was developed by 

UBER [3]. Figure 3 shows the system. 
 

 
Figure 3. 6-slot SpaceWire backplane system 
using micro TCA system 

 
 

III. SPACEWIRE ROUTER 
All SpaceWire links are connected to MCH. A SpaceWire 

router is placed at the MCH. We have developed custom MCH 
which has SpaceWire router. Figure 4 shows MCH with 28 
ports SpaceWire router. The MCH is developed by 
SHIMAFUJI Electric. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. MCH with 28-port SpaceWire router. 
 
28 port router is placed on a FPGA（Xilinx XC6VLX75T-

3FFG784）. 24 ports are connected to the backplane. Up to 4 
ports are connected to external port. SpaceWire ports work up 
to 200 Mbps data rate. We also developed MCH with 
SpaceWire-to-GigabitEther is also available.  

MCH controls power of AMC modules and cooling. 

IV. AMC MODULE 
Several kinds of AMC modules with SpaceWire interface 

are developed. General-purpose module is developed. The 
module has 4 SpaceWire ports to backplane and 4 SpaceWire 
ports to front panel connector. 128 MB SDRAM is attached to 
the FPGA. Figure 5 shows SpaceWire interface module. 
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Figure 5. General-purpose SpaceWire Interface. 

 

V. APPLICATIONS 
The micto TCA system will be used for test equipment. 

Micro-TCA system has high reliability. It is ideal for the test 
equipment. Traffic Generator system using General-purpose 
SpaceWire interface is presented by Yuasa et al. [4] 

The micro TCA system will be also used for emulator of 
data handling system.  General-purpose interface can emulate 
the sensor nodes or a data handling system by changing the IP 

on the FPGA. Reusing existing hardware, development time 
can be saved.  

The micro TCA system will be also used for prototyping of 
payload electronics. A small form factor of the micro TCA 
system provides compact development system. 

The SpaceWire backplane on micro TCA system will be 
applied for most of ground applications for SpaceWire. 
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Abstract— Limited telemetry rates combined with large 

amounts of information retrieved from the sensor systems of 

scientific space instruments demand that classical ground 

processing steps like determination of scientific parameters 

need to be performed already on-board. FieldProgrammable 

Gate Arrays (FPGAs) with large logic density provide a highly 

flexible platform to implement sophisticated data processing. 

Specifically, radiation tolerant space qualified SRAM-based 

FPGAs allow to build dynamically and even partially 

reconfigurable hardware designs, offering significantly 

improved flexibility for high reliable systems. Our own 

SpaceWire based System-on-Chip Wire (SoCWire) 

communication architecture and the RMAP inspired SoCWire 

Protocol (SoCP) provide an adequate Network on Chip (NoC) 

communication infrastructure. In this paper a software 

SoCWire Protocol Handler (SoCPH) implementation for SoCP 

is presented.  This handler contains autonomous mechanisms 

for determining current network state to provide valid and up 

to date network state information to the high level software.  

Additionally, the SoCPH provides autonomous packet header 

generation. It supports concurrent network interactions from 

multiple tasks with an automatic response dispatching routine. 

Synchronous and asynchronous message transfers are 

supported. These key features significantly lower the otherwise 

necessary network management overhead for the application 

software developer and provide easy access to the existing 

processing nodes. 

Index Terms— SpaceWire, SoCWire, protocol, network on 

chip. 

I. INTRODUCTION AND HERITAGE 

Limited telemetry rate combined with the large amount 

of scientific raw data retrieved from modern sensor systems 

demand that classical ground processing steps like scientific 

parameter extraction and subsequent data evaluation already 

need to be performed on-board. To cope with these 

sophisticated on-board processing capabilities, state-of-the-

art radiation tolerant space qualified SRAM-based 

FieldProgrammable Gate Arrays (FPGAs) with large gate 

count offer an attractive solution to speed up processing by 

utilizing the parallel structures of FPGAs. Usually, these 

processing steps need to be revised during a space mission 

and therefore the scientists request that on-board processing 

needs to be adaptable to changing mission specific 

requirements. Fortunately, this type of FPGA provides the 

capability for in-flight dynamic partial reconfiguration, i.e. 

exchanging parts of user logic while the remaining user logic 

is still operating. Therefore an advanced System-on-Chip 

(SoC) can be implemented with such devices, however 

overall system availability and qualification has to be 

guaranteed in the harsh space environment.  

 

We have already demonstrated the successful usage of 

SRAM-based FPGA devices for scientific instruments with 

e.g. the Venus Monitoring Camera (VMC) on ESA’s Venus 

Express mission launched 2005 [1] and the Dawn Framing 

Camera on NASA’s Dawn mission launched 2007 [2]. VMC 

was the first European SoC computer in space and to date is 

operational since more than 7 years, with only a few 

numbers of predicted resets due to radiation induced Single 

Event Effects (SEEs). But, the reconfiguration ability was 

only used during the development phase on ground and no 

support for in-flight reconfiguration was built-in. To be able 

to update the processing modules, the reconfigurability of 

these SRAM-FPGAs has to be used also in space. This is a 

major improvement in terms of maintenance and 

performance, which is essential for future space instruments 

because of its ability to adapt to unforeseen situations and 

events. 

 

Since complete parallel real-time processing is not 

achievable in most cases and not all of the functional 

modules need to operate concurrently, it would be sufficient 

if a Partial Reconfigurable Module (PRM) could be 

requested to be instantiated and run in a FPGA on demand. 

The ability of SRAM-based FPGAs to support dynamic 

partial reconfiguration allows this flexible use of the 

available HW platform in a Time Space Partitioning (TSP) 

manner even for complex algorithms. 
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II. SOCWIRE 

The SpaceWire based System-on-Chip Wire (SoCWire) 

communication network has been developed by IDA as a 

fault tolerant high-speed Network-on-Chip (NoC) 

architecture, which is able to connect PRMs to a host system 

with the capability to isolate these PRMs logically and 

physically from the system [3]. This means that glitch 

effects, which may occur during the reconfiguration process 

of PRMs, do not affect the operation of the host system and 

thus SoCWire provides a safe way to dynamically 

reconfigure parts of the FPGA during flight. 

 

A SoCWire link is always a point to point connection of 

two CODECs with receiver and transmitter interface. Since 

normally more than two nodes need to be connected, a 

simple path addressing SoCWire switch with round robin 

scheduling is placed between them, see figure 1. The data 

transfer in a SoCWire network is controlled and supervised 

by a host system. Typically the host system consists of a 

variant of the space qualified LEON processor. As a bridge 

between the AMBA based host processor bus and the 

SoCWire network, the AHB to SoCWire bridge 

(AHB2SOCW) was developed [4], supporting 16bit and 

32bit SoCWire networks. To provide highest data rates with 

low host processor involvement, the AHB master of the 

bridge is controlled by two Direct Memory Access (DMA) 

engines. FIFO buffers establish the connection between 

DMA controller and SoCWire CODEC. 

 

  

 
Figure 1. Basic SoCWire Network 

III. SOCWIRE PROTOCOL 

Whilst the pure SoCWire network represents only the 

physical link and enables the data transmission between 

several SoCWire nodes within the on-chip network, a 

protocol is required to define rules and conventions for the 

communication between the different nodes. The nodes have 

to know how to interpret the meaning of received data. Our 

SoCWire protocol (SoCP) presented in [5] is inspired by the 

Remote Memory Access Protocol (RMAP), but adapted to 

the requirements for on-chip data processing chains and 

considerably simplified to limit resource consumption. 

Whereas RMAP is mainly used for remote memory accesses 

to nodes in a SpaceWire network, the processing nodes 

within a SoCWire network rather process the data on 

consecutive data blocks. In the context of a macro pipeline 

one processed data block is directly transmitted to further 

processing nodes or into mass memory. 

 

The setup is such that the hardware protocol controller is 

placed between the SoCWire CODEC and the actual 

processing core as depicted in figure 2. The core creates 

replies to requests send, supplies the processing core logic 

with streaming data, and provides read and write registers to 

set and read parameters from the processing core. The 

implementation of user registers is optionally set by generics, 

which helps to avoid FPGA resource consumption when not 

needed. To make the protocol efficient and limit the registers 

in the protocol handler, the network must not have more than 

3 switches and port 0 in every switch must be the route to the 

host processor. 

 

 

Figure 2. Detailed SoCWire Hardware Node 

The general protocol structure is shown in figure 3. Every 

packet begins with up to 3 address descriptors, which 

contain the outgoing port number of one SoCWire switch on 

the path to the destination node. The destination is system 

wide uniquely determined in the Hardware ID field. The 

Transaction ID contains a counter in order to assign a 

response to a request, while Instruction tag identifies the 

packet type and additionally contains some flags for error 

handling. Each packet ends with an end of packet (EOP) 

behind the payload data. 

 

Figure 3. SoCWire Protocol Structure 

IV. SOFTWARE SOCWIRE PROTOCOL HANDLER 

The NoC and processing nodes need to be controlled and 

supervised by software on a host processor system. 

Depending on the number of nodes in a NoC, frequency of 

node replacement and maximum hop count generating 
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suitable routing information the network management should 

not be underestimated in terms of complexity. Furthermore, 

developers of scientific application software have to keep 

track of initial NoC configuration and necessary changes 

over time. The host processor is in charge of all register 

reads, register writes, process requests and reception of plug 

and play messages, however streaming packets can be 

passed between nodes autonomously. Before nodes can pass 

streaming packets the path has to be set by the host processor 

otherwise all packet would be sent to the host processor by 

default. In principle high level software must be aware of the 

forwarding path to every PRM. Every node device driver has 

to be set up and updated separately. If reconfiguration is 

done this leads to the necessity of updating one or a whole 

set of software entities at the same time.  

 

The main focus of the software SoCWire Protocol 

Handler (SoCPH) is on abstracting the NoC complexity and 

management overhead from the application software 

development. Therefore, the basic SoCPH design consists of 

four main components:  

 Packet Header Generator,  

 Response Dispatching Machine,  

 NoC State and Routing Information Database (SRID), 

 NoC State Surveillance Score.  

 

The overall integration scheme and components are 

shown in figure 4. The SoCPH obtains control over the NoC 

by accessing the low-level SoCW interface driver. The 

SoCWire driver communicates with the hardware itself via 

shared circular DMA buffers. Towards the device node 

driver, the SoCPH provides a set of procedures mapping the 
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Packet header 

generation

Current NoC State / 

Routing information 

data base

NoC state 

surveillance

U
p

d
a

te

Response 

dispatching machine

NoC

SoCW 

Interface 

Driver

Device Node Driver

 
Figure 4. SoCPH Integration Scheme and Components 

 

A. NoC State & Routing Information Database 

SRID is allocated in memory of the host processor. It 

reflects the currents state of NoC configuration. Based on 

unique Hardware ID information as primary key it contains 

corresponding network path information from the host 

processor to destination PRM, including responsible SoCW 

interface driver instance. 

 

B. NoC State Surveillance 

After system power on and initial FPGA configuration or 

partial reconfiguration, initiated PRMs generate a Plug and 

Play Initialization Notification (PPIN) and transmit it via 

SoCP to the host processor. The PPIN contains the unique 

Hardware ID of a PRM. This information is received and 

interpreted by the NoC state surveillance monitor core, 

which updates the SRID by adding changed node 

information accordingly. In order to keep the database up to 

date, the monitor is triggered each time an invalid Hardware 

ID flag is set within incoming packets. Furthermore, SoCW 

switches transmit Plug and Play Link Error Notifications 

(PPLENs) in case of discontinuation of an established link, 

comparable to the PPIN. Any PPLEN or invalid Hardware 

ID flag set forces the NoC state surveillance monitor to 

remove or update the link information in SRID. The 

surveillance monitor is able to poll periodically for node 

status register information within an adjustable interval. So 

otherwise unrecognized errors might be detected and 

corrected in SRID.  

 

C. Packet Header Generation 

With regard to the SoCP design described in [6] every 

successfully configured PRM in the NoC setup is uniquely 

identified via its Hardware ID. So data can easily be 

transmitted to the corresponding PRM by calling the SoCPH 

primitives with the corresponding Hardware ID and the 

information to be send without knowledge of any routing 

information. Data is automatically split to fit into separate 

packets. Address descriptors are added accordingly to the 

current NoC state available in the SRID. Transaction IDs are 

prepared by the SoCPH and the Instruction Code is set 

correctly. 

 

D. Response Dispatching Machine 

Every packet received by one of the SoCW interface 

drivers is accepted by the dispatching machine and 

forwarded to the destination task depending on the 

Transaction ID, Instruction Code or Error Flags. In case of 

direct register read or write access, the interaction is mapped 

onto a synchronous network communication, which blocks 

calling task as long as register content is not responded from 

the PRM. This capsules NoC access, so the request appears 

to be satisfied locally for the developer. The SoCP 

processing and streaming requests are implemented as 

asynchronous transfers since computation might consume 

some time or results are not transmitted back to the host 
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processor in a direct manner. For such asynchronous 

transfers, the SoCPH provides an internal buffer 

management which allows tasks to allocate incoming data 

buffers if a response is anticipated from a dedicated PRM. 

This will enable the software to process different tasks 

instead of being stalled. Since in SoCP each network node is 

treated equally including host processor, streaming case is 

not limited in the direction towards a PRM. Streaming data 

from PRM to host processor is also possible. The SoCPH 

allows registering a so called input stream handler function 

to every PRM existing in the current NoC. If streaming 

packets are received, the SoCPH autonomously invokes a 

registered handler to process the incoming packet. This 

avoids buffer overhead and the need to continuously poll for 

streaming information in the device node driver. 
 

Depending on the underlying platform the SoCPH can be 

easily extended with more sophisticated functions by 

combining the previously described operations to hide 

complex setup procedures from high level software 

developer, e.g. reconfiguration of the whole FPGA platform 

or a single PRM. 

V. CONCLUSION 

In-flight reconfigurability enhances space applications 

with both, maintenance and performance improvements. 

Dynamic reconfiguration enables mission specific 

adaptability on demand and adds significant operational 

flexibility to the instrument. Thus, this is a favorable solution 

for the sophisticated data processing requirements within the 

very tight power and thermal constraints of scientific space 

missions. 

 

SoCWire combined with SoCP supplies a highly flexible 

hardware and NoC platform solution. It enables on the fly 

partial reconfiguration of PRMs to accomplish changing 

processing demands over time without interfering any 

concurrently active PRM. The described SoCPH 

implementation on top provides an easy to use management 

and communication framework for SoCP based NoC.  

Processing modules s can be accessed without knowledge of 

network setup. Included functionality widely hides the 

overall network complexity and necessary administration 

workload from the high level application developer and user. 

In symbiosis with autonomous path determination and NoC 

surveillance it provides an easy to use framework for partial 

reconfigurable systems without loss of flexibility.  
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Abstract— Aeroflex Gaisler (SE) has together with Pender 
Electronic Design (CH) and Hirel Design (NL) has under DLR 
(D) contract and VEGA (D) management developed the Onboard 
Computer (OBC) engineering model (EM) for the MASCOT 
asteroid lander.  

Index Terms—SpaceWire, Networking, Spacecraft Electronics 

I. INTRODUCTION 

The general concept of the “Mobile Asteroid Surface 
Scout” (MASCOT) is to provide a small landing system 
intended to be deployed from a supporting main spacecraft. It 
is specifically designed to be compatible with JAXA’s 
Hayabusa 2 (HY2, scheduled for launch in 2014) mission 
design and the environment given by the target asteroid 
1999JU3.  

Two major mission phases can be defined for MASCOT: A 
cruise phase, attached to the main-SC, lasting about 5 years, 
and a nominal phase, detached from the main-SC, lasting about 
16 hours. 

The design foresees an on-board computer (OBC) for 
gathering, processing, compressing and storing of the scientific 
payload and the housekeeping data and to run system and 
subsystem tasks. 

II. OVERALL CONCEPT 

The MASCOT OBC comprises two fully redundant CPU 
and IO boards, where the CPU boards are operated in cold 
redundancy and the IO boards in hot redundancy. 

The OBC is composed by a set of boards in the common 
electronics box. 

The two sides of the OBC are named OBC-M (Main) 
section and OBC-R (Redundant) section and are power by two 
independent power supply lines from the PDCU. 

 
The OBC has the following main functions:  
• Interfacing with the payload instruments for 

commanding, housekeeping and science data 
acquisition.  

• Interfacing with the lander’s equipment, like the power 
subsystem, mobility mechanism, attitude sensors for 
commanding and housekeeping data acquisition. 

• Interfacing with the RF communication equipment 
(COM) to transmit CCSDS telemetry packets to and 
receive CCSDS telecommand packets from HY2 SC, 
which routes the packets to/from the ground. 

• Execution of specific algorithms for science data 
processing, data reduction into scientific data products 
for storage into mass memory and downlink.  

• Execution of specific algorithms for the mobility 
equipment and guidance/navigation on the asteroid. 

• Overall autonomous control and management of the 
lander: Due to the nature of the mission and its short 
lifetime, operations will be highly automated on-board 
with no ground intervention.  This includes the 
nominal mission timeline, which will be mainly event 
driven, and the Failure Detection, Isolation and 
Recovery (FDIR).  Command and control capability 
from the ground, via HY2 SC is however foreseen, but 
its nominal use is limited during the cruise phase, 
mainly for updating the on-board software and mission 
parameters  
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Fig. 1.  Overall OBC structure 

III.  MASCOT CPU BOARD 

 
The MASCOT CPU board is based on the GR712RC 

device, which is System-on-Chip (SoC) is a dual core 
LEON3FT system suitable for advanced high reliability space 
avionics. It is the first of its kind, offering the space community 
powerful multi-core processor capability in combination with 
multiple RMAP enabled SpaceWire links fully compliant with 
ECSS standards. The device is configurable and can operate in 
many different applications, ranging from platform to payload 
processing.  

 
Fig. 2.  MASCOT CPU board 

 

The board comprises MRAM, SRAM and optionally 
SDRAM memory. External LVDS drivers are provided for 
four SpaceWire links, of which two are used for 
communication with the nominal and redundant MASCOT IO 
boards. It includes local voltage regulation is for the processor 
core voltage, as well as local power down of the analogue 
acquisition functionality for optimized cold sparing. 

 

IV.  MASCOT IO BOARD 

 
The MASCOT IO board is based on Microsemi RT 

ProASIC3 FPGA technology.  
The FPGA implements two SpaceWire links with RMAP 

target support in hardware. It provides an SPI interface towards 
a multichannel ADC, control of additional analogue 
multiplexers, including automatic sequencing for the analogue 
acquisition, several UARTs with support for large (up to 2KiB) 
buffers, control of low power commands (LPC) and digital 
sensor logic (CSM), a parallel interface to a NAND Flash 
memory which is protected by a Reed-Solomon code, and 
finally switch over (SO) control logic.  

The SO logic is in charge of the overall OBC supervision, 
reconfiguring to the redundant CPU board in case of hardware 
or software anomaly, independently from the OBC software. 
All the resource can be accessed from the nominal and the 
redundant MASCOT CPU board.  

 

V. ANALOGUE ACQUISITION CHAIN  

Analogue acquisition provides 15 fixed differential 
analogue acquisition channels (AVM), 12 biased PT1000 
acquisitions (TSM) and 4 channels being configurable between 
AVM and TSM mode. The analogue acquisition system is 
implemented with additional HW to support an in-orbit SW 
calibration procedure of offset drifts and SW FDIR detection. 

 

 
 

Fig. 3.  MASCOT IO board 
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VI.  FPGA ARCHITECTURE 

 
The FPGA architecture is based on the on-chip AMBA bus, 

which is supported both by ESA’s and by Aeroflex Gaisler’s IP 
cores. It is therefore a very open architecture into which cores 
from different sources can be integrated.  

Aeroflex Gaisler has extended the AMBA on-chip bus with 
a plug-and-play capability at the IP core level, which can be 
utilized by software developments tools and device drivers for 
real-time operating systems, as explained further down.  

The plug-and-play information on IP core level allows for 
distributed address decoding, interrupt steering, etc. This 
enables automatic generation of a table including vendor and 
device identifier for each core, including version and interrupt 
information. Software and hardware debuggers can scan the 
table to install corresponding drivers etc. 
 

 
Fig. 4.  MASCOT FPGA architecture 

VII.  USE OF SPACEWIRE AND RMAP 

 
Each MASCOT CPU board has four SpaceWire links, of 

which two are used for communicating with the payload, and 
two are used for internal communication with the FPGAs on 
the IO boards. There is thus no direct SpaceWire connection 
between the two CPU boards. 

The communication between processor on the MASCOT 
CPU board and the FPGA on the MASCOT IO board is done 
by means of RMAP over the two internal SpaceWire links. Via 
RMAP read and write commands the device status can be 
observed and it can be controlled in a safe (verified-write 
command) and standardized way (ECSS standard). 

The processor does not need to implement RMAP in 
hardware. An RMAP initiator can be any device that can 
generate standard SpaceWire packets. The RMAP command is 
just a SpaceWire packet sent from the processor using its 
SpaceWire core. The RMAP response is just a SpaceWire 
packet sent from the TC FPGA to the processor. A complete 
RMAP initiator software stack has been implemented for the 
RTEMS real-time operating system which has been used to 
demonstrate the functionality of the system. 

The processors on the CPU boards are connected both the 
FPGA on the nominal and the redundant IO board. This way 
the active processor can access all redundant external interfaces 
and on-board resources such as the NAND Flash memory. 

The SpaceWire node in the FPGA has been based on the 
GRSPW IP core. The core is configured in an RMAP target 

only configuration, which means that it is not capable of 
initiating any SpaceWire transmission on its own, with a 
master interface to the internal AMBA bus in the FPGA. 

VIII.  SPACEWIRE ROUTER 

An enhancement of the overall redundancy and 
communication concept is to replace the two GRSPW IP cores 
located in the FPGA with a three port SpaceWire router. The 
router has two SpaceWire ports and an internal AMBA master 
port with a built in RMAP target, thus similar interfaces as 
used above.  

The main difference is that the routing functionality would 
allow one processor to access the memory space and the Debug 
Support Unit of the other processor, via either of the two 
FPGAs. This requires that both processors are powered, which 
is possible in the architecture. The benefit is that the active 
processor can modify the contents of non-volatile memory on 
the non-active processor, or upload software directly to volatile 
memory, etc.  

This remote debug scenario via SpaceWire has previously 
been demonstrated in an ESA activity, where it was shown that 
for example a star-tracker could operate without the need for 
power consuming PROM memories, since there was always 
the possibility to upload software to the SRAM via the 
SpaceWire RMAP protocol. 

The SpaceWire router functionality has been implemented 
in the FPGA and initial tests have been performed successfully. 
The GRSPWROUTER IP core from Aeroflex Gaisler has been 
used. The router functionality had to be reduced since the 
FPGA was already completely filled. This specific FPGA 
implementation does not support logical addressing; it is 
instead restricted to path addressing which reduces the need for 
a routing table. The AMBA master port has also been limited 
to only implement the RMAP target functionality, thus no 
accesses can be initiated from the inside of the FPGA on the 
AMBA side. This is the same limitation as for the GRSPW 
usage discussed above. 

 

 
Fig. 5.  GRSPWROUTER IP core 
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IX.  EGSE 

The EM verification and software development is 
performed using the MASCOT EGSE, which is a 19” crate 
with two internal backplanes, one for power conditioning and 
distribution, and one hosting two CPU boards and two IO 
board and also providing all external connectors for interfaces 
such as SpaceWire, UART, PT1000 elements, JTAG debug 
etc. 

The MASCOT EGSE emulates as complete redundant 
OBC. The power power conditioning and distribution allows 
the nominal and redundant lane to be individually powered and 
can be controlled remotely via a digital test interface, allowing 
integration in the overall test equipment. 

The backplane interconnecting the CPU and IO boards 
implements the routing of all internal SpaceWire links. The 
four external SpaceWire links (going to the payload) are routed 
to MDM9 connectors on the front-panel. 

 

 
 

Fig. 6.  MASCOT EGSE 

X. THE USE OF THE EGSE 

 
One of the objectives of the EM boards and EGSE is to 

support the MASCOT OBC Flight Software (FSW) 
development, done by VEGA. In this context the EM boards 
will be integrated in a Software Development and Verification 
Facility (SDVF), which will provide the I/O 
acquisition/stimuli, enabling FSW closed loop testing with the 
OBC Hardware In the Loop (HIL).  

The SDVF is based on existing ESA SimSat kernel and 
provides a complete real time simulation environment of the 
MASCOT subsystems, including the payload SpaceWire links 
to the OBC. The FSW uses RODOS as RTOS and is developed 
in C++, applying a tailored version of JSF++ standard. 

The OBC EM is also used by DLR for functional system 
and spacecraft level integration and testing. 

The current MASCOT OBC engineering model is based on 
the latest GR712RC dual-core LEON3FT technology with 
SpaceWire links being used for both internal and external 
communication, utilizing the RMAP protocol to its full. 

 

XI.  CONCLUSION 

 
The MASCOT development has shown that it is feasible to 

develop highly miniaturized spacecraft control systems based 
on SpaceWire networks. The SpaceWire network has been 
used for both control and for payload data, utilizing pre-
existing building elements such as the GR712RC LEON3-FT 
dual core processor and SpaceWire controllers from the 
GRLIB IP core library.  

The replacement of the SpaceWire controllers with a 
SpaceWire router has added additional capabilities to the 
spacecraft, enhancing the redundancy concept. 
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Abstract—Robotic systems like the DLR Hand Arm System 
that feature control cycles beyond 1 kHz demand a deterministic 
and low latency communication. Therefore, DLR is working on 
high-speed SpaceWire. This paper presents the SpaceWire-HS 
host adapter, a FPGA driven PCI Express device for high-speed 
SpaceWire. The adapter provides a generic host interface for 
QNX real-time hosts, supported by a client C++ library. Two 
implementation variants of the adapter’s communication 
architecture and host interface are presented. The performance 
of both variants in terms of bandwidth and latency is discussed. 

Index Terms—host adapter, high-speed SpaceWire, robotics 

I. INTRODUCTION 

DLR has been using SpaceWire as communication 
backbone for several of its lightweight robots. The latest and 
most complex system using SpaceWire is the DLR Hand Arm 
System, an anthropomorphic arm that comprises of 52 motors 
and over 430 sensors. To operate that many actuators and 
sensors precisely at high feedback control cycles beyond 1 kHz 
requires deterministic system behavior and low communication 
latencies. To achieve this, DLR implemented a 1 GBit/s 
SpaceWire modification (see [1]). Currently, DLR is working 
on a more efficient implementation of high-speed SpaceWire 
links capable of providing more than 1 GBit/s bandwidth [2]. 

The interface of the SpaceWire communication backbone 
to the PC-based real-time control hosts is a crucial point of the 
communication infrastructure. There the network 
implementation meets the non-determinism of a state-of-the-art 
workstation and its memory-based peripheral interface, PCI 
Express (PCIe). 

To benefit from the performance of the high-speed links the 
authors have designed the SpaceWire-HS host adapter, a PCIe 
interface card that features four physical high-speed links (see 
Fig. 1). The SpaceWire-HS host adapter is equipped with a 
Xilinx Virtex-5 FPGA that implements the SpaceWire 
communication architecture. Thus, the communication 
architecture can be easily adapted to application requirements. 
Nevertheless, the SpaceWire-HS host adapter is designed as a 
general-purpose SpaceWire network endpoint. 

 
Fig. 1.  The SpaceWire-HS Host Adapter Board with four copper HS-Links 

Instead of increasing the performance by implementing 
application-specific algorithms and data structures on the host 
adapter FPGA, the focus is on the implementation of general-
purpose packet channels whose performance in terms of 
bandwidth and latency can be configured by only a small set of 
parameters (e.g. buffer size). 

This paper presents the communication architecture of the 
SpaceWire-HS adapter including two implementation variants. 
The next section introduces the hardware architecture of the 
SpaceWire-HS host adapter. Section III and IV present two 
variants of host interface implementation, which consists of the 
FPGA firmware and a C++ library. Section V presents the 
experimental evaluation of both implementation variants. 

II. THE SPACEWIRE-HS HOST ADAPTER ARCHITECTURE 

The hardware design of the SpaceWire-HS host adapter is 
based on the design presented in [3]. Fig. 2 depicts the host 
adapter architecture. The PCI Express interface is implemented 
with a PLX PEX 8311 ExpressLane Bridge chip (see [5]), a 
one-lane master-capable host interface. A Xilinx Virtex-5 
(5VLX50) FPGA connects PCIe interface, flash memory, 
housekeeping infrastructure and four physical layer interfaces. 
Four Texas Instruments TLK1221 IEEE802.3 Gigabit Ethernet 
compliant physical layer circuits implement the physical layer 
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interfaces. Character encoding and link layer are implemented 
by the firmware on the FPGA. Therefore, the support of the 
new SpaceWire-HS high-speed link protocol (see [2]) only 
required the adaption of the FPGA firmware. 

 

 
Fig. 2.  The SpaceWire-HS Host Adapter Architecture 

The Printed Circuit Board (PCB) format of 68.9x119.0mm 
conforms to the PCIe low profile form factor. Thus, it also fits 
into small-form factor cases. The board can alternatively be 
equipped with up to four fiber and/or copper links. Fig. 1 
shows the adapter PCB with four copper HS-Links. 

III. THE COMMUNICATION ARCHITECTURE 

The communication architecture has two main parts: The 
local SpaceWire Routing Switch and the Host Interface (see 
Fig. 3). The four physical SpaceWire-HS links are connected to 
the local Routing Switch, which is implemented as a standard 
SpaceWire wormhole routing switch. All HS-Links are 
configured for a fixed bandwidth and start automatically if 
connected to a peer. 

The FPGA’s configuration flash memory is connected via a 
SpaceWire/SPI bridge to the local routing switch. Thus, the 
FPGA’s firmware can be programmed via the SpaceWire 
network. 

For the implementation of clock synchronization, a 
configurable TimeCode (TC) master is connected to the local 
router. A Spacewire/I2C bridge provides access to the 
adapter’s housekeeping infrastructure. 

 

Fig. 3.  The communication architecture consists of two main parts: A 
Routing Switch and the Host Interface. Two implementation variants of 
the Host Interface are discussed (see Fig. 4 and Fig. 5). 

 
Fig. 4.  Single-Channel Host Interface Architecture 

 
Fig. 5.  Multi-Channel Host Interface Architecture 

In the following, two implemented and evaluated variants 
of the Host Interface are presented. For both variants, the Host 
Interface consists of memory mapped status, configuration 
registers (DMA Config Regs in Figs. 4/5), and a number of 
DMA Read/Write interfaces. Those interfaces on the FPGA are 
connected via a CoreConnect On-Chip-Peripheral Bus (OPB). 
An OPB/PEX Local Bus bridge connects the FPGA’s OPB to 
the PEX 8311, which implements the bridge to PCIe. 

 
Fig. 6.  A bi-directional ring buffer channel connects host software 
(read/write) to FPGA firmware (DMA Read/Write) via PCIe. The DMA 

Buffer layout is an in-place linked packet list. 

The first variant is the Single-Channel Interface (Fig. 4). 
This implementation was already used in the SpaceWire-1Gb 
of the Hand Arm System [1] and is presented in more detail in 
[3]. The Single-Channel has one large ring buffer interface for 
each communication direction. Both the DMA Write and DMA 
read channel are a 1Mbyte fixed-sized ring buffer. The 
resulting implementation creates a bi-directional FIFO-channel 
from host software to FPGA firmware as depicted by Fig. 6. 

The ring buffer synchronization is implemented as follows: 
Host Software and Firmware communicate via the shared 
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REG_FIRST, REG_LAST ring buffer registers (see Fig. 6). 
The ring buffer concept governs the concurrent access to these 
registers. The firmware is synchronized by simply polling 
those ring buffer registers. The host software is synchronized 
by interrupt. If enabled by the host software, the firmware 
raises a PCIe interrupt if the DMA read ring buffer is no longer 
empty or the DMA write ring buffer is no longer full. 

Most applications require more than one endpoint at the 
host. With only a single channel, the host software needs to 
implement packet routing, which is an expensive operation. To 
avoid the packet routing on the host, the second variant 
provides 32 parallel endpoints to the host software. 

Therefore, the Multi-Channel variant (Fig. 5) implements 
32 configurable DMA read/write ring buffer interfaces. The 
functionality of each channel is the same as for the Single-
Channel implementation. However, the host software 
configures the size of each ring buffer. Similar to a routing 
switch, the channel lookup table (Channel LUT) implements a 
routing table for the mapping of physical/logical ids to one of 
the 32 channels. The host software also configures the Channel 
LUT. Channel arbitration is implemented as a fair round-robin 
scheme. 

IV. CLIENT PACKET INTERFACES 

The client packet interface implements the host software 
SpaceWire end-point interface. It consists of a POSIX I/O 
driver and a C++ software library. Both are implemented for 
the QNX 6.x real-time operating system. The I/O driver 
provides an open/close/read/write POSIX I/O interface for each 
of the host adapter’s DMA channels. The driver uses the 
efficient message passing implementation of the QNX kernel 
to copy the data packets via read/write function calls. Thus, 
shared memory between client and driver is avoided. 

As depicted by Fig. 6, packets are stored as an in-place 
linked list layout in the DMA ring buffer. Each packet in the 
ring buffer starts with a 4-byte header that contains a 16-bit 
packet size and packet tags, such as EOP, EEP. 

The I/O driver read/write interface uses the same data 
structure to communicate with its clients. Thus, each call to 
read/write is able to transfer more than one packet. This is 
supported by the C++ client library class over::pci::BufferList, 
which implements the in-place linked list layout of the DMA 
ring buffer. Additionally, the C++ client library provides 
protocol-specific packet data structures, a routing switch 
implementation, end-point classes, a network topology 
configurator, and more convenient functionality. Therefore, an 
application does not need to use the I/O interface directly. 

For example, the packet data structures allow an application 
to pre-allocate packets as required at an initialization phase. 
Then, during operation, only the payload of the packets in the 
pre-allocated data structure has to be updated. Fig. 7 
exemplifies how the pre-allocation, update and send is 
implemented using the C++ library. Packet reception works 
similar. A blocking read on a DMA channel (done in 
link.receive() ) yields all packets available in the DMA. Fig. 8 
exemplifies how to iterate through all received packets and 
route them to their destination node (i.e. buffer). 

 
Fig. 7.  Example of pre-allocated packets. Only the payload needs to be 

updated before sending all pre-allocated packets at once. 

 
Fig. 8.  More than one packet can be received with one read(). This example 

demonstrates, how to route every packet to its destination by simply 
iterating through the received packets. 

A different I/O driver implementation is required for the 
Single-Channel and Multi-Channel variants since the I/O driver 
has to provide an open/close/read/write interface for each of 
the host adapters DMA channels. Since both variants use the 
same DMA channel layout, the same C++ library is used for 
the Single-Channel and Multi-Channel implementation 
variants. 

V. EXPERIMENTAL RESULTS 

The performance in terms of bandwidth and latency of the 
two implementation variants Single-Channel and Multi-
Channel has been experimentally evaluated. Therefore, the 
following experiments have been conducted for each variant: 

1. Roundtrip Latency: Packets are looped via a HS link. 
measured: Roundtrip time for each packet 
parameters: packet size: 5-1017, 
parallel communication: 1-9 channels 

2. Receive Bandwidth: External source sends packet to 
host. Packet load is increased to find the stable limit. 
measured: received packet bytes per second 
parameters: packet size: 9-1017, 
number of packets per second 
parallel communication: 1-4 channels 

Both experiments were conducted with a DELL Optiplex 
Intel i7-3770 host running QNX 6.5 and a SpaceWire-HS card 
with four copper links. Fig. 9 depicts the setup for both 
experiments for the Single-Channel (top) and Multi-Channel 
(bottom) variant. The main difference in the test setup is the 
additional client library router required for the Single-Channel. 

// create packet buffer list 
over::pci::BufferListInstance<> rx_pkts(10xspacewire::MAX_PACKET_SIZE); 
… 
link.receive( rx_pkts );   // blocks until at least one packet arrives 
for ( over::pci::BufferList<>::iterator p =  rx_pkts.begin(); p != rx_pkts.end(); ++p ) 
  {    // route all received packets  
      network::Packet<BufferReference<> > recv(*p); 
      Node& node = router_table->find(recv.address()[0]); 
      node.push(recv); 
 } 

// create packet buffer list 
over::pci::BufferListInstance<> tx_pkts(10xspacewire::MAX_PACKET_SIZE); 
… 
network::Packet packet(25,2);  // 25 payload and 2 address bytes 
packet.address()[0] = 42; 
packet.address()[1] = 2; 
tx_pkts.push_back( packet );  // add packet to send buffer 
… 
tx_pkts.push_back( packet2 );  // add another packet to send buffer 
… 
// update payload of every packet to be send 
for ( over::pci::BufferList<>::iterator p= tx_pkts.begin(); p!= tx_pkts.end(); ++p ) 
         std::memcpy((*p).payload.data(),src.data(),(*p).payload.size()); 
link.send( tx_pkts );   // deliver all packets with one write() to driver 
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Fig. 9.  The Experiment Setup for the Single-Channel (top) and Multi-

Channel (bottom) variant 

1) Roundtrip Latency 
The test software consists of a packet source, a packet 

receiver for each channel, and a time measurement. The packet 
source sends a packet to 1-9 receivers, looped through a HS-
link cable. The total time was measured it took to send all 
packets until the reception of all sent packets. Depending on 
the number of channels, 1-9 packets were send/received in one 
cycle. Each measurement was conducted for 30 seconds, which 
means 200.000-300.000 cycles. 

 
Fig. 10.  Multi-Channel – Single Channel Roundtrip latency over Packet Size 

Fig. 10 depicts the difference between the measured 
latencies LMulti-Channel-LSingle-Channel for 1-9 used channels over 
rising packet size. The steps that appear in the graph at 128 
byte intervals are directly related to the PEX8311’s 128 byte 
maximum payload size of a Transaction Layer Packet (TLP) 
(see [4]). For packets>237 bytes, the Multi-Channel is always 
faster, even if only one channel is used. This is because no 
software router is required. For packets of 113–237 bytes both 
implementations yield nearly the same latency. For 
packets<113 bytes the Single-Channel is slightly faster (~2us). 

2) Receive Bandwidth 
The second experiment uses an external packet source that 

sends packets of varying size at deterministic intervals to up to 
four destinations. For each packet size, the time interval 
between each packet was reduced until the stability limit of the 
host was reached. Fig. 11 depicts the measured maximum 
stable bandwidth over increasing packet size. The achieved 
bandwidth saturates at 57.7x10 bytes/s for the Single-Channel 

and at 61.0x106 bytes/s for the Multi-Channel. Both variants 
come close to the maximum input bandwidth, which is 
determined by the internal FPGA SpaceWire link rate of 
62.5x106 bytes/s. Due to higher routing and DMA data 
handling effort small packets achieve only a lower bandwidth. 

Since the Multi-Channel variant does not require packet 
routing by the host software, it saturates at a higher bandwidth 
and reaches that bandwidth for smaller packets. 

  

Fig. 11.  Bandwith over packet size: Multi-Channel achieves higher bandwith 

VI. CONCLUSIONS 

The demand for a deterministic communication backbone 
with low latency motivated DLR’s work on high-speed 
SpaceWire. For robotic applications, a deterministic host 
interface is an essential component of a high-speed SpaceWire 
network. Starting from the already available Single-Channel 
implementation, the goal has been to get a more flexible and 
efficient host interface, which features multiple endpoints. The 
challenge has been to achieve a deterministic and efficient 
behaviour despite the higher complexity of the Multi-Channel 
implementation. The results show, that not only the Multi-
Channel implementation is deterministic but also matches the 
Single-Channel in performance. 

Future work will be to add Quality-Of-Service parameters 
to the Multi-Channel implementation such as channel priority 
or guaranteed channel bandwidth. Furthermore, we intend to 
evaluate how the SpaceWire-HS host adapter with its four 
physical links can be used as a building block for very complex 
networks such as multi-robot systems. 

REFERENCES 

[1] M. Nickl and S. Jörg, T. Bahls A. Nothhelfer, S. Strasser, 
“SpaceWire, A Backbone For Humanoid Robotic Systems”, Int. 
SpaceWire Conference, San Antonio, 2011 

[2] M. Nickl, S. Jörg, T. Bahls and B. Cook, “Towards High-Speed 
SpaceWire Links”, Int. SpaceWire Conference, Gothenburg, 
2013 

[3] T. Bahls, “Entwicklung einer latenz- und 
bandbreitenoptimierten Bridge zur transparenten Anbindung von 
FPGAs an Standard-CPUs”, Master Thesis (in German) 

[4] R. Budruk, D. Anderson, T. Shanley, „PCI Express System 
Architecture“,  MindShare, Inc., Addison Wesley, 2004 

[5] “ExpressLane PEX 8311 PCI Express-to Generic Local Bus 
Bridge Data Book”, PLX Technology, www.plxtech.com, 2009 

SpaceWire-HS Link Cable

Single-Channel (Design under Test) [ only 2]

. 

.

.

Send

Recv 1

Recv 9

Client Library
Router

SpaceWire-
HS

Host Adapter
I/O Driver

Multi-Channel (Design under Test)Test Application [1 & 2]

. 

.

.

Send

Recv 1

Recv 9

SpaceWire-
HS

Host Adapter
I/O Driver

. 

.

.

Send

SpaceWire-HS Link Cable

Send

[ only 2]
 

 

 

247

http://www.plxtech.com/


SpaceWire Standard Revision 
SpaceWire Networks and Protocols session, Poster Paper 

 

David Jameux 
On-Board Data Systems (TEC-ED) 

ESA/ESTEC 
Noordwijk, Netherlands 
david.jameux@esa.int 

Antonis Tavoularis 
Systems Engineering Group 

Teletel SA 
Athens, Greece 

a.tavoularis@teletel.eu
 
 

Abstract— In this paper, we recall the need for a revision of the 
current SpaceWire standard as well as the improvements 
foreseen to be developed, breadboarded and documented in 
ECSS standardisation format through the ESA/TRP activity 
“SpaceWire Evolutions”. We inform about the final 
achievements of the project team. Finally, we propose solutions 
for the revised standard and provide justification for the minor 
improvements to be endorsed by the ECSS Working Group in 
charge of the standard revision. 

Index Terms— SpaceWire standard revision. 

I. INTRODUCTION 

Through several years of standardisation and technology 
development activities, ESA has prepared the SpaceWire 
technology communication protocol that allows embarking 
high speed data networks on board spacecraft. This new 
technology has become widely adopted not only by ESA 
missions but also by other agencies and industries. However, 
some evolutions of the SpaceWire standard have been 
proposed by the SpaceWire Working Group. 

The working group identified shortcomings of the current 
protocol for the support of SpaceWire device/network 
discovery and configuration capabilities. The technical 
investigations on these issues also rose the awareness that the 
behaviour of “nodes” have to be clarified as well as their 
definition in the current standard, because this definition is not 
in line with international telecommunications core definitions 
of network items, and is in fact ambiguous. While the 
introduction of SpaceWire operating in half-duplex or simplex 
mode over wire-limited harness was discarded after thorough 
assessment of added value versus standardisation effort, 
sideband signalling for interrupt distribution will be added to 
the standard. 

These limited evolutions to SpaceWire standard have been 
assessed, refined, and prototyped in the frame of the ESA/TRP 
“SpaceWire Evolutions” from May 2011 till December 2012. 

II. THE “SPACEWIRE EVOLUTIONS” ESA/TRP STUDY 

Within the SpW Evolutions project three evolutions, 
proposed during the SpW WG meetings, were addressed: 

• Clarification of the node definition which is ambiguous 
in the existing specification 

• Specification of an interrupts distribution mechanism 
• Low mass SpaceWire through simplex and half-duplex 

SpaceWire 

A. Terminology 
Regarding SpaceWire node definition, the existing 

specification becomes ambiguous with the emergence of 
SpaceWire device/network discovery and configuration which 
constitutes link-configurable switches as sources or 
destinations of (configuration) packets. In addition, the current 
standard does not allow the design of SpaceWire-based 
System-on-Chip components implementing links using the 
SpaceWire level stack down to the Character Level only, since 
not conforming to the electrical and physical levels of the 
specification currently leads to a breach of compliance. Taking 
SpaceWire device/network discovery and configuration and 
complex devices as example cases, the study team performed a 
conceptual redesign of the SpaceWire standard a) proposing a 
clear distinction between the physical and functional networks 
with a layer structure similar to the OSI stack, allowing easier 
analysis and modelling of SpaceWire devices and traffic, b) 
allowing for devices under development and existing devices 
to be “SpaceWire compliant” (e.g. SpW10X FIFO ports) and c) 
proposing the use of new terms which remove the ambiguities 
of the existing standard and clearly specify the entities on 
which higher layer protocols will be based by providing the 
terms/resources for identification, configuration and device 
status acquisition. 

B. Low latency signalling, Distributed Interrupts 
The study team also analysed technical solutions for low-

latency signalling of events in SpaceWire networks, from their 
functional, performance and operation-under-failure points of 
view, taking into account that the solution shall be 
interoperable with existing SpaceWire equipment, having as a 
basis a proposal by the St Petersburg University of Aerospace 
Instrumentation (SUAI) [24]. Within the frame of the project, 
the consortium collected requirements for signalling 
distribution from ESA and from the space industry, 
investigated proposed solutions and cross-checked them 
against the collected requirements and performed trade-off 
analyses for all of them. The project concluded with the 
definition of a solution based on the SUAI proposal, 
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complemented with recommendations that a) make the solution 
more robust under the presence of failures, b) provide two 
options, with and without acknowledgement, in order to 
provide for flexibility on the use of the proposed mechanism, 
c) provide interoperability with existing equipment thus 
making the existence of legacy and new devices in the network 
possible. The proposed mechanism was described according to 
ECSS standardisation guidelines and was validated through 
two independent developments, including validation scenarios 
that proved issues related to the performance and operation 
under failure of the mechanism that should be described either 
as informative parts of the next SpaceWire specification or as 
sections in the SpaceWire handbook. 

C. Simplex and Half-Duplex SpaceWire 
For low mass SpaceWire the consortium performed work 

on two proposals, Simplex SpaceWire and Half-Duplex 
SpaceWire, both of which have been presented during the SpW 
Working Group meetings by SUAI [9][13] and 4Links Ltd 
[12][14][17]. 

Early in the project the study team revealed a number of 
issues in the Simplex SpaceWire proposal which make it 
unsafe for use in on-board networks. The issues were solved by 
the proposal of an updated specification, making Simplex 
SpaceWire robust under the presence of failures. The updated 
proposal was specified following the ECSS standardisation 
guidelines and validation scenarios for the functional, 
performance and operation under failures were defined. 

The work for Half-Duplex SpaceWire included the review 
of the existing technical proposal which proved to have 
weaknesses from the robustness point of view under 
improbable, but theoretically possible, failures. For example, in 
the original proposal, the end of the link that was detecting an 
error (e.g. parity) was immediately returning to the ErrorReset 
state without waiting the other end to cease transmission; under 
rare cases this could result to link degradation with one end of 
the link possessing only one FCT instead of 7. An updated 
mechanism was proposed solving functional and robustness 
issues. The work continued with the evaluation of Half-Duplex 
SpaceWire from the performance point of view, including 
trade-off analyses of various parameters, in which it became 
apparent that Half-Duplex SpaceWire is a candidate for 
connection of devices at the periphery of SpaceWire networks 
only, due to its excessive worst-case latency for signalling 
characters. The proposed mechanism was specified following 
the ECSS guidelines and validation scenarios for the 
functional, performance and interoperability with existing 
devices and the rest of the SpW Evolutions were defined. The 
work concluded with the Half-Duplex SpaceWire modelling in 
VHDL, based on the UoD SpW Core, which is extensively 
used by ESA. This modelling proved that implementation of 
Half Duplex on mainstream IP Cores which follow the 
SpaceWire concept of recovering the remote end’s 
transmission clock by XORing the Data and Strobe signals 
results in poor performance; and that, in order to support Half-
Duplex, SpaceWire extensive modifications are required which 
make it an expensive solution in terms of gate count and power 
consumption. 

III. CLARIFICATION OF THE SPW INTERNAL PROTOCOL STACK 

A. Clarification of the protocol levels 
1) Merging levels: Like any communication protocol 

specifying a solution down to the communication media, 
SpaceWire is organised in layers. For SpaceWire, these layers 
are called “levels” and the clauses that specify the protocol are 
gathered into sections according to the “level” that they 
describe. Unfortunately, in ECSS-E-ST-50-12C, some levels 
define only part of what should be a consistent protocol layer 
(syntax, synchronisation, and behaviour). For example, the 
Packet Level specifies the syntax (the packet structure) while 
the Network Level specifies the behaviour (“packet routing”). 
We therefore propose to merge these two levels in a single 
“SpW Network Level”. Similarly, the ECSS-E-ST-50-12C 
Character Level specifies the characters to be used at link 
layer while the Exchange Level specifies the rules for 
synchronisation between these characters (finite state 
machine). We also propose to merge these two levels into a 
single “SpW Link Level”.  

2) Clarification of ambiguous clauses: These merges allow 
as well easy positioning in the standard specification of 
clauses that were not placed correctly in ECSS-E-ST-50-12C 
because it was difficult to assess where they belonged. It even 
allows removing partial duplication of specification that is one 
of the causes of ambiguity of ECSS-E-ST-50-12C. 

3) Introduction of Service Access Points: The new division 
of clauses into clearer levels allows introducing fully defined 
Service Access Points for each of these levels. While this is 
not necessary for component designers to implement a 
complete SpaceWire stack nor for the SpaceWire users, it 
allows diversification of the lower protocol levels, as detailed 
in section III.C. 

The proposed revised internal stack is shown in Figure 1. 
 

 
Fig. 1.  ECSS-E-ST-50-12C stack versus ECSS-E-ST-50-12C Rev.1 stack 
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B. Clarification of the objects exchanged between protocol 
levels 
As part of the Service Access Points, the new division of 

clauses into clearer levels allows clear specification of the 
objects exchanged between levels. 

1) Objects exchanged between the SpW user and SpaceWire 
(i.e. the SpW Network Level): In ECSS-E-ST-50-12C, these 
are mainly packets, with some ambiguity whether time-codes 
are also exposed  from the Network Level or directly from the 
Exchange Level. For ECSS-E-ST-50-12C Rev.1, we propose 
that a Packet Service and a Time-code Service are clearly 
exposed, with the addition of a Distributed Interrupt Service. 

a) Packet Service: 8-bit Data Characters are exchanged  
between the SpW user and SpaceWire. The order in their 
sequence will determine the packet structure when these Data 
Characters reach a switch or an end-point.  

b) Time-code Service: 6-bit Time-codes are exchanged  
between the SpW user and SpaceWire. For transmission and 
broadcasting, they are interleaved with Data Characters as in 
ECSS-E-ST-50-12C.  

c) Distributed Interrupt Service: 5-bit Distributed 
Interrupts or Distributed Interrupt Acknowledgements are 
exchanged between the SpW user and SpaceWire. For 
transmission and broadcasting, they are interleaved with Data 
Characters as in ECSS-E-ST-50-12C.  

2) Objects exchanged between the SpW Network Level and 
the SpW Link Level: In ECSS-E-ST-50-12C, these are not 
clearly defined. For ECSS-E-ST-50-12C Rev.1, we propose 
that they are the same objects than the ones exchanged 
between the SpW user and SpaceWire since the SpW Network 
Level only manipulates these objects (switching, interleaving, 
spilling, etc) but does not modify them. 

3) Objects exchanged between the SpW Link Level and the 
SpW Signal Level: In ECSS-E-ST-50-12C, these are not 
clearly defined. For ECSS-E-ST-50-12C Rev.1, we propose 
that they are the objects exchanged between the SpW Network 
Level and the SpW Link Level coded as symbols (parity bit 
and control bit added for Data Characters, plus addition of an 
ESC symbol prefix for Time-codes and Distributed 
Interrupts/Acknowledgements) as well as the control 
characters  necessary for the link finite state machine coded as 
symbols (parity bit and control bit added). 

4) Objects exchanged between the SpW Signal Level and 
the SpW Physical Level: In ECSS-E-ST-50-12C, these are not 
clearly defined. For ECSS-E-ST-50-12C Rev.1, we propose 
that the SpW Signal Level be clearly divided into (from top to 
bottom) a Serialisation/Deserialisation sublevel, a Data-Strobe 
coding sublevel, and an LVDS signalling sublevel. The 
objects exchanged between the SpW Signal Level and the 
SpW Physical Level are then obviously four wave forms per 
bit. 

 
The resulting internal protocol stack in shown in Figure 2. 
 

 
Fig. 2.  Layering of the ECSS-E-ST-50-12C Rev.1 internal protocol stack 

C. Diversification of the lower protocol levels 
The definition of clear Service Access Points for each level 

of the SpaceWire internal protocol stack allows replacing part 
of this stack with alternative solutions for the lower protocol 
levels that provide different properties at link level, signal 
level, or for the physical media. This flexibility is illustrated in 
Figure 3. 

 

 
Fig. 3.  Flexibility in the ECSS-E-ST-50-12C Rev.1 internal protocol stack 

Of course, implementation of these Service Access Points 
must not be mandatory (this must be clearly expressed in 
ECSS-E-ST-50-12C Rev.1) since implementing interfaces 
between levels is not necessary (and most of the time sub-
optimal) in a given implementation of the SpaceWire protocol 
stack. Existing devices or IP cores that do not implement these 
interfaces are therefore still compliant with ECSS-E-ST-50-
12C Rev.1. But the newly introduced modularity allows 
implementing building blocks (e.g. IP cores) for the different 
parts of the SpaceWire internal protocol stack and assemble 
them into different complete stacks, as illustrated in Figure 4. 
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Fig. 4.  Modularity of the ECSS-E-ST-50-12C Rev.1 internal protocol stack 

This modularity allows benefitting from the recent 
technology developments such as the GigaSpaceWire 
(galvanic-isolated gigabit per second SpaceWire) proposed by 
SUAI [5][6] or the Virtual Channel SpaceWire proposed by 
4Links Ltd [8][10] and will allow smooth integration of the 
SpaceFibre technology into SpaceWire networks, as illustrated 
in Figure 5. 

 

 
Fig. 5.  Diversity of link, signal and physical solutions for SpaceWire links 

D. Terminology – clarification of concepts for SpaceWire 
The SpaceWire community identified a number of 

ambiguities in the current SpaceWire specification (ECSS-E-
ST-50-12C) that are mostly due to inconsistency in the 
definition and usage of a few terms. One of the 
recommendations was to align the terms used for SpaceWire 
with international telecommunications core definitions of 
network items and concepts. 

1) “Router” vs “switch”: In ECSS-E-ST-50-12C, the 
elements that allow not only point-to-point communication but 

also SpaceWire networks are called “routers”. This is 
confusing because “routing”, i.e. “building a route” is only 
happening in the source node, when address data characters 
are assembled in sequence to form the address of a SpW 
packet (see Figure 6). This is true both for path address 
building and when the address contains Logical Addresses 
which are in fact “short-cuts”, i.e. labels for path address 
sequences.  

 
Fig. 6.  “Routing”, i.e. “route building” in a SpW source node 

What happens next in a “router” as illustrated in Figure 7 is 
not “routing” but “switching”: the first data character of a 
packet configures the switch for the duration/length of the 
packet (this configuration is done according to the value of this 
header byte, be it a Path Address or a Logical Address) and the 
following data characters are switched to the same output port 
until the end-of-packet marker included. 

 

 
Fig. 7.  Wormhole Switching in a SpW “switch” 

It is therefore proposed that, in ECSS-E-ST-50-12C Rev.1, the 
network elements that do Wormhole Switching are called 
“switches”. 

2) End-points, nodes, and units: In ECSS-E-ST-50-12C, 
“nodes” are defined as “source and destination of packets”. A 
“node” would therefore be the application driving one or more 
SpW protocol stacks (also called “higher layer” because this 
application can be an “applicative” engine, either software or 
hardware, but also a “higher” protocol sitting in between the 
“application” and the SpW protocol stack). However, it is also 
stated in ECSS-E-ST-50-12C that “nodes” are “SpW 
interfaces”, which is not consistent with their definition. This 
clearly shows the necessity to introduce a new term to 
describe the equivalent of “SpW interface” (which is defined 
only for the SpW Link Level and downwards) at the level of 
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the SpaceWire Service Access Points (i.e. at SpW Network 
Level). The proposed term for ECSS-E-ST-50-12C Rev.1 is 
“end-point”, a node containing a “higher layer” driving one or 
more end-points. This allows keeping the ECSS-E-ST-50-12C 
definition for “nodes”: they are source and destination of SpW 
packets; and they include one or more end-points. the 
definition of unit can also remain, though somewhat clarified: 
box, board or subsystem, containing one or more nodes and 
zero or more switches that may be  interconnected through a 
subnetwork, and that exposes one or more end-points.  

End-points, nodes, and units are illustrated in Figures 8 and 
9. 

 

 
Fig. 8.  End-point, node, and switch 

 
Fig. 9.  End-points, nodes, and units 

3) Graph representation: Besides consistency and 
improved clarity of SpaceWire concepts, the main benefit of 
the introduction of “end-points”, as well as of the clarification 
of the definitions of “nodes” and “units” as objects beyond the 
scope of SpaceWire per say, is the possibility to represent any 
set of units connected into a SpaceWire network as a graph 
containing only leaves (end-points), vertices (switches) and 
links (see Figure 10). This opens the door to the application to 
SpaceWire networks of a considerable amount of theoretical 
results and tools coming from the Graph Theory community, 
which will ease significantly tackling the main challenge that 
users of SpaceWire networks are facing, i.e. traffic analysis.  

 
Fig. 10.  Any SpaceWire network can be represented as a graph  

Additionally, this allows representing any SpaceWire 
network as an XML formatted text file, as JAXA/ISAS already 
attempted for their ASTRO-H mission [7]. 

E. Terminology – clarification of concepts at SpW Link Level 
A few ambiguities had to be corrected also in the Character 

Level of ECSS-E-ST-50-12C, one of them being the status of 
Time-codes. These control codes are sometimes presented as 
Link Characters (L-Char) because they are not flow-controlled; 
but the time-code value is presented to the SpaceWire user 
interface, which make them Normal Characters (N-Char). As 
shown in Figure 11, we therefore propose to introduce a third 
class of characters for Signalling codes (Time-codes and 
Distributed Interrupts), which are exposed to the SpW user 
interface but are not flow-controlled: Signalling Characters (S-
Char). 

 

 
Fig. 11.  Properties of all characters and codes for the SpW Link Level  

F. Terminology – consistent set of definitions for all levels 
In order to ensure the consistency between definitions that 

is lacking in ECSS-E-ST-50-12C, some effort was put into 
representing the relationship between SpaceWire terms 
unambiguously using the UML formalism. This effort is still 
on-going but Figure 12 shows some example of relationships 
between the notions of “port”, “end-point”, “switch”, “node”, 
“unit”, “link-configurable switch”, etc. as explained in section 
III.D; and Figure 13 shows that the effort is targeted to a 
representation of terms along a matrix structure covering the 
whole set of SpW internal protocol levels, both in terms of 
protocol objects and of implementation objects. 
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Fig. 12.  Detail of UML model showing relationships between terms  

 

 
Fig. 13.  Matrix structure of SpW term UML representation 

IV. CLARIFICATION OF THE SUPPORT TO SPW-BASED 

PROTOCOLS 

One of the major needs for clarification of the SpaceWire 
concepts and terms is the impossibility to design a proper 

management system (protocol + service) for SpaceWire due to 
the ambiguities in ECSS-E-ST-50-12C. 

A. Support to SpW-based Protocols 
In particular, the possibility for a higher layer to receive 

packets with zero as first character and to distinguish these 
packets (management packets) from the others (“application” 
packets) needs to be clarified in ECSS-E-ST-50-12C Rev.1. 
We propose to address this issue by clarifying the optional 
status of clause 10.5.4.3.a: “If a packet arrives at a node with 
an unexpected destination address then that packet shall be 
discarded.” and introduce the possibility to either reject or pass 
to the higher layer a packet based on the value of its header 
character that can be any from 0 to 255; and to have the option 
of having this first character deleted before being passed to the 
higher layer. 

 

 
Fig. 14.  Packet filtering on Header allows supporting “application” and 

“management” packets  

As illustrated in Figure 14, this feature would allow, when 
two packets arrive at an end-point, one starting with e.g. data 
character 51, and the other one with data character 0, to support 

• “raw” SpaceWire mode: both packets are passed to the 
higher layer because the header data character is just 
the first byte of the SpW cargo 

• PID-based “application” protocol (in this example 
being configured as Destination Address 51): only the 
packet with expected Destination Address 51 is passed 
to the higher layer 

• management protocol: only the packet with expected 
leading zero is passed to the higher layer with the zero 
deleted so that the higher layer can be a standard PID-
based protocol (but running in the management space 
of the node, not its application space). 

B. Identification of management parameters 
Another area where clarification of the SpaceWire 

specification (ECSS-E-ST-50-12C Rev.1) and consolidation of 
the support to management protocols go hand-in-hand is the 
identification of management parameters. Some parameters 
such as “link speed” address clearly lower SpW internal 
protocols levels (in this case the SpW Signal Level) and have 
therefore little impact on the clarification of SpaceWire 
concepts. We still propose for ECSS-E-ST-50-12C Rev.1 to 
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clearly identify them as management parameters for the sake of 
defining management protocols later on. This is also the case 
of the switching matrix which is a management parameter of a 
SpW switch (link-configurable or not). 

Other features like the ON/OFF state of a link do not 
appear clearly as management parameters but they are: whether 
a link is ON/enabled or OFF/disabled at SpW Network level 
obviously has an impact on the system (a packet to be switched 
through this link will be spilled) but the SpaceWire user 
(“higher layer”) has no control on the status of this link. It is 
also clear from the discussions of the ECSS Working Group on 
the revision of ECSS-E-ST-50-12C that, at least for the sake of 
backwards compatibility of new features like the Distributed 
Interrupts, it must be possible to enable an output port for data 
Packets but not for Time-codes, or for Packets and Time-codes 
but not for Distributed Interrupts, etc. This shows not only that 
a SpaceWire output port is in fact a set of four output ports 
(one for Data Characters, one for Time-codes, one for 
Distributed Interrupts, and one for Distributed Interrupt 
Acknowledgements), but also that these character-specific 
output ports can be enabled one by one. They are therefore 
management parameters and identifying them clearly as such 
will allow clarification of the description of the behaviour of 
the SpW Network Level in ECSS-E-ST-50-12C Rev.1. 

The effort of identification of management parameters for 
each level of the internal SpaceWire protocol stack is on-going. 
Therefore the complete list to be specified in ECSS-E-ST-50-
12C Rev.1 cannot be presented here. 

C. “Application protocols” and management protocols 
Once we have 
• a list of management parameters for each level of the 

internal SpaceWire protocol stack 
• a clear description of any SpaceWire network as a 

graph linking end-points and switches 
• a clear description of a node as hosting a higher layer 

and one or more end-points 
• the possibility to filter packets at SpW Network Level 

according to the value of the leading byte (with 
possibility to delete this byte, e.g. if it is zero) 

we can clarify the last ambiguity in the concept of “node” 
that was introduced when the possibility to configure nodes 
and switches was presented and that ECSS-E-ST-50-12C 
cannot help clarifying (see section II.A). This ambiguity can be 
expressed in the two following questions: 

a) If only a node can host the configuration space, does a 
configurable switch contain a node? 

b) If only a node can host the configuration space of a 
switch, is it the same with the configuration space of a node, 
and does a node contain a node? 

Given all what we have presented in this paper, the answer 
to the first question is “Yes and No”: The first clarification is 
that a switch as such can be configurable but no necessarily 
through one of its SpW ports. This the case  if it contains no 
node which is the only “source and destination of packets”. So 
“No”, switches per-say do not contain nodes. However, a 
“link-manageable switching unit” will have to include a switch 

as well as a node connected to one of its ports (e.g. port 0, for 
the sake of standardisation) that will receive and send the 
management packets. 

For the same reasons, the answer to the second question is 
clearly “No”: Thanks to the segregation between “application” 
packets and management packets based on the value of the 
leading byte being zero or not, a node can host in its higher 
layer an “application” space and a management space. In the 
case of a link-manageable node, the management space of this 
node manages the node itself, i.e. the SpW protocol stack 
running on each of its end-points. This is illustrated in Figure 
15. In the case of a link-manageable switching unit, the 
“application” space of the “management node” (the node 
receiving and sending switch management packets) is in charge 
of managing (e.g. configuring) the switch (e.g. the switching 
matrix, but also the SpW protocol stack running on each of the 
ports of the switch). This is illustrated in Figure 16. 

 

 
Fig. 15.  “Application” space and management space in a node (right node)  

 

 
Fig. 16.  Link-manageable switching unit: “Application” space of a node 

managing a switch  

V. CONCLUSION 

Through thorough analysis of the SpaceWire protocol 
stack, both in the perspective of the diversification of the lower 
protocol levels and in the perspective of the support to 
management protocols and services, a lot of progress has been 
achieved in the understanding of the SpaceWire concepts and 
terms and the way this communication protocol should be more 
clearly specified. The areas of ambiguity and unknown as 
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shown in Figure 17 are now much clearer, as shown in Figure 
18. 

Part of the clarifications proposed in this paper still need to 
be detailed; and the Signal and Physical still need to be 
addressed. But the re-writing of the SpaceWire specification in 
to a much clearer ECSS-E-ST-50-12C Rev.1 is on the right 
track, including smooth introduction of new (but backwards 
compatible) features such as sideband signalling for interrupt 
distribution. 

Once ECSS-E-ST-50-12C Rev.1 is ready, standardisation 
of additional SpaceWire-based protocols (SpW-D for time 
determinism, time synchronisation protocol, network discovery 
and management protocol, etc.) will be a fairly process because 
these protocols will be supported by a clear and consistent set 
of concepts. 

 
Fig. 17.  Map of the SpaceWire world according to ECSS-E-ST-50-12C, 

ECSS-E-ST-50-51C, ECSS-E-ST-50-52C, and ECSS-E-ST-53-12C 

 

 
Fig. 18.  Possible map of the SpaceWire world based on ECSS-E-ST-50-12C 
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Abstract—STAR-Dundee has recently released a new range of 

interface and router devices to support SpaceWire-related test 

and development.  Each of these devices is provided with a 

comprehensive software suite, which further simplifies the test 

and development stages.  This paper explores the many benefits 

of using these devices to develop a new SpaceWire device, 

protocol or application.  Typical scenarios in each stage of 

development are considered, and information on how the 

software and devices can be used in these situations is provided. 

Index Terms—SpaceWire, Networking, STAR-Dundee, 

Spacecraft Test and Development Equipment, STAR-System, 

USB, PCI, cPCI, PCIe, Brick Mk2, Router Mk2S, EGSE, Link 

Analyser Mk2, Conformance Tester, SpaceWire Physical Layer 

Tester. 

I. INTRODUCTION 

STAR-Dundee has recently introduced a number of new 

products to the SpaceWire test and development market, 

including a range of router and interface devices supported by a 

comprehensive software suite. 

This paper introduces the various products available from 

STAR-Dundee to assist in test and development of SpaceWire 

devices, protocols and applications, concentrating primarily on 

the products recently added to the range.  The paper’s aim is to 

demonstrate how these products can be used at each stage of 

development not only to make that stage easier to complete, 

but also with better results than previously possible. 

II. LEARNING TO USE SPACEWIRE 

For over eight years, STAR-Dundee’s SpaceWire-USB 

Brick has been many people’s first introduction to SpaceWire.  

The device provides two SpaceWire ports and a connection to 

a PC via a USB cable, with power to the device provided by 

USB. 

The Brick has now been replaced by a new device, the 

SpaceWire-USB Brick Mk2 [1], shown in Figure 1, which has 

all the functionality of the original, plus a lot more.  The Brick 

Mk2 is supplied with STAR-System, STAR-Dundee’s 

software suite which includes drivers, APIs, documentation, 

test and example programs and powerful graphical 

applications. 

Using the Brick Mk2 is very easy, which makes it an ideal 

device when getting started with SpaceWire.  To get up and 

running, install the STAR-System software on a Windows or 

Linux PC and connect a USB cable between the PC and the 

Brick Mk2.  The STAR-System applications are available from 

the Start menu or equivalent in Linux. 

As a first stage of transmitting and receiving packets over 

SpaceWire, a SpaceWire Lab Cable (also available from 

STAR-Dundee) can be connected between the two SpaceWire 

ports in a loopback configuration.  The STAR-System 

Transmit application shown on the left in Figure 2 can then be 

used to transmit packets.  The packets are typed in to the text 

box, the end of packet marker type selected, and the Transmit 

Packet button pressed to transmit the packet. 

The STAR-System Receive application, shown on the right 

in Figure 2, can be used to receive the packets transmitted.  

Clicking the Receive Packets button will result in the contents 

of all received packets being displayed, along with each 

packet’s end of packet marker.  The base used when entering 

and displaying packets can be specified, and in this example 

the packets were entered in hexadecimal and the received 

packets are displayed in binary. 

 

Figure 1 SpaceWire-USB Brick Mk2 
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III. INTERFACING AND ROUTING 

The Brick Mk2 device is an interface device, and can be 

used (along with STAR-Dundee’s other interface devices) to 

transmit packets over a SpaceWire network, and receive 

packets from the network.  This functionality can be used 

during device development for a number of purposes: 

transmitting commands to the device, receiving data from the 

device, etc. 

In addition to the basic STAR-System Transmit and 

Receive applications, more powerful applications are also 

provided.  The STAR-System Source application allows 

complex packet formats to be constructed and transmitted at 

high speeds, with transmit statistics displayed.  The STAR-

System Sink application shown in Figure 4 can receive packets 

at high speeds, and can optionally write these received packets 

to file.  The received packets can be checked for errors, using 

the same packet formatting information as is used in the Source 

application.  Statistics are available, including the number of 

errors in the received packets being checked.  In the figure, the 

application is indefinitely receiving a previously defined packet 

format (named “10000 Byte Packet”) and checking the 

received packets for correctness.  The statistics indicate that no 

error has been detected so far, and that data is being received at 

approximately 17 Mbytes/s. 

The other STAR-Dundee interface devices are the 

SpaceWire PCI Mk2 [2], the SpaceWire cPCI Mk2 [3] and the 

SpaceWire PCIe [4], shown in Figure 3.  All are provided with 

the same STAR-System software suite, have three SpaceWire 

ports, and each can be accessed using the same STAR-System 

APIs.  The functionality provided by each unit is similar – the 

main differences are in their bus interfaces.  A USB device can 

be easily connected and removed from a PC, and there are 

multiple USB ports on most modern PCs.  The PCI bus 

provides better throughput and latency than the USB bus, but 

devices must be fitted in the PC when it is switched off.  cPCI 

devices are similar to PCI devices, but can be fitted in a rack.  

Finally, the PCIe bus offers better throughput than the PCI bus. 

All of STAR-Dundee’s interface devices also provide a 

routing mode, which allows SpaceWire routing to be 

investigated.  For a standalone router, the recently updated 

SpaceWire Router Mk2S [5] is a router with eight SpaceWire 

ports.  It is functionally equivalent to the STAR-Dundee Router 

IP and ESA SpW-10X Router ASIC, the Atmel AT791.  It also 

has a USB port, so can optionally be connected to a PC and 

used with the same STAR-System software as the other 

interface and router devices. 

In addition to transmitting and receiving packets, the 

interface and router devices can also be used to configure other 

devices on the network.  The STAR-System Device 

Configuration application (see Figure 5) allows supported 

devices to be configured either locally or over a SpaceWire 

network.  This makes it easy to set timeouts, change link 

speeds and get the error status of devices on the network.  

Routing tables of routing devices can also be configured, so the 

routing table of a Router Mk2S can be configured using a PCI 

Mk2, for example, over the SpaceWire network. 

IV. SIMULATING INSTRUMENTS 

Simulation of instruments and other devices can be 

performed using the interface and router devices previously 

mentioned.  For example, the STAR-System Source 

application can be used to transmit packets containing images 

in order to simulate a camera.  Other fields that can be included 

 

Figure 3 SpaceWire PCIe 

 

 

Figure 4 STAR-System Sink Application 

 

 

Figure 2 STAR-System Transmit and Receive Applications 
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in the transmitted packets include sequence numbers, CRCs, 

checksums, field lengths, data patterns and address and data 

bytes.  This makes it possible to transmit packets in the format 

used by existing protocols or to test out new protocols.  After 

creating the required packet format, these are stored to hard 

disk for future use. 

The STAR-System Sink application can be used to receive 

the images, and simulate a receiving device such as a mass 

memory unit.  The received packets can be written to file for 

further analysis, and their format can be checked for errors 

using the same packet format information used by the Transmit 

application. 

For more complex simulations, the STAR-System APIs can 

be used to develop applications to perform specific tasks.  The 

main API provides functions which make it simple to write 

applications to transmit and receive packets at high rates and 

with low latency.  Additional APIs are provided for device 

configuration and for building and interpreting RMAP packets.  

Example code is provided, and linked to in the comprehensive 

documentation, to demonstrate how each function can be used. 

For development of graphical device simulations, the 

STAR-System LabVIEW API [6] allows applications to be 

developed using National Instrument’s LabVIEW development 

environment.  The STAR-System LabVIEW wrapper has been 

designed to be intuitive to LabVIEW users, and includes a 

number of example applications.  These cover common 

SpaceWire development tasks, and so can be dropped in to a 

LabVIEW application, greatly simplifying development of that 

application. 

If deterministic behaviour is required in the device 

simulation, STAR-System releases are available for both 

VxWorks [7] and QNX [8] real-time operating systems.  These 

releases currently work with the SpaceWire PCI Mk2, cPCI 

Mk2 and PCIe and provide exactly the same API as on 

Windows and Linux.  This means that software can be 

developed and tested on a Windows or Linux desktop machine, 

before being recompiled for the final target. 

An alternative device, the SpaceWire EGSE [9] [10], can 

be used to perform real-time device simulation entirely in 

hardware, and so provide deterministic behaviour.  The EGSE 

is programmed using a simple yet powerful scripting language 

using a connected PC, and then the script is executed on the 

device without further interaction with the hosting PC.  The PC 

can be notified of events, if required, and can also send 

software triggers.  The EGSE’s trigger output ports can be used 

to notify external equipment when a specified event occurs, 

while the trigger input ports can be used to alter the state of the 

script based on an external event.  For example, an external 

clock could be used to indicate that a packet should be sent at 

regular intervals.  

V. DEVELOPING FOR FLIGHT 

The devices discussed above can be used to test and 

develop new flight equipment.  To work with existing flight-

rated devices, STAR-Dundee also offers a number of solutions. 

While the SpaceWire Router Mk2S is functionally 

equivalent to the ESA SpW-10X, the STAR-Dundee SpW-10X 

Router ASIC (AT7910E) Evaluation Kit [11] includes an 

actual SpW-10X ASIC in a rack-mountable unit which 

simplifies interfacing with this device during evaluation and 

development.  The SpW-10X, and any other devices which 

make use of STAR-Dundee’s Router IP, can be configured 

using the STAR-System Device Configuration application 

shown in  Figure 5.  In the figure, the properties of a Brick 

Mk2 (which is functionally similar to a SpW-10X) are 

currently being configured.  From this application, the 

properties of each port can be configured, the error status 

viewed, and the routing table set. 

Another product which provides support for flight-rated 

devices is the SpaceWire RTC (AT7913E) Development Kit.  

It has external connectors exposing the various interfaces of the 

Atmel AT7913E device, the SpaceWire Remote Terminal 

Controller (RTC).  The STAR-Dundee SPARCv8 Software 

Development Environment (or STAR SDE) is provided with 

the RTC Development Kit, to assist software development, 

debugging and testing on the RTC’s SPARCv8 chip. It can also 

be used with other flight-rated SPARCv8 processors including 

the Atmel AT697E/F and AT697FF devices. 

While debugging, the SDE includes graphical views of the 

internal registers on the device, the trace buffer and the 

processor cache.  Source code, assembly language and 

graphical representations of the code using Code Rocket are 

available while stepping through the code.  Debugging can be 

performed interactively over USB or UART. 

When developing a new flight device, STAR-Dundee 

offers a range of SpaceWire IP cores provided as VHDL 

source code, including a CODEC, a Router [14], an RMAP 

Initiator and an RMAP Target [15].  These cores have been 

extensively tested and proven, are used in STAR-Dundee’s test 

and development equipment and are also incorporated in the 

Atmel AT7910E (SpW-10X) and AT7913E (SpaceWire RTC) 

ASICs. 

 

Figure 5 STAR-System Device Configuration Application 
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VI. TESTING AND DEBUGGING 

The interface and router devices described earlier all 

provide numerous features to assist in testing and debugging.  

Using the STAR-System software or APIs, they can of course 

be used to transmit traffic to a device under test, or receive 

traffic from the device under test.  They can also be used to 

transmit and receive time-codes, and errors detected on the link 

are latched so that any unexpected behaviour can be detected.  

All of these devices also offer mechanisms to introduce errors 

in to traffic including credit errors, escape errors and parity 

errors, meaning that it’s possible to put together a full test suite, 

which can be controlled through software, to test a device 

under development. 

One of the most important tools to have when debugging a 

problem in a SpaceWire network or device is the SpaceWire 

Link Analyser Mk2 (see Figure 6) [16].  The Link Analyser 

Mk2 can be used to record the traffic crossing a link, and can 

trigger on events such as errors, time-codes, specific data 

characters, etc.  The traffic recorded can be viewed as a link 

level trace (individual n-chars and l-chars), a packet level trace, 

or a signal level trace (Data and Strobe waveforms).  The 

packet level trace can also show protocol information, such as 

the fields of an RMAP packet.  The Link Analyser Mk2’s 

accurate statistics also make it simple to confirm the 

throughput performance of a device is as expected, while error 

injection is provided to monitor how a device performs when 

errors are introduced. 

When developing a new device, it’s important to test the 

device at all layers of the SpaceWire standard.  The STAR-

Dundee SpaceWire Conformance Tester [17] tests 

conformance of a device to numerous clauses in the SpaceWire 

standard, concentrating primarily above the physical layer. 

The SpaceWire Physical Layer Tester [18] builds on this by 

offering testing of the device at the physical layer.  It can apply 

a variety of different aberrations including offset, drive 

strength, slew, skew and jitter to the electrical SpaceWire 

LVDS signals.  A powerful software suite makes it very easy 

to control the amount of signal degradation that the unit under 

test can cope with by progressively degrading combinations of 

these aberrations until the connection is broken.  The SPLT 

also features analogue buffers on its termination resistors to 

allow the signal received from the device under test to be 

buffered and viewed on a scope. 

VII. SUMMARY 

This paper has introduced a number of products to assist in 

the development and testing of SpaceWire devices, 

applications and protocols.  These devices are used by STAR-

Dundee when developing our own products, so include not 

only features requested by customers, but also features required 

by STAR-Dundee engineers.  Our products are always being 

improved as we receive requests from customers, or encounter 

a situation where an existing solution does not exist, and we 

always welcome comments and suggestions. 
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Abstract—Various applications, such as telecommunication 
and robotics, ask for communication bandwidth beyond 1Gb/sec. 
However, SpaceWire is still limited to lower rates. The IEEE1355 
standard proposes a high-speed exchange level, which is 
optimized for 8b12b-encoding (HS-SE-10 and HS-FO-10). To 
enable high-speed communication with SpaceWire, the authors 
resurrect the IEEE1355-HS-SE concept and adapt it to the 
requirements for SpaceWire links. Therefore, time-characters 
are integrated and the encoding is changed to 8b10b-encoding to 
enable the usage of common physical layer circuits. This paper 
presents the resulting specification, an exemplary 
implementation, and a first experimental result. 

Index Terms—SpaceWire, IEEE1355, SpaceWire-HS, robotics 

I. INTRODUCTION 
Various applications, such as telecommunication and 

robotics, still ask for the advantages of SpaceWire, i.e. a simple 
packet protocol with small footprint. However, due to rising 
complexity, modern systems require communication 
bandwidth beyond 1 Gbit/s per link, which is not supported by 
ECSS-E-ST-50-12C.  

IEEE1355-1995, an earlier version of what we call 
SpaceWire today, proposes high-speed links named HS-SE-10 
for single ended copper and HS-FO-10 for fiber optic links. 
But neither one has been transferred to ECSS-E-ST-50-12C.  

The SpaceFibre standard proposes communication 
bandwidth beyond 1 Gbit/s and the interfaces of SpaceFibre 
links are intended to be compatible to SpaceWire links. 
However, SpaceFibre links are more complex than SpaceWire 
links, since reliability aspects are moved from application layer 
into the links. 

Nickl et al. [1] show that the SpaceWire exchange level can 
be combined with common character level circuits that run 
with 8b10b encoding (see [4]). This straight forward approach 
is not efficient, since bit-stream synchronization is 
implemented by 8b10b comma characters and is also regarded 
by the exchange level state machine1. 

To enable an efficient high-speed SpaceWire link with 
small footprint, the authors resurrect the IEEE1355-HS-SE and 
adapt it to the requirements for SpaceWire links. Therefore, 

1 To distinguish different modifications of SpaceWire, this 
implementation is called ‘SpaceWire-1Gb’ 
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Figure 1: Structure of a SpaceWire-HS node with exchange 

level interfacing  a common 8b10b physical layer circuit 
 
time-codes are integrated and the encoding is changed to 8b10b 
to enable the usage of common physical layer circuits. 
Hereinafter this concept is referred to as SpaceWire-HS.   

This paper presents the protocol specification of 
SpaceWire-HS in section II, an exemplary implementation in 
section III, and first experimental result in section IV. 

II. PROTOCOL SPECIFICATION 

SpaceWire-HS defines an exchange layer that enables 
SpaceWire communication by using common physical layer 
circuits with 8b10b encoding as used for Gigabit Ethernet 
(IEEE 802.3). The protocol is a derivation of the IEEE-1355-
HS exchange level protocol. Minor modifications such as time-
code support, changed initialization sequence, and 8b10b 
instead of 8b12b bring IEEE-1355-HS into line with 
SpaceWire and 8b10b encoding.  

 Fig. 2 shows the structure of an exchange level 
implementation with bidirectional interfaces for time-codes and 
nchars (left interface) as well as a duplex 8b10b-interface 
(right interface). The protocol automata (RxFsm and TxFsm) 
implement start, stop, flow control and error handling. The 
Encoder converts SpaceWire symbols (i.e. nchars and lchars) 
to 8b10b-characters (i.e. K.x.y and D.x.y) and the Decoder 
vice versa. The internal channels are named alphabetically, to 
avoid ambiguities. Mux and Dispatcher decouple message 
routing and protocol implementation. Due to that, the 
implementation provides four channels, a forward channel  
Cfw = (a, g, h, b), a feedback channel Cbw=(c, g, h, d), a channel 
for time-codes Ctc=(e, g, h, f), and a handshake channel  
Chs=(a, g, h, d).  
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Figure 2: SpaceWire-HS exchange level 

 
The grammar in Fig. 6 specifies all symbols, which are 

carried along the channels shown in Fig. 2 and defines the 
encoding, i.e. the mapping of SpaceWire-characters to 8b10b-
characters.  

All symbols are encoded as simple kchars (K.x.y) extended 
kchars (K.x.y followed by D.x.y), or data characters D.x.y. 
IDLE is mapped to K.28.0, which has balanced disparity, to 
reduce power consumption while sending IDLEs. Time-codes 
are mapped to (K.28.1, D.x.y), where D.x.y carries the time-
code, i.e. tc and ctrl (see [3]). START, STOP, and RESET 
symbols are escape characters (K.28.6, D.x.0), where x is the 
identifier of the escape character. INVALID is an extra 
symbol that covers character level errors. 

In contrast to the data strobe  link (DS), which has a silent 
initialization phase to synchronize the bit-stream, SpaceWire-
HS is optimized for 8B10B character layers, which allow bit 
stream synchronization by a dedicated comma character. 
Therefore, the transmitter sends a startup sequence (INIT), 
which consists of a COMMA followed by IDLEs. The number 
of IDLEs can be configured, e.g. currently one COMMA 
followed by 32 IDLEs. 

IEEE-1355-1995 (Annex G) proposes to insert an error 
checking code to get a higher level of fault-sensitivity. This is 
regarded by an extra byte for cyclic-redundancy-check (CRC) 
at the end of packet data, previous to the EOP. (An EEP packet 
has no CRC.)  

The exchange level protocol is sliced in TxFsm and RxFsm 
(see Fig. 7). To avoid deadlock, TxFsm has two startup paths, 
one for unidirectional and one for bidirectional startup. 

In the case of unidirectional startup only one (A) of the two 
connected nodes gets a request to transmit (en='1'). Hence, only 
A changes to state TX_CAL_1. After A has calibrated its 
transmitter it changes to TX_WORKING_1 and starts to send 
INIT characters. The incoming INITs calibrate the receiver of 
B (cal='1'). Hence, B changes to state TX_CAL_2. After 
calibrating the transmitter B changes to TX_WORKING_2 and 
also starts to send the INIT sequence. Thus, A calibrates its 
receiver and changes to TX_WORKING_3. At this point of 
time, both nodes have calibrated transmitters and receivers and 

send the startup handshake, i.e. START_REQ and 
START_ACK. 

In case of bidirectional startup both nodes get a request to 
transmit (en='1'). Therefore, both change from 
TX_NOT_WORKING to TX_CAL1 and after calibration of 
the transmitter to TX_WORKING_1. Then A and B send the 
INIT sequence, which calibrates the peer receiver. After 
receiver calibration the transmitter sends the startup handshake. 
Hence, bidirectional startup allows sending START_REQs 
before the opposite node is calibrated [ieee1355]. Therefore, 
the timeout TO1 triggers resending START_REQs. The global 
timeout TO2 initiates a reset in case of failure during startup 
(e.g. disconnect, etc.). 

After startup the TxFsm reaches TX_FUNCTIONAL. 
According to the credit counter, which represent the free space 
in the peer receiver FIFO, nchars can be sent.  

The shut-down mechanism also distinguishes unidirectional 
and bidirectional case. Only if both nodes have requested a 
shut-down the link shall completely shut-down. As long as the 
link isn't completely shut down the receivers are still active and 
able to receive data.  

The receiver state machine handles the calibration and 
implements the credit counter for the incoming nchars. 
Furthermore, it checks the CRC, i.e. converts an EOP to EEP 
in case of invalid check-sum, and adds an EEP in case of 
broken link.  

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

For testing two circuit boards (see Fig. 3) with Xilinx 
Virtex5 (5VLX50) and TLK1221 from Texas Instruments, 
which is an IEEE802.3 Gigabit Ethernet compliant physical 
layer circuit, are used. The boards are linked by an impedance 
controlled cable with two crossed differential pairs and high-
speed connectors (COMTRONIC’s CMRM, see Fig. 5). The 
differential serial outputs are PECL-compliant and the serial 
inputs are AC-coupled. The boards can be coupled by copper 
or fiber (the latter by applying additional copper-to-fiber 
adapters).  Both FPGAs host a testNode which generates 
stimulation-patterns and observes the behavior of the links. 
Furthermore, the tested link implementation has additional 
instrumentation capabilities to trace internal link errors (debug 
interface).  

 

 
Figure 3: FPGA Testboards for Gigabit Communication with 

Comtronics CMRM cable 
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Figure 4: Testbench for SpaceWire-HS link 

 
Transmitter and receiver of the TLK1221 run on different 

unsynchronized clocks (clk_tx, clk_rx). The testNode has a 
third clock (clk_node). As a consequence the data flow of the 
transmitter path (TxFsm, Mux, Encoder) and the receiver path 
(RxFsm, Dispatcher, Decoder) as well as the application 
interface has to be decoupled with deterministic rate-
transitions. Therefore, the channels tx_nchar, rx_nchar, tx_tc, 
rx_tc, c, and d (Fig. 2) are implemented as dual-clock FIFOs, 
cal and func as synchronizers [5].  

The SpaceWire-HS link-level is implemented in VHDL. 
Table 1 shows the synthesis results of a design consisting of 
exchange level and 8b10b encoding/decoding and compares it 
to a design of SpaceWire-1Gb (see [1]). For synthesis Mentor 
Graphics Precision RTL Synthesis 2010a_Update2.254 is used, 
for place and route XILINX ISE 13.1. 

As one can see, both implementations need approximately 
the same amount of logical resources and have similar timing 
constraints. The initial expectation of having a smaller 
footprint could not be proven. While the strict separation of 
channels increases modularity it also requires additional 
resources for rate transition logic.  

For the tests an exchange level with dedicated 
instrumentation interfaces was connected to a special test node 
which is able to generate various test patterns (Fig. 4). The 
configuration interface allows to read status information and to 
configure the test patterns. Disconnection errors, 8b10b 
encoding/decoding errors (wrong 10b character, running 
disparity error), CRC errors as well as FIFO states are 
monitored.  

Three performance tests are performed to show that 
SpaceWire-HS is a valuable alternative to SpaceWire-1Gb:  

1. SpaceWire packet transmission with variable packet 
lengths and variable packet rate synchronous and 
asynchronous to time-codes transmission (24 hours 
nonstop) 

2. SpaceWire packet transmission with fixed packet 
length and maximum packet rate (10 days nonstop). 

3. Loss of connection and resynchronization (100 times).  
All tests passed successfully. No error occurred during the 

test phases.  

 
Figure 5: Gigabit Connector (Comtronics CMRM) 

  SpaceWire-1Gb [1] SpaceWire-HS 
5VLX50 6SLX16 5VLX50 6SLX16 

Global Buffers                     3        3        3        3        
LUTs                               493      585      651      707      
CLB Slices                         124      147      163      177      
Dffs or Latches                    399      402      543      526      
RAMB18                          4  4                       
RAMB8BWER                        2                       2                      
clk_rx 266 MHz 223 MHz 265 MHz 200 MHz 
clk_tx 239 MHz 163 MHz 183 MHz 139 MHz 
clk_node 264 MHz 181 MHz 249 MHz 154 MHz 

 

Table 1: Synthesis Results for SpaceWire-1Gb and Spacewire-
HS for Xilinx Virtex-5 and Spartan-6 

IV. CONCLUSION 

This publication shows that the concepts of IEEE1355 
high-speed links can be adapted to the SpaceWire 
requirements. A specification is presented, which is optimized 
for 8b10b encoding. It defines a dedicated mapping of 
SpaceWire symbols to 8b10b-characters, which considers time-
codes as well as power dissipation aspects.  

The experimental results show that SpaceWire-HS is a 
valuable alternative to the implementation of SpaceWire-
1Gb[1], which is complex due to the specific timing of 8b10b 
encoding, physical layer circuits and exchange level. Therefore, 
SpaceWire-1Gb needs extensive timeout parameter tuning.  
Hence, adaption to various bandwidths is cumbersome and 
error prone. SpaceWire-HS gets along without parameter 
tuning, since the timing of character level and physical layer 
does not influence the exchange level.  

IEEE1355-HS has a dedicated reset, which is neglected for 
this evaluation. Further discussions should clarify, if a reset is 
really necessary.  

The current implementation lacks a timeout at the 
rx_nchar interface, which detects open packets in case the link 
falls down. This failure is neglected in IEEE1355. However, 
open packets can clog the residual network and should be 
closed in case of broken link.  

As recommended by the authors of IEEE1355 a CRC is 
added to extend the error detection capabilities. Currently 8-Bit 
CRC is chosen, but this is not enough for most applications, 
which have stricter requirements on probability of failure per 
hour and packet size. Furthermore, the polynomial for the CRC 
is still an open issue and should also be discussed.  

In a next step a more optimized implementation should be 
evaluated. The footprint of the modular approach presented in 
this publication is not comparable to the optimized 
implementation presented in [1]. However, the modular 
approach enables to add additional channels for future analysis, 
e.g. multiple nchar-channels with dedicated bandwidth via one 
shared 8b10b link. 

This presentation is a first proof of concept. In a next step 
SpaceWire-HS will be integrated with the DLRs Hand-Arm-
System, a robotic system with 52 motors and more than 430 
sensors. Then, the exchange level implementation will be tested 
intensively. 
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# channel definition 
# 
Cfw = DATA(x) | EOP | EEP 
Cbw = FCC 
Ctc = TIMECODE(tc, ctrl) 
Chs = RESET | START_REQ | START_ACK | STOP_REQ | STOP_ACK | 
STOP_NACK 
# interfaces 
tx_tc = Ctc  
rx_tc = Ctc 
tx_nchar = Cfw 
rx_nchar = Cfw 
en=TRUE | FALSE 
tx_8b10b = 8B10B;  
rx_8b10b = 8B10B;  
# internal channels 
a = Cfw | Chs 
b = Cfw | INVALID 
c = Cbw 
d = Chs  
e = Ctc 
f = Ctc 
g= Cfw | Cbw  | Chs | Ctc 
h= Cfw | Cbw  | Chs | Ctc | INVALID 
cal = TRUE | FALSE 
func = TRUE | FALSE 
 
# 8B10B encoding 
# 
INIT= COMMA  2^n*(IDLE) 
TIMECODE(tc, ctrl) = K.28.1 D.tc4:0.(ctrl1:0 & tc5)  
COMMA=K.28.5 
IDLE= K.28.0 
FCT=K.28.2 
START_ACK= K.28.6 D.1.0 
STOP_REQ = K.28.6 D.2.0 
STOP_ACK = K.28.6 D.3.0 
STOP_NACK = K.28.6 D.4.0 
START_REQ = K.28.6 D.5.0 
RESET = K.28.6 D.6.0 
DATA(x7:0) = D.x4:0.x7:5  
EOP= K.28.3 
EEP= K.28.4 
8B10B = K.28.y | D.x.y 
INVALID=<received invalid character or invalid running disparity> 
flit = 32 

Figure 6: Encoding for 8b10b 

 stm TxFsm

TX_NOT_WORKING

TX_CAL_1 TX_CAL_2

TX_WORKING_1 TX_WORKING_2

TX_WORKING_3

TX_STOP_1 TX_STOP_2

TX_FUNCTIONAL

WAIT_NOT_CAL

i f state not in  [TX_NOT_WORKING, TX_CAL_1, TX_WORKING_1]:
   rxerror <= !cal

[d = STOP_NACK]

[cal]
/enable
transmitter
init(TO2)

[transmitter calibrated]
/a <= INIT

[transmitter calibrated]
/a <= INIT

[cal]

/a <= START_REQ
[TO1]

[d=START_REQ]
/a <= SEND_ACK

[en]
/enable
transmitter
init(TO2)

[!en]
/a <= STOP_REQ
func <= FALSE

/a <= INIT

[d = STOP_ACK]

[d = STOP_REQ]
/a <= STOP_ACK

[!cal]

/a <= INIT

[TO2 | rxerror]

[en]

/a <= INIT

[d = START_ACK]
/a <= START_ACK
func <= TRUE
stop(TO2)

 
 stm TX_FUNCTIONAL

TX_EOPTX_DATA

i f (d=FCC) then credit += 32;
if (a is NCHAR) then last += 1;

TX_IDLE

i f (d=STOP_REQ) then 
   a <= STOP_NACK

[credit > last] /a <= EOP

/a <= tx_nchar

[credit > last]
[tx_nchar = EOP]
/a <= crc

[tx_nchar = EEP]
/a <= EEP

 
 stm RxFsm

RX_WAITING RX_WORKING

CAL <= TRUE
if (credit / fl i t < space / fl i t) then 
    c <= FCC;
if (b = NCHAR) then
    last += 1
if (c = FCC) then 
    first += 32;

CAL <= FALSE
first <= 0
last <= 0

if (b = EOP | EEP) then
    crc.init()
elif (b = DATA) then
    crc.next(b)
    reg <= b;

RX_CALIBRATED

CAL <= TRUE

[b = EEP]
/rx_nchar <= EEP;

[b = INVALID | ((last = first) & b = NCHAR) | !func]

[b = INIT] [func]

[b = EOP]
/if (reg = crc) then rx_nchar <= EOP;
else rx_nchar <= EEP;

[b = DATA]
/rx_nchar <= reg;

 
Figure 7: Protocol automata TxFsm and RxFsm 
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Abstract—SpaceFibre is a next-generation interconnect stan-
dard for connecting components in a spacecraft. Standardization 
of SpaceFibre is led by the European Space Agency (ESA). 
Although some features (e.g., multi-lane) are under consideration, 
a Draft E1 version of the standard was released at the end of 
September 2012. To use SpaceFibre, it is necessary to be easy to 
use by eliminating the ambiguity of the standard and by 
increasing the perfection level of the standard. In order to check 
whether or not there are some points that can be improved in the 
draft standard such as ambiguity, we made a prototype 
implementation of SpaceFibre Draft E1 version on an FPGA. We 
used a SerDes-IC TLK2711 (Texas Instruments) for functions of 
the physical layer and a part of the encoding layer. We also used 
an FPGA (XILINX® Virtex®-5) for the upper layers. In this 
paper, we report the results of confirming the behavior by the 
prototype implementation, and the evaluation of the Draft E1 
based on the results. In addition, we ran interoperability tests 
with a Japanese company and the University of Dundee in order 
to verify the interoperability of the draft standard. There, 
timeout occurred in the lane initialization that may be improved. 

Index Terms—SpaceWire, SpaceFibre, interoperability test  

I. INTRODUCTION 

SpaceFibre[1] is a very high-speed serial interconnect 
standard for spacecraft and is led by the European Space 
Agency (ESA). The background in which SpaceFibre was 
proposed is a demand for high speed and scalability. The 
amount of the sensor data has increased in every mission. 
However, before SpaceFibre, there was no standard that is 
high-speed, scalable and easy-to-use. Therefore, developing a 
new technology for data transmission has been needed for 
every mission. As a result, the problems of the high cost and 
increase development time has occurred. On the other hand, 
SpaceFibre can be reused because this standard satisfies the 
demand for high data rate over a long period of time. As a 
result, we were able to improve reliability and reduce 
development costs. Also, SpaceFibre has the potential to unify 
the interface in a satellite with SpaceWire[2] because 
SpaceFibre has affinity with SpaceWire. Thus, a backplane 

prototype with SpaceWire and SpaceFibre links was 
proposed[3]. 

Based on the above, we have evaluated SpaceFibre 
Standard to make effective use of the standard. In this paper, 
we describe our SpaceFibre CODEC prototype implemen-
tation, interoperability test results and consideration about lane 
initialization. 

II. SPACEFIBRE 

SpaceFibre Standard Draft E1 was released at the end of 
September 2012. Although some features (e.g., multi-lane) are 
under consideration, the standard is nearing completion. 

Fig. 1 shows SpaceFibre’s layer structure. A description of 
the layers is provided below. 

Physical Layer

Serialisation Layer

Encoding Layer

Lane Layer

Multi-lane Layer

Retry Layer

Framing Layer

VC Layer

Broadcast  
Interface

Virtual Channel 
(VC) Interface

Broadcast Layer

 
Fig. 1.  Layers of SpaceFibre 

(1) Virtual channel layer has an interface to user application 
and handles QoS control. 

(2) Broadcast layer broadcasts short messages. 
(3) Framing layer is responsible for framing data. 
(4) Retry layer resends data to recover from errors. 
(5) Multi-lane layer operates serveral lanes in parallel. 
(6) Lane layer initializes lane. 
(7) Encoding layer encodes/decodes 8b/10b code and does 

word synchronisation. 
(8) Serialisation layer converts parallel data and serial data. 
(9) Physical layer defines electrical signals. 
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III. IMPLEMENTATION OF SPACEFIBRE 

We made a prototype implementation based on Draft E1. 
Fig. 2 shows the parts of implementation. We implemented 
the broadcast layer, framing layer, lane layer, encoding layer, 
and partially implemented the virtual channel layer, retry layer 
in FPGA. We implemented SpaceFibre CODEC limited to the 
minimum functions. We have excluded the multi-lane layer 
from the prototype because the layer is incomplete in Draft E1. 
We have not supported the multi-virtual channels and retry 
function as yet. We will implement these functions in the near 
future. 

Fig. 3 shows an outline of the SpaceFibre Evaluation Board, 
and Fig. 4 shows its photo. We used a SerDes-IC TLK2711 
(Texas Instruments) for the functions of the physical layer and 
8b/10b encoding/decoding of the encoding layer. We also 
used an FPGA (XILINX Virtex-5) for the upper layers. In 
order to control the FPGA, we also mounted a CPU on the 
same board. SpaceFibre CODEC can be controlled by a PC 
via this CPU.  

 

Physical Layer

Serialisation Layer

Encoding Layer

Lane Layer

Multi-lane Layer

Retry Layer

Framing Layer

VC Layer

Broadcast  
Interface

Virtual Channel 
(VC) Interface

partially implemented
not implemented

implemented

Broadcast Layer

SerDes
TLK2711

FPGA

 
Fig. 2.  Parts of Implementation 
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Fig. 3.  Outline of SpaceFibre Evaluation Board 

 

SpaceFibre
(FPGA)

CPU
(FPGA)

SerDes-IC
TLK2711

SpaceFibre I/F

Memory

 
Fig. 4.  SpaceFibre Evaluation Board 

 

IV.  INTEROPERABILITY TESTS 

A. Outline 

We joined an interoperability test meeting arranged by the 
Japan SpaceWire User Group, to confirm the basic 
interoperability of the transmission. In the beginning, we ran 
an interoperability test in Japan. After that, we ran a test with 
the University of Dundee / STAR-Dundee Ltd (Dundee). The 
aim of these interoperability tests is to confirm whether or not 
lane initialization and basic transmission of frames are 
performed with no issues.  The implementation was based on 
the Draft E1. 

Prior to the interoperability test with Dundee, we had tests in 
Japan. The tests in Japan are lane initialization test, single-shot 
frame test, and sequential frames test. Because there was an 
issue in the lane initialization test, we recognized that 20us 
timeout period defined in Draft E1 may have to be longer. 

Based on the results of the tests in Japan, Dundee and our 
team implemented a function to change the timeout period.  
Figure 5 shows the test environment with Dundee, and Fig. 6 
shows its photo. The Dundee prototype’s name is STAR Fire. 
The rate of connection was 2.5Gbps. The SMA cable in our 
prototype and eSATA cable were one meter each. Our 
prototype and STAR Fire are connected to each PC. PCs can 
send various commands to prototypes, and can monitor 
received data, and so on. TABLE I shows the summary of the 
test items and results of this interoperability test. We tested 
three major items as shown in TABLE I. Because these items 
are essential to basic communication, these items should be 
passed. Though some issues occurred, very basic parts of the 
lane initialization and the data transmission worked properly. 
The details are described in the next section. 

SpaceFibre
Evaluation 

Board

Dundee’s 
prototype

STAR Fire

Connector
converter

USB
cable

SMA
cable

RS-232C
cable

Dundee’s PC

SpaceFibre
Frame

Our PC

Command Received 
data

Received data, 
Status

Command 

eSATA
cable

Our prototype

 
 

Fig. 5.  Test Environment 
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SpaceFibre
Evaluation board

STAR Fire

Connector converter

eSATA cable

SMA cable

Our PC

Dundee’s PC

RS-232C cable

Our Prototype

 
Fig. 6.  Test Environment 

TABLE I.  OUTLINE OF TEST ITEMS AND RESULTS 

No. Test Item Result 
1 Lane initialization Timeout occurred. 
2 Transmission of single-shot frames OK. 
3 Loopback transmission of sequential 

frames 
STAR Fire detected 
received data error. 

 

B. Test Items and Results 

In the interoperability test with Dundee,  the following three 
tests were run. 

1) Lane initialization 
a) Test Item 

This test is a lane initialization test. Confirmation items are 
that both transceivers succeed in link-up, that both 
transceivers send and receive flow control token (FCT) control 
words, and whether or not timeout occurs in the process of 
lane initialization. 

 

 
Fig. 7.  Lane initialization test 

b) Result  
Link-up and sending/receiving FCTs succeeded, but timeout 

occurred. TABLE II shows the number of timeout counts. In 
this test, timeout was counted after both transceivers started 
the lane initialization. If the timeout period is sufficient, 
timeout seems not to occur because of the structure of the state 
machine. However, even though the timeout period is 
extended to 1ms, the number of timeout counts seems not to 
decrease.  

When “No signal” is detected, the lane initialization state 
machine returns to the initial state. Thus, if one side is not 
sending words temporarily, both sides can restart in the same 
timing. As a result, the detection “No signal” prevents timeout. 
We tried both on and off of the “No signal” detection in our 
prototype. However, even if the setting was on, "No signal" 

could not be detected in the last three trials (number of 
timeout counts: 9, 4, 7) in our prototype (other trials could not 
be checked).  
The consideration about this issue is described in chapter V. 

TABLE II.  NUMBER OF TIMEOUT COUNTS 

No. No signal detect 
setting 
(Our prototype) 

Timeout 
period setting 
(both) 

Number 
of trials 

Result: number of 
timeout counts 

1 Off 300us 2 1, 12 
2 Off 500us 2 11, 3 
3 Off 1ms 4 2, 4, 24, 13 
4 On 1ms 23 8, 8, 4, 15, 1, 1, 12, 

7, 8, 3, 2, 1, 1, 3, 1, 
14, 6, 1, 17, 21, 9, 
4, 7 

 
2) Transmission of single-shot frames  

a) Test Item 
Our prototype and STAR Fire send single-shot frames 

(data frames and broadcast frames) to each other.  
Confirmation item is whether the receiving side receives the 
frames and the receiver detects no error. For example, our 
prototype sends one-, two-, and 64-word single-shot data 
frames. 

 

 
Fig. 8.  Transmission of single-shot frame test 

b) Result  
 Our prototype and STAR Fire successfully received the data 
frames and the broadcast frames with no error. 
 

3) Loopback transmission of sequential frames 
a) Test Item 

STAR Fire sends sequential data frames. The data frames 
are sent back by our prototype in the user application layer. 
STAR Fire receives the data frames. 

 

 
Fig. 9.  Loopback transmission of sequential frames test 

b) Result  
Our prototype received all frames with no error. STAR Fire 

received the first several frames with no error. However, our 
prototype detected NACK control words after several frames 
or several hundreds frames. NACK indicates an error occurred. 
This issue is under investigation. 
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V. CONSIDERATION ABOUT LANE INITIALIZATION 

In the link initialization test, timeout occurred. Although we 
are currently investigating this issue, we have described this 
issue in this chapter. 

First of all, there is inconsistency in the device specifi-
cations and timeout period defined by the standard. Our 
prototype uses a SerDes-IC TLK2711, which is assumed as a 
device to be used for SpaceFibre. According to TABLE III, 
this SerDes-IC’s maximum PLL startup lock time is 0.4ms [3]. 
STAR Fire uses Spartan®-6 transceiver. According to TABLE 
IV, the transceiver’s maximum PLL lock time is 1ms, and 
maximum lock time to data is 200us[4]. Thus, at most 1.2ms 
is needed to lock to data after starting PLL. On the other hand, 
the timeout period in Draft E1 is 20us. Therefore, timeout 
occurs before the transceiver PLLs lock to data. Accordingly, 
the timeout period is too short to link to data; or, it may be 
better not to disable the PLL on every timeout. 

TABLE III.  SPECIFICATION OF TLK2711 

PARAMETER NOM Max Units

PLL startup lock time 0.1 0.4 ms 

TABLE IV.  SPECIFICATION OF SPARTAN-6'S TRANSCEIVER 

Description Conditions Max Units
Clock recovery frequency 
acquisition time 

Initial PLL lock 1 ms 

Clock recovery phase 
acquisition time 

Lock to data after PLL 
has locked to the 
reference clock 

200 μs 

 
Secondly, sending and receiving of INIT1 control words are 

started immediately after transceiver PLL is enabled. If INIT1 
is detected by some chance, the initialization state machine 
goes to the next state even if PLL is unstable. In addition, 
when unexpected words are received, the state machine does 
not return to initial state.  This may cause unexpected behavior. 
We believe that a mechanism to promote stable state is needed. 
An example of the mechanism is where the state machine 
moves to the next state after PLL locks to data, and when 
unexpected data is received, the state machine returns to initial 
state.  

Finally, there is a need to clarify the definition of “No 
signal.” The draft standard says “No Signal means no signal 
detected at receiver inputs.” However, the meaning of “No 
signal” is not clear. TLK2711 has a loss of signal detection 
function, and our prototype uses this function. However, 
Xilinx FPGAs do not have “No signal” detection function. In 
this way, functions depend on the devices. We believe that a 
device-independent definition is needed, or another possible 
option is to not use “No signal”. 

 Because there are unclear points, we could not determine 
the cause of timeout.  The points to clarify are the details of 
state transition and sent/received control words’ accuracy 
during lane initialization. In order to investigate the cause of 
timeout,  we have to add tests and analysis. 

VI. CONCLUSION 

We made a prototype implementing SpaceFibre CODEC in 
FPGA with SerDes-IC TLK2711, and confirmed its behavior. 
First, we determined an issue in initialization through testing 
in Japan. Second, we checked lane initialization and basic 
transmission of frames, by interoperability testing with the 
University of Dundee. As a result of the test, we extracted an 
issue that timeout occurred during the lane initialization. The 
lane initialization may have to be improved, though the 
timeout mechanism should be clarified with additional tests 
and analysis.  
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Abstract— The SpaceFibre protocol, which introduces the 

high-speed serial data-links widely adopted for peripheral 

component interconnect (PCI) express and serial advanced 

technology attachment (ATA), was developed by the European 

Space Agency as a standard protocol to communicate between 

payloads in satellite networks.  It is important to implement and 

evaluate the present SpaceFibre protocol draft to improve the 

protocol. Therefore, we implemented the SpaceFibre Draft-E1 

protocol on a field-programmable gate array (FPGA) and 

evaluated its performance in five points by: (A) evaluating the 

effective data-throughput and latency of packets when the bit 

error rate (BER) on SpaceFibre links varied, (B) analyzing 

latency of packets in each SpaceFibre protocol layer in detail, (C) 

evaluating latency in data-transmission through broadcast 

channels, (D) evaluating latency of virtual channels set to 

bandwidth reservation QoS, and (E) evaluating the 

implementation results on an FPGA, such as the number of 

logics, memory usage, and operating speed. 

We report the results obtained from these evaluations and a 

method to reduce the latency of packets by analyzing these 

results. We also report results from evaluating the method and 

compare it with the SpaceFibre Draft-E1 protocol. 

Index Terms— SpaceFibre, Latency, Throughput, Virtual 

Channel. 

I. INTRODUCTION 

The SpaceFibre protocol newly adapted virtual channels 

(VCs) that play the role of sending and receiving SpaceWire 

packets from several sources to corresponding destinations 

over SpaceFibre links [1, 2]. The VC layer also provides a 

quality of service (QoS), i.e., best effort, priority, bandwidth 

reservation, and time-slot to accommodate difference 

communication demands. Furthermore, the SpaceFibre also 

adapted error-detection and recovery techniques at the link 

level accomplished by adding frame sequence numbers and 

cyclic redundancy check (CRC) checksums to data frames. 

It is important to implement and evaluate the present 

SpaceFibre protocol draft to improve the protocol, especially 

VC and retry layers. Therefore, we implemented the 

SpaceFibre Draft-E1 protocol on an FPGA. We utilized a 

ML507 FPGA evaluation board including one Xilinx Virtex-5 

FX70 and constructed an environment to assess the SpaceFibre 

protocol by using STAR-Fire and SpaceWire USB Brick in 

Figure 1 [3]. In some evaluations, we only use the ML507 

board in back-to-back mode as shown in Figure 2. Our 

implementation has four VCs and an error injector to evaluate 

the behavior of QoS and error recovery in the FPGA. Both the 

encoding and serialization layers were implemented by the 

Rocket I/O provided by Xilinx FPGA. 

Here, we report the results from evaluating effective data 

throughput and latency of packets in section II and a method to 

reduce latency of packets in section III. 

 

 

Figure 1 Evaluation environnement for SpaceFibre protocol 

 

 

Figure 2 Architecture on Virtex5 FPGA 
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II. EVALUATION OF SPACEFIBRE DRAFT-E1 PROTOCOL 

We evaluated the present SpaceFibre Draft-E1 protocol in 

five points by:  

A) Evaluating effective data throughput and latency of 

packets when the BER on SpaceFibre links varies, 

B)  Analyzing the latency of packets in each SpaceFibre 

protocol layer in detail, 

C)  Evaluating the latency in data-transmission through 

broadcast channels, 

D)  Evaluating the latencies of VCs set to bandwidth 

reservation QoS, and 

E)  Evaluating the results from implementation on an 

FPGA, such as the number of logics, memory usage, 

and operating speed. 

 

 The packet length in these evaluations was fixed to 64 

words (1 word = 4 bytes) and the signaling rate on the 

SpaceFibre link was 2.5 Gbit/s. Therefore, the maximum 

throughput was 2.0 Gbit/s since the SpaceFibre protocol adapts 

8B/10B encoding. The length of data transmission link 

(eSATA crossover cable) is about 50cm, and multi-lane layer 

is not implemented. All latencies in this paper are sum of a 

packet transmitting time through SpaceFibre from the output 

VC buffer (VCB) in the transmit side to the input VCB in the 

receirve side shown in Figure 2 and a waiting time due to full 

of the output VCB. 

 

A.  Evaluation of effective data throughput and latency of 

packets 

We first evaluated what influence resending packets due to 

bit error had on data throughput and latency of packets. Figure 

3 shows the average latency of packets when the BER on the 

SpaceFibre link varies. As shown in Figure 3, the average 

latency is equal to 2.72 µs if BER is less than 5*10
-6

.In the 

case input data rate is 95%, the latency rapidly increases when  

BER is more than 5*10
-6

.  In the case input data rate is 65% 

the latency increases when BER is more than 5*10
-5

. Therefore 

we can see the latency depends on input data rate. If BER is 

higher than 4*10
-4

, the link cannot be established because a bit 

error is always occurred when data frame size is 64 words 

(2048 bit = 2560 bit at the SpaceFibre link) in any input data 

rates. If multiple VCs are operated, another latency by QoS is 

added to this latency. The detail analysis of average latency 

2.72 µs is described at the next subsection. 

We also evaluated effective data throughput in the same 

case. As shown in Figure 4, If BER is less than 10
-6

, the data 

throughput is about 1.9 Gbps, which is not equal to 2.0Gbps 

because some control commands (start-of-frame, end-of-frame, 

ACK/NACK, and FCT) are required to transfer data. If BER is 

higher than 10
-6

,
 

the effective data throughput is gently 

decreased. Finally, the effective throughput is 1.34Gpbs, 

which is only 70% of the maximum throughput, if BER is 10
-4

. 

From the above evaluations, not only SpaceFibre link usage 

but also BER should be considered to build a satellite system. 

 

 

Figure 3 Relation between packet latency and bit error rate 

 

Figure 4 Relation between data throughput and bit error rate 

 

B. Detailed analysis of latency of packets in each SpaceFibre 

protocol layer 

The details on latency of packet in each layer of the 

SpaceFibre protocol on both the transmit (TX) and receive 

(RX) sides are summarized in Table 1.  

 

Table 1 Details on packet latency in SpaceFibre layers  

 TX RX 

Virtual channel layer 1.11 µs 0.08 µs 

Framing layer 0.03 µs 0.01 µs 

Retry layer 0.03 µs / *1.95 µs 1.11 µs 

Lane layer 0.03 µs 0.03 µs 

Physical layer 0.32 µs 
*When one resend is occurred  

 

In this evaluation, the latency of physical layer includes 

cable transmission delay and heavily depends on the 

specificaion of Rocket I/O provided by Xilinx FPGA, 

especially, elastic buffer size. This value may be changed if 

another physical layer, like TLK-2711-SP, is applied.  

As shown in Table 1, the total latency is 2.72 µs when 

there is no retry, and the latency increases 1.95 µs every 

resending, which includes the transmission delay of NACK 

command from RX to TX and that of resending data. This time 
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1.95 µs is added to the TX retry layer in this paper since 

ACK/NACK and resending data is generated in the retry layer. 

The only two layers, which are VC layer at TX side and retry 

layer at RX side, occupy 80% of the total latency without 

resending. The time at TX side in VC layer mostly spends to 

store 64 words into the output VCB because the data in the 

VCB are sent to the medium access controller if the data size is 

euqal to or more than 64 words or the data has an end of 

packet (EOP) marker. On the other hand, the time at RX side 

in the retry layer spends to calculate CRC. We will report a 

method to reduce the total latency by making the frame length 

short at section III because these latencies are depend on the 

data frame size. 

 

C.  Evaluation of transmission through broadcast channels 

We evaluated latency in data transmission that was sent 

through the broadcast channel (BC) layer. It is important to 

evaluate the influence on latency since a time-code packet to 

synchronize all equipments on the satellite system sends 

through BC. The length of the broadcast frame is 2 words 

which is shorter than that of the data frame that is up to 64 

words in almost all cases. Therefore, the broadcast frame had 

less influence on BER than the data frame. Table 2 

summarizes the latency and possibility for the broadcast 

frames when BER is 10
-4

.  

Table 2 Latency in broadcast frames in retry cases 

Retries  Latency (µs) Possibility (%) 

0 0.512 99.2 

1 1.440 0.7936 

2 2.368 0.0063 

3 3.296 0.0001 

 

Few broadcast frames are resent in almost all cases as 

Table 2 shows. However, the latency in broadcast packets 

increases three or more times when they are resent. It will 

therefore be necessary to take this latency into consideration 

when constructing a time-synchronized system using the 

SpaceFibre protocol. These evaluation results are for cases 

where no data frames are transmitted. Even if data frames are 

transmitted, the latency in the broadcast frames is considered 

to be the same as that in Table 2, since the broadcast frames 

have top priority for sending and can be inserted into data 

frames. 

 

D.  Evaluation of bandwidth reservation QoS 

There are three parameters, time-slot, priority, and 

expected bandwidth, for each VC as QoS in the SpaceFibre 

protocol (the best effor QoS is considerd as lowest priotiry 

QoS). The time-slot parameter controls whether or not the data 

in the VC is transfered by time. The parameter can support 

time-division transmition used in deterministic networks. The 

second parameter is a priority. This is a simple parameter 

because data in VC with high priority is transfered at first. 

Since the precedence of these two parameters are not changed 

with the usage rate of the SpaceFibre link, we don’t evaluate 

these parameters in this paper. Therefore, we evaluate the data 

latency when the expected bandwidth parameter is changed, 

when the time-slot and the priority parameters are set to same 

values in all VCs, and when two packet generators, that can 

periodically generate specified data frame rate, are connected 

to VC0 and VC1. In this evaluation, each value of expected 

bandwidth is set to the actual bandwidth which is the ratio 

between data signaling rate of the SpaceFibre link and each 

input data rate. Table 3 shows the latency of packets sent from 

VC0 when input data rate of VC0 and that of VC1 are varied. 

 

Table 3 Packet latency of VC0 using bandwidth reservation QoS  

Input data rate (VC1)  

5% 25% 45% 65% 85% 

5% 
2.72 us 2.72 us 2.72 us 2.72 us 2.72 us 

25% 
2.93 us 2.72 us 2.88 us 3.00us  

45% 
2.85 us 2.94 us 2.75 us   

65% 
2.86 us 3.10 us    

Input 

data 

rate 
(VC0) 

85% 
3.02 us     

 

When the total input rate of VC0 and VC1 is less than 

100% of the SpaceFibre link and the expected bandwidth is set 

to the actual bandwidth, the packet latency including the 

latency added by QoS is around 3 µs as summarized in Table 3. 

Latency of VC0 becomes smaller in this region when the input 

data rate of VC0 is smaller than that of VC1. The reason why 

the less expected bandwidth have higher priority when VC are 

ready to send is because data generator produces data 

periodically in this evaluation.  

 

E.  Evaluation of implementation results on FPGA 

The number of primitive circuits used to implement the 

SpaceFibre Draft-E1 protocol are listed in Table 4, where LUT 

is a look-up table with six inputs and one output, FF is a one 

bit flip-flop, and BlockRAM is an 18-Kbit dual-port random 

access memory. All primitive circuits are based on the Virtex-

5 architecture. The size of the virtual channel layer in Table 4 

is where four VCs are mounted. Currently, the data bus on the 

FPGA was 32 bits wide and the operating frequency was 62.5 

MHz for the 2.5Gbps SpaceFibre link. 

 

Table 4 Details on SpaceFibre circuit size 

 LUT FF BlockRAM 

Virtual channel layer (4 VCs) 2510 1840 8 

Framing layer 99 29 2 

Retry layer 2198 1596 11 

Lane layer 389 357 0 

Physical layer 427 488 0 

Total 5623 4310 21 
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III. METHOD TO REDUCE PACKET LATENCY 

A. Algorithm 

As described in Section II.B, packet latency in the 

SpaceFibre protocol is mostly occupied by both the VC layer 

on the TX side and the retry layer on the RX side to buffer at 

least one frame. Data buffering in the retry layer on the RX 

side is necessary to determine if there are any errors in the 

received data by checking CRC and the frame sequence 

number which are located at the end of the frame. However, 

data buffering in the virtual channel layer is not necessary 

when there is sufficient space to send data at the SpaceFibre 

link. We therefore evaluate a method that decides to buffer 

data to the output VCB depending on the condition of the 

SpaceFibre link in two ways; 

 

1. When there is at least one word in the output VCB 

regardless of EOP, the output VCB should notify the 

medium access controller that it has data ready to form a 

data frame. 

2. When the output VCB is permitted to send data, the frame 

length is set to the same value as the number of data in the 

output VCB. However, if there are more than 64 words of 

data in the output VCB, the frame length is set to 64 words. 

 

If there is room to send data at the SpaceFibre link, the 

packet latency can be decreased since the permission for the 

output VCB to send data is quickly provided in the method 

given above. On the other hand, if there is no room at the 

SpaceFibre link, the latency for the method will be same as 

that for the Draft-E1 protocol since the almost all frame 

lengths to buffer data in the method are set to the same value 

as those in the Draft-E1 protocol. The packet latency of the 

method is evaluated at Section III.B. 

However, there is concern about the decrease in data 

throughput caused by increasing in control commands to form 

data frames due to divide a packet into some short frames. 

Therefore, the data throughput with the method and that with 

the Draft-E1 protocol are compared in Section III.C. 

The implementation also can be slightly reduced because 

the method does not take into account the number of EOPs in 

the output VCB. On the other hand, the current specification 

needs EOP detectors at input and output in the output VCB to 

manage a number of EOPs. 

 

B. Evaluation of latency with this method  

We implemented the method into the evaluation board to 

evaluate the reduction in latency. Latency with the method and 

that with the present Draft-E1 protocol are compared in Figure 

5 when only VC0 send a data. Figure 5(a), (b), and (c) plot the 

latencies of packets through VC0 where each input data rate is 

5%, 45%, and 85%, respectively. 

As Figure 5(a) and (b) show, the latency with the method is 

about 0.7 µs, which can be decreased 74% from that of the 

Draft-E1 protocol. The method achieves a maximum  

 

 
(a) VC0 data rate = 5% 

 
(b) VC0 data rate = 45%  

 
(c) VC0 data rate = 85% 

Figure 5 Comparison of latency in one VC transmission 

 

reduction in the latency in these cases because there is space 

for the increase in control commands at the SpaceFibre link.  

Latency with the method is 1.1 µs, which is decreased 60% 

from that of the Draft-E1 protocol, for the large input data rate 

plotted in Figure 5(c). The reason latency is reduced less is 

because the frame length cannot be shorten. When BER is high 

in this case, the latency with the method rapidly increases as 

with the Draft-E1 protocol because the effective bandwidth 

decreases as shown in Figure 4. Finally the latency with the 

method is equal to that with the Draft-E1 protocol when there 

is no room in the SpaceFibre link. 

Latency with the method and that with the present Draft-E1 

protocol are compared in Figure 6 when both VC0 and VC1 

send a data. Figure 6 (a) and (b) plot latency of packets 

through VC0 where each input data rate is 5% and 45% 

respectively when the input data rate of VC1 is 45%. 

The lateny with the method is 0.7µs when the total input 

data rate is 50%,as shown in Figure 6(a), and 1.6us when total 

input data rate is 90% as shown in Figure 6(b). Therefore the 

method can reduce the latency when there is room to shorten 

frame even if packets are transmitted from multiple VCs. 
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(a) VC0 data rate = 5%, VC1 data rate = 45% 

 
(b) VC0 data rate = 45%, VC1 data rate = 45% 

Figure 6 Comparison of latency in transmission with two VCs 

 

C. Evaluation of data throughput with this method   

Our evaluation of data throughput is plotted in Figure 7 

that compares the method and the present Draft-E1 protocol. 

Figure 7(a) plots throughputs for data transmission from only 

VC0, in which each input data rate is 5%, 45%, and 85% 

respectively. We can see that effective data throughput with 

the method is nearly equal to that with the Draft-E1 protocol 

because there is sufficient space in a SpaceFibre link even if 

the numbers of control commands are increased. The same 

thing can be said for packet transmission from two VCs. 

Figure 7(b) compares the data throughputs of VC0 for the 

method and Draft-E1 where the input data rate of VC1 is set to 

45% and that of VC0 is set to 5%, 45%, and 85% respectively. 

We also can see the effective data throughput with the method 

is nearly equal to that with the Draft-E1 protocol even if the 

total data rate is over 100%. 

The results from these evaluations indicate that the method 

can reduce latency of packet transmission when there is a great 

deal of vacant space in the SpaceFibre link. Latency with the 

method is 1.6us which is decreased 40% from that of the 

Draft-E1 protocol when total input data rate is 90%. 

Furthermore, we confirmed that data throughput with the 

method was also almost same as the Draft-E1 protocol. 

 
(a)  VC1 data rate = 0 %  

 
(b) VC1 data rate = 45% 

Figure 7 Comparison of data throughput  

 

IV.  CONCLUSION 

We implemented and evaluated the SpaceFibre Draft-E1 

protocol. The results from evaluations indicated that the 

average latency of packets increased rapidly when BER was 

above 5*10
-6

 and the maximum data throughput decreased 

30% when BER was 10
-4

. We also found that packet latency 

transmitted through the virtual channel was mostly caused in 

the virtual channel layer on the TX side and the retry layer on 

the RX side due to at least one frame of data being buffered.  

We therefore found that a new method could reduce packet 

latency by changing the method of determining the frame 

length in the virtual channel layer. The latency with this 

method can be reduced 74% from that with the Draft-E1 

protocol because the method can utilize vacant space in the 

SpaceFibre link effectively. We confirmed that the packet 

latency with the method can be reduced even if there is slightly 

space in the SpaceFibre link and the throughput of the method 

is nearly equal to the Draft-E1 in any input data rates. 

 

REFERENCES 

[1] Steve Parkes at el, “SpaceFibre Standard Draft E1,” University 

of Dundee, 28th Sep. 2012. 

[2] ESA-ESTEC, “SpaceWire,” ECSS-E-ST-50-12, 31 July 2008. 

[3]  Virtex-5 FPGA Family, “http://www.xilinx.com/”, Xilinx Inc. 

0

0.5

1

1.5

2

BER

T
h
ro

u
g
h

p
u

t 
(G

b
p

s)

Draft -E1 Our met hod

VC0 dat a rat e = 85%

10-6 10-5 10-4

VC0 data rate = 45%

VC0 data rate = 5%

0

0.5

1

1.5

2

BER

T
h
ro

u
g

h
p

u
t 

(G
b

p
s)

Draft-E1 Our method

VC0 data rate = 85%

10 -6 10 -5 10 -4

VC0 dat a rat e = 45%

VC0 data rate = 5%

0

1

2

3

4

5

BER

L
a
te

n
cy

 (
u
s)

10-6 10-410-5

Draft-E12.72us

1.56us Our method

0

1

2

3

4

5

BER

L
at

e
n

c
y

 (
u

s)

10-6 10 -5 10-4

Draft-E1
2.72us

0.74us Our method

275



Test & Verification (Short) 

276



SpaceWire Interoperability Characterization 
Test & Verification, Short Paper 

G. Fernández Berzosa, P. Rodríguez Perochena, A. Pérez Gómez, R. Regada Álvarez, L.R. Berrojo Valero, L. 
Basanta Alonso. 

Digital & Detection Product Line 
Thales Alenia Space España 

Madrid, Spain 
gonzalo.fernandezberzosa@thalesaleniaspace.com, pedro.r@thalesaleniaspace.com, alberto.perezgomez@thalesaleniaspace.com, 

raul.regadaalvarez@thalesaleniaspace.com, luis-rafael.berrojovalero@thalesaleniaspace.com, 
luis.basantaalonso@thalesaleniaspace.com 

 
Abstract—The generalization of the SpaceWire protocol 

utiliz ation on different space systems has led to the emergence of 
a large variety of software/hardware components and tools from 
several different developers. A key point is to evaluate the 
interconnectivity between all these elements to avoid the risk of 
future problems on the integration phases of any spacecraft 
project. Thus, TAS-E has made an effort to develop a complete 
test and characterization system including various logic SpW 
VHDL cores, one specific ASIC and commercial debugging tools. 

Index Terms— SpaceWire, Interconnectivity, Star Dundee, 
Bepi Colombo, Goddard, SMCS332SpW, GRSPW. 

I. INTRODUCTION 

It is a fact that each instrument or equipment composing 
any spacecraft, however small, is designed and manufactured 
by several different developers. This segregation makes the 
integration task one of the most critical points of all the 
existing phases in a project and thus, any possible risk must be 
evaluated and checked on the earlier phases of the design (if 
possible, before the final architecture definition). 

Facing low level interconnectivity problems at the 
integration phase is not an option since the maturity of the 
equipments at this point typically does not allow any 
modification without involving a costly redesign of the 
hardware architecture of the system. 

In the frame of the development of the next generation of 
Iridium satellites constellation, TAS-E was asked to provide 
the necessary support and to perform the required tests to 
evaluate with enough anticipation the correct interconnectivity 
between some equipments composing the satellite’s payload. 
Specifically, the architecture to evaluate is composed of four 
equipments that are being developed by different companies 
with their respective headquarters located on different 
countries. The interconnection between these equipments is 
based on simple point-to-point SpaceWire links, and to 
implement these links, each developer has made use of a 
different solution. 

On the frame of this support project, TAS-E decided to 
expand the test cases as much as possible to create a reference 
for future projects expecting to integrate several equipments 
with different SpaceWire components. 

Due to the different nature of all the elements tested 
(VHDL IP, ASIC or external equipments) different kind of 
tests and interconnection architectures have been performed. 
The aim of this paper is to describe the parameters and 
conditions of every test conducted. 

II. EVALUATED ELEMENTS 

The interoperability tests performed by TAS-E have 
covered, on different ways, the following elements: 

• Star Dundee SpaceWire CODEC IP: VHDL code 
embedded on a Virtex5 FPGA. 

• Bepi Colombo SpaceWire IP: VHDL version of the 
core developed by TAS-I in the frame of the Bepi 
Colombo mission embedded on a Virtex5 FPGA. 

• Goddard SpaceWire IP: NASA IP core tested directly 
on a EM equipment composing the Iridium satellite 
payload. 

• Atmel AT7911 (SMCS332SpW): this ASIC provides 
three SpaceWire interfaces to an external processing 
device. 

• Gaisler GRSPW core: evaluated within the GR-
RASTA system which provides, among other 
interfaces, 3 independent SpW links (RASTA 101 
configuration). 

Star Dundee’s SpW laboratory cables have been used to 
interconnect every link. Also an external Link Analyzer from 
the same developer has been used to check the correct protocol 
implementation, to analyze the data transmissions and to inject 
errors over the links. This device has become a key element to 
perform a complete and fast debug on any SpaceWire link 
implementation. 

III.  SPACEWIRE CHARACTERIZATION PLATFORM 

The main element composing the evaluation system is the 
‘SpaceWire Characterization Platform’, a board developed by 
TAS-E including, among other elements, the following items: 

• Virtex5 FX130T: reconfigurable FPGA embedding the 
SpW VHDL IPs to be evaluated. It is also in charge of 
controlling the AT7911 SpW ASIC and providing all 
the necessary interfaces to access the system via an 
external controller (typically a PC). The internal design 
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Fig. 1.  Testbed configuration for the interoperability project. 

Fig. 2.  SpaceWire Characterization Platform diagram and board overview. (Bc: Bepi Colombo IP, SD: Star Dundee IP) 

of the FPGA is based on an AMBA bus surrounded by 
all the necessary interface controllers and logic cores to 
govern all the elements present on the board.Atmel 
AT7911 (also known as SMCS332SpW):  this device 
provides an interface between three SpaceWire links 
and a data processing node.  The processor interfaces 
are straight connected to the V5 FPGA allowing 
controlling the device independently or via an external 
system (user PC). 

• External interfaces: Ethernet and serial links are 
available to access the system via an external 
controller, typically, a common personal computer. A 
simple PC application has been developed to provide a 
graphic user interface to control every SpaceWire link 
and execute automated tests.  

• On board memory: a total amount of 512MB DDR 
SDRAM memory is available and accessible to the 
AMBA bus within the FPGA. 

• General purpose IOs: several interfacing elements are 
included on the board to interact with the evaluation 
system. Also a mezzanine board has been developed to 
access all the FPGA spare pins allowing the expansion 
of the system for future implementations. 

• External/Internal LVDS drivers: Another point to be 
evaluated on the frame of the project was the usage of 
the internal Virtex5 FPGA LVDS drivers to generate 
the differential data-strobe signals. Thus, the 
evaluation platform was designed to allow the 
selection between external and internal drivers for each 
link embedded on the device. This method allowed 
checking the correct operation of the FPGA drivers to 
implement the protocol without needing to add any 
external component. 

IV.  START DUNDEE AND BEPI COLOMBO IP CORES 

EVALUAT ION 

Integrating the different SpaceWire IPs on the platform 
FPGA is the most flexible testing solution among all the 
different configurations that has been implemented. The 
possibility to configure every parameter with no restrictions 
allows performing a complete characterization of the link on 
different situations and conditions. Also, the FPGA 
configurability allows implementing further application layers 
attached to the interfaces to evaluate specific architectures (as 
example, to serve as simple EGSE). 

278



Link 
Analyzer 

Control 
PC 

reset 
burst 

SpW Char. Platform 

SpW 
core 
#2 

SpW 
core 
#1 

Several instances of both IP cores have been embedded into 
the platform FPGA and a custom PC application has been 
developed to provide a user interface to control every link 
allowing their manual configuration or performing more 
complex automated tests. Due this flexibility different kinds of 
tests were performed: 

A. Interoperability tests 
These tests aim to check the correct interoperability 

between the links from the physical layer up to the packet 
level. A specific application running on the control PC allows 
creating custom transmission/reception tests with several 
different parameters: 

- Link speed: transmission and reception speeds can be 
individually set for each link. Several tests covering 
the standard range from 2Mbps to 200Mbps were 
successfully executed.  

- Data content: packets are completely customizable 
including its address value, the data content (random, 
constant, or ramp) and the size.   

- Number of packets and delay: the number of packets 
composing the data flow is specified by the user as 
well as the transmission delay between packets. 

- Number of iterations: dividing the tests into different 
iterations allows executing long tests without system 
overflow issues. For each iteration, the transmitted and 
received contents are compared and evaluated. 

A large number of tests combining above parameters have 
been performed and no error has been detected on any case.  

B. Robustness tests 
The purpose of these tests is to evaluate the robustness of 

the links when subjected to hot resets. Once the link is 
established, an automated burst of resets is applied on one side 
of the link with a configurable interval to check the 
reconnection on the different status phases of the protocol. 

TABLE I.  ROBUSTNESS TESTS PARAMETERS 

Resets Interval Protocol state 

50 1 us Error Reset 

50 10 us Error Wait 

50 25 us Run 

50 1000 us Run (with data flow) 

Fig. 3.  Robustness test configuration 

The external link analyzer not only has been used to check 
the correct reconnection process but to inject disconnect errors 

over the established link, providing another way to test the 
robustness of the link. 

As result, no reconnection problems were detected on any 
of the executed tests. The reconnection timings checked with 
the link analyzer were coherent with the standard on every 
case. 

C. External/Internal drivers evaluation 
The usage of external or internal drivers to implement the 

signal layer made no difference in terms of interoperability for 
every link. This allows the system designers to choose the most 
appropriate solution for their architectures, either decreasing 
the external component population or the FPGA pins 
utilization. 

However, a deeper characterization of the electrical layer 
comparing both solutions is planned. 

V. AT7911 EVALUATION  

The inclusion of the ASIC on the Characterization Board 
allows testing its interoperability with the rest of SpW links 
included on the board and with any other external equipment 
implementing the protocol. 

The device can be supplied with 5V or 3V3, limiting the 
maximum transmission speed to 100Mbps on the second case. 
For the Characterization Platform, the 3V3 configuration was 
used, allowing the following interconnections: 

TABLE II.  AT7911 INTEROPERABILITY 

 SMCS332SpW 

Star Dundee IP 3.125 Mbps to 100 Mbps 

Bepi Colombo IP 3.125 Mbps to 100 Mbps 

 
Transmission and reception tests were executed 

successfully. Also, all the robustness tests performing hot 
resets on the IPs side result on successful reconnections by the 
SMCS332SpW device.  

VI.  GODDARD SPW IP INTEROPERABILITY 

The ITAR condition of the Goddard SpaceWire IP used on 
the Iridium equipments did not allow its inclusion into the 
SpaceWire Characterization Platform. Thus, the 
interoperability tests were performed directly on an 
engineering model (EM) of real equipment belonging to the 
Iridium satellites payload on nominal system conditions (i.e. 
fixed configuration parameters and fixed data transmissions). 
Next matrix summarizes the connection conditions: 

TABLE III.  GODDARD SPW IP EVALUATION  

Payload EM 
 

Goddard IP 

Star Dundee IP 10Mpbs 

Bepi Colombo IP 10Mpbs 

SpW 
Characterization 

Platform 
 SMCS332SpW 10Mpbs 
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Fig. 4.  GRSPW evaluation within the GR-RASTA platform 

The nominal operation of the equipment involves a 
bidirectional data flow of 256 Bytes packets. Assuming that 
this test does not provides a complete characterization of the 
link, the successful synchronization and data transmission can 
be considered enough to accept the correct interoperability 
between the American IP and the European ones. 

VII.  GRSPW INTEROPERABILITY 

GR-RASTA development system has been used to evaluate 
the interoperability between Gaisler’s GRSPW cores and the 
SpaceWire links included on TAS-E’s SpW Characterization 
Platform. The 101 configuration includes a Virtex4 IO board 
providing, among others interfaces, three separate SpW links. 

With this arquitecture following interconnections have been 
evaluated:  

TABLE IV.  GRSPW INTEROPERABILITY TESTS 

GR-RASTA 101 
 

GRSPW IP 

Star Dundee IP 2 Mbps to 200 Mbps  

Bepi Colombo IP 2 Mbps to 200 Mbps 

SpW 
Characterization 

Platform 
 SMCS332 3.125Mpbs to 100Mbps 

VIII.  CONCLUSIONS 

Even known this project was born to serve as support for a 
specific external project, TAS-E has made an effort to expand 
the test cases and the elements evaluated to create a reference 
to be used in the future by system designers expecting to 
integrate equipments with different SpaceWire components 
composing their interfaces. 

As final conclusion, a succesfull interoperability between 
all the elements evaluated can be assumed. The SpaceWire 
Evaluation Platform has result a suitable evaluation system for 
VHDL SpaceWire components and a flexible platform to test 
future cores or protocols based on this kind of interfaces. 
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Abstract—MOST (Modeling of SpaceWire Traffic) is a 
representative and powerful SpaceWire traffic simulator 
designed to support conception, development and validation of 
SpaceWire networks. Its recent improvements have targeted 
simplification and performance enhancement while still being 
used for sizing the SpaceWire networks of multiple TAS 
missions. This presentation will focus on its current capabilities 
and how they were employed on real use-cases then will present 
the new improvements brought to MOST. 

With the increasing complexity of SpaceWire networks 
embedded on board satellites and the development of SpaceWire 
standards and components, this simulator tool proves itself more 
and more useful. 

Index Terms—SpaceWire Networks, Simulation, OPNET, 
MOST, Design, Traffic analysis, Performance assessment, 
Failure injection, FDIR, Protocol testing 

I. INTRODUCTION 

MOST offers the possibility to build SpW network models, 
selecting and configuring SpW components, simulating high-
level applications (FDIR for instance) and to test designs 
without waiting for HW testing on Avionics benches: 

• It allows keeping control on traffic load and identifying 
weak parts of the network topology, 

• It gives load margins and traffic performances (end-to-
end delays, buffers sizing), 

• It simulates many SpaceWire failure cases and gives 
the possibility to run various FDIR scenarios, 

• It allows decreasing design risks and securing planning 
thanks to early verification, 

• It allows testing the impact of change of Node or 
Switch behavior to help assessing the criticality of a 
supplier’s non-compliance which can occur during any 
satellite development phases. 

MOST has been developed as a library of OPNET 
Modeler® (Open NETwork modeler) in version 16.0. This 
object-oriented software allows SpW devices configuration 
thanks to a set of attached attributes. Its graphical editor 
provides a full set of possibilities to display and analyze 
simulation outputs. 

Two versions of MOST currently exist: one early version 
which has been intensively used by Thales Alenia Space to 

make its internal simulations and including a wide SpaceWire 
components library: MOST v1.4. Another version is currently 
under development and brings many enhancements: MOST 
v2.2. Both versions will be presented in this document with a 
focus on the latter. 

II. FROM MOST V1.4 TO MOST V2.2 

MOST is the result of continuous developments efforts 
performed since 2006: first as internal Thales Alenia Space 
development, then with support of ESA to bring MOST to an 
operable stage through SpaceWire library development, 
validation with representative test cases (scientific mission and 
robotic mission), and finally cross-validated with real 
hardware. 

The progressive stages of development of MOST v1.4 
followed the protocol stack of the SpaceWire standards: 
Physical level, Character level, Packet/Network level then User 
layer for SpW (PID, RMAP, PTP,…) and was internally 
developed accordingly as depicted in the following figure: 

This brings a highly modular structure managed through 
finite-state automates which was very convenient during the 
initial SpaceWire CODEC development phase at the cost of 
additional OPNET processing time for automates processing. 
This first development generated MOST v1.4 which was 
delivered to ESA by end of 2011 and was used, for instance, by 
ESA to analyze the Bepi-Colombo SpaceWire-based payload 
Command & Control network and by TAS for the MTG 
SpaceWire network along with other TAS missions. 
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MOST v1.4 includes components developed according to 
some specific SpW component datasheets: the SpW-10X 
switch with GAR mechanism and round robin for priority 
management, the SMCS116SpW, the SMCS332SpW, the 
RTC. This MOST library has also been enriched with generic 
nodes fully representative of the SpW standard and including 
protocols building blocks such as RMAP, STUP and CPTP. 

In parallel to the TAS simulation activities and continuous 
MOST v1.4 improvements with the addition of many FDIR 
functionalities (including dynamic reconfiguration of switching 
table through RMAP messages), ESA started the development 
of an experimental branch of MOST (v2.1). This development 
aimed at improving the usability of the tool by merging the 
physical, character and packet/network layers in a single SpW 
CODEC layer and at allowing the construction of protocol 
stacks as depicted in the following figure: 

This new architecture had the advantage of providing a 
clearer view on the atomicity of the SpaceWire elements: one 
SpaceWire CODEC including the Physical, Character and 
Packet/Network levels developed in C-code instead of 
automates, then PID, RMAP or CPTP elements connected 
together through OPNET Modeler® exchange links. MOST 
v2.2 currently under development by TAS took as input this 
new architecture with the aim to, keep the advantages of the 
ESA solution while adding all features from MOST v1.4. 

III. MOST V2.2 DESCRIPTION 

MOST v2.2 targets a release to the SpaceWire community. 
In that respect, the library has to be robust and easy enough to 
be used not only by its developers. This has been at the heart of 
the development undergone since end of 2012.  

First of all, this new MOST library includes some new 
highly generic components to allow designing networks with 
very generic behaviors. Each of these generic components is 
made of multiple building blocks and shares a common 
building block with all the others: the SpW CODEC which 
fully complies with the ECSS-E-ST-50-12C SpaceWire. This 
CODEC building block can be tuned by the MOST user 
changing a set of parameters available in the OPNET 
Modeler® user interface: 

• Link Enabled to enable/disable a port, 
• Autostart is used to enter in Ready mode, node does 

not send Null characters but waits for Null characters 
to switch to Started mode, 

• Link Start is used to enter in Started mode (sends Null 
characters). This attributes should be set to disabled if 
Autostart is set to enabled but MOST accepts both, 

• TX Data Rate: this value corresponds to the physical 
transmission rate of the SpaceWire link, 

• RX Buffer Size, this value represents the size of the 
CODEC reception buffer used to send the right number 
of FCT, 

• Show NULL Messages allows to display NULL 
messages on SpaceWire link, 

• Timer Disconnect is the time at which the CODEC 
disconnects its SpaceWire link (FDIR), 

• Timer Parity Error is the time at which the CODEC 
simulates a parity error on the next characater received. 
This Error causes a Disconnect of the SpaceWire link 
(FDIR), 

• Delay For Disconnection After Parity Error is the time 
between the detection of a Parity Error and the 
disconnection of the SpaceWire link (FDIR), 

• Debug Level with 4 different values corresponding to 
the level of details on the internal CODEC behavior to 
print in the Console 

Three components are currently implemented in MOST 
v2.2: a Native Node, a Generic CPTP & RMAP Node, and a 
Generic Switch. 

The Native Node is a very simple component, 
implementing a SpW CODEC and a generic User Application. 

The User Application of the Native Node manages the 
SpW CODEC as a packet handling level which can be seen as 
a higher level from the ECSS-E-ST-50-12C point of view. It 
handles the TICK_IN & TICK_OUT interfaces and the 
exchange of bytes with the CODEC. It provides packet 
management: packet generation and packet reception. To 
support this feature, it implements an input buffer to assemble 
the bytes received from the CODEC before using it, and an 
output buffer to send byte per byte their content to the CODEC. 
It is configurable through the following parameters: 

• Timecode Master (Enabled/Disabled) defines if the 
Node can issue Time-Codes, 

• Timecode Interarrival Time is the period of Time-
Codes emission, 

• Time Code Start / Stop Time is a time defining when 
the Time-Code service is enabled (respectively 
beginning and end), 

• Debug Level with 4 different values corresponding to 
the level of details on the internal Native Node User 
Application behavior to print in the Console, 

• Packet Type is an integer between 0 and 98, this 
parameter allows to identify the packets sent by the 
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Node so that OPNET can compute its specific End-To-
End Delay, 

• Cargo Size is the size of the packets sent by the 
application to the CODEC, 

• SpW Packet Interarrival Time is a waiting time 
between each packet sent by the Node, 

• SpW Destination Address defined the destination of 
the packet. MOST accepts logical and physical 
addressing, 

• Packet Generator Start / Stop Time is a time defining 
when the Packet generation service is enabled 
(respectively beginning and end), 

• SpW Packet Deadline is the maximum time a packet 
can take to cross the network from its source to 
destination. The destination Node computes the real 
end-to-end delay and in case it is higher than the 
specified value, generates an error in the OPNET 
console. 

The figure here-below provides an overview of the Native 
Node MOST architecture with a Register for Time-Count 
storage: 

As it can be seen, the Generic CPTP & RMAP Node is 
more complex; it includes the implementation of PID protocol 
(ECSS-E-ST-50-51C), RMAP (ECSS-E-ST-50-52C), CPTP 
(ECSS-E-ST-50-53C) and a generic User Application on-top of 
each of the CPTP and RMAP protocol layers: 

The Network/Data Layers Interface is a layer introduced 
for direct management of the SpW CODEC interfaces 
including time-codes handling and exchange of bytes with the 
upper-layers, it also performs the PID check on the received 
packets to route the packet to the relevant upper-layer protocol 
between RMAP and CPTP. To do so, this layer implements on 
the top-down direction an output buffer to assemble the packets 
from the data received from the CPTP and the RMAP blocks 
before sending their bytes one by one with a FIFO process and, 
on the bottom-up direction, transfers the bytes from the 
CODEC to one of the protocol layers depending on the PID 
information. CPTP and RMAP modules implement the 

protocol part of each standard: packet formatting according to 
each protocols. Their respective User Applications implement 
a reception buffer and manage the actions related to the packet 
content analysis. 

For the Native Node as well as for the Generic CPTP & 
RMAP Node, the embedded User Application basically 
perform packet sending and consumption whatever their actual 
content. The RMAP User Application is more advanced; it 
allows sending a request which is pre-configured by the MOST 
user (allowing for instance to configure a switch configuration 
table). The format of this request is checked at receiver level to 
determine its effect (for example: READ, READ-WRITE, 
READ-MODIFY-WRITE), or simply discard in case of invalid 
request. 

The Generic CPTP & RMAP node can be configured 
through a similar set of parameters than the Native Node with 
some additional features: 

• Network/Data Layers Interface specificities: 
• NDLI Emission Buffer Size is the size of the 

packet emission buffer, 
• NDLI Local address is the logical address of a 

Node, this value shall be comprised between 32 
and 254. It is optionally used to check the received 
packets address and discard invalid packets, 

• NDLI Local address Check, this value 
enables/disables the address check, 

• CPTP & CPTP User Layers specificities: 
• CPTP packet EEP Status allows to end a packet 

with EEP (value = 1), by default all packets are 
ended with EOP, 

• CPTP Elephant Message Size: this parameter 
defined the size of an elephant packet, 

• CPTP Elephant Message Destination Address, 
• CPTP Elephant Message Start Time is a time 

defining when the elephant message is sent, 
• CPTP Reception Buffer Size: this size shall be 

greater than the biggest packet received, 
• CPTP Service Rate sets the rate at which packets 

are destroyed by the application 
• RMAP & RMAP User Layers specificities: 

• RMAP Command Value is the content of a RMAP 
command to be transmitted, 

• RMAP Service Rate sets the rate at which packets 
are destroyed by the RMAP application, 

• RMAP Key is the value of local key for compare 
with RMAP request, 

• RMAP Reception Buffer Size: this size shall be 
greater than the biggest packet received, 

• RMAP Reply Delay is the delay between the 
reception of a request and the creation of its reply, 

• RMAP Local Address is the local address used to 
send a reply and shall be set between 32 and 254, 

• RMAP Reply Packet Type is the packet type use 
for reply packet, this value shall be an integer 
between 0 and 98 
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The Generic Switch is a 32-port (31 external ports, plus 1 
connected to a configuration port) Switch configurable either in 
Static Mode (no reconfiguration on the initial table) or in 
Dynamic Mode (taking into account RMAP messages to 
change the routing table). It is able to perform Group 
Adaptative Routing and message priority management. 

As it can be seen on this figure, the Generic Switch 
includes 31 SpW CODEC connected through a switching 
matrix that implements the SpW Network level. This matrix 
can switch packets from a port to another including 
configuration packets to be handled by a local RMAP User 

able to receive and interpret the requests and to reconfigure the 
matrix dynamically. 

The routing switch building blocks can be configured 
through the following additional set of parameters: 

• Watchdog Timer (Enabled/Disabled): protects the 
network of elephant messages. If the time taken to 
transmit a message is higher than the timeout value, the 
packet will be destroyed automatically in the switch 

• Timeout of watchdog timer, 
• Switching Table to configure the Switch (including 

header deletion capability, priority and one or more 
output ports per logical address for GAR). 

Apart from the RMAP reconfiguration requests, the RMAP 
& CPTP User Applications implement currently very generic 
behaviors based on data generation (with selection of size, 
address, periodicity, emission buffer sizing) and data 
consumption (reception buffer sizing, application service rate). 
These basic settings can be refined through the use of 
parameter files (“gdf” files) which allows configuring for 
instance a non-periodic data generation sequence or a packets 
sequence of different lengths, with different destination 
addresses, ended with EEP/EOP, etc... However, no special 
action is taken pending on the packet content. This kind of 
behavior is related to upper-level application (PUS for 
instance) and is currently not implemented in MOST v2.2. 
However, a MOST user can implement such functions in C-
code in the RMAP User or CPTP User applications. This has 
already been done successfully by TAS in the frame of 
multiple simulations. 

IV. SOME OF THE MOST V2.2 FEATURES 

MOST v2.2 aims at providing full visibility on SpaceWire 
networks behaviour and provides many ways to configure 
them. Addressing can be either physical or logical, priority can 
be provided as per ECSS-E-ST-50-12C standard as well as 
header deletion. Address check can be performed optionaly at 
receiver level. Moreover GAR and dynamically configurable 
switching tables are implemented in the Generic 32-port 
switch. 

MOST v2.2 allows configuring the links data rates; the 
CODECs reception buffer sizes, the packet emission and 
reception buffers. This has proved very useful to test the effect 
of SpaceWire network congestions over applications and the 
possible loss of packets due to emission buffers saturation. As 
the application does not necessarily consumes incoming 
packets at the speed of its underlying SpW CODEC, a service 
rate has been put in place to simulate the actual data 
consumption capability and provide better representativity for 
network sizing. For instance a Payload Data Hanling Unit 
receiving science packets from a high speed SpaceWire 
network and sending it over a lower speed Radio-Frequency 
Unit or Mass Memory with an intermediate buffering might 
block the network in case of reception buffer saturation. 

Initialisation of the SpaceWire network is also taken into 
account with the simulation of exchange of Null messages, and 
implementation of LinkStart, AutoStart and LinkEnable flags, 
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triggering the corresponding intialisation sequence with the 
final sending of the Flow Control Tokens: 

FCT are implemented and exchanged according to the 
received data characters flow. We can see here-below that on 
the sending direction of the link, a small packet is emitted with 
data characters and an EOP (the “small” ending character), 
while on the reception direction of the link, a FCT is emitted 
after 8 data characters have been sent: 

NULL characters are also taken into account, providing 
realistic time-code propagation jitters and time spacing 
between symbols. These NULL characters can either been 
showed or masked in the simulation with the drawback to 
lengthen the simulation time and results processing as the links 
appears very busy (constant oscillations on the link). Their 
effect is anyway taken into account to compute the sending 
time of the emitted characters so masking them does not impair 
the representativity of the simulation. 

Wormhole routing and the corresponding switching ports 
blocking until end of packet transmission is an important 
aspect of SpaceWire and can be analysed in details using 
MOST: 

We can see on the previous figure the effect of congestion 
on three nodes willing to send packets to a single “Receiver”: 
some data characters are stored in the input buffers of the 
routing switch then, when saturated, the communication is 
blocked until the emission port is free. 

FDIR is a major feature for avionics and data handling 
engineers. In that respect, many events can be triggered in 

MOST, from parity bit error to EEP insertion, elephant packet 
generation, or spontaneous disconnections. 

At last, MOST v2.2 has a clear implementation of the 
SpaceWire protocol stack, providing high flexility to the design 
of SpaceWire networks through the delivery of generic nodes 
and switches including basic applications with possible 
insertion of user-made C-code in identified areas of the generic 
User Application code for more advance behavior 
implementation (PUS or instrument HKTM packets generation 
pending on the reception of a special TC).  

It is also possible to design user-made SpaceWire 
components through the development of specific assemblies 
(for instance a single User Application with multiple 
underlying CODECs) through modifications of the generic 
components using the OPNET interface (for more advanced 
users). This is optimized through the possible re-use of the 
already developed building blocks and has been performed by 
TAS in multiple occasions (for Virtual Channel Multiplexing 
machines, simulation of Masss Memory behaviors, SpaceWire 
couplers with different buffering schemes, etc...). 

This library is scheduled to be enriched in the future with 
specific components existing on the market, for instance the 
10X switch, the RTC, SMCS116SpW and SMCS332SpW as it 
was the case in the former MOST v1.4 version. Other 
implementations could be foreseen on a case-cy-case basis. 

V. CONCLUSION 

MOST aims at enriching OPNET Modeler® with an 
operational SpaceWire library available to the SpaceWire 
community. The recent development performed in the frame of 
an ESA contract extension brings MOST a major step closer to 
this objective. Simplification and modularity enhancement to 
facilitate the design of networks and new protocols are the key 
features driving the current developments. 

ESA own the MOST IPR and intend to release MOST 2.2 
to the SpaceWire community in 2013. Some maintenance of 
MOST 2.2 and improvements will be performed for ESA by 
Thales Alenia Space until October 2014. 
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The SpaceWire Electronic Ground Support Equipment 

(EGSE) is a test and development unit produced by STAR-

Dundee, which simulates instruments or other SpaceWire 

equipment in real-time. The SpaceWire EGSE is configured 

using a simple yet powerful scripting language designed 

specifically for SpaceWire applications. A script is compiled and 

loaded into the EGSE unit using software. Once configured the 

SpaceWire EGSE operates independent of software and 

therefore exhibits real-time behavior. The capabilities of the 

scripting language combined with the real-time operation of the 

hardware make it possible to rapidly mimic real-time behaviour 

of SpaceWire equipment, vastly reducing traditional 

development time and cost associated with writing equivalent 

software in a real-time operating system. The SpaceWire EGSE 

can generate detailed packets in pre-defined sequences at specific 

times and data rates, controlled by state machines and events. To 

integrate with external equipment it has three external input 

triggers and one external output trigger. For additional control 

over the SpaceWire EGSE, a software API is provided that, 

amongst other things, can provide notifications of state changes 

and events. 

Index Terms— Relevant indexing terms: SpaceWire, 

Networking, Spacecraft Electronics, Electronic Ground Support 

Equipment. 

I. INTRODUCTION 

Design of SpaceWire enabled units often require other 

SpaceWire units to be simulated. For example, the 

development of a mass memory unit will require simulation of 

all the instruments that are sending it data. The simulation 

needs to run in real-time resulting in the need of SpaceWire 

interface devices, a computer running a real-time operating 

system, and bespoke real-time software development. The 

SpaceWire Electronic Ground Support Equipment (EGSE) 

aims to provide real-time simulation of SpaceWire equipment 

without the need for designing real-time software. 

The SpaceWire EGSE is a test and development unit 

produced by STAR-Dundee. It is configured using a scripting 

language designed specifically for SpaceWire applications. The 

scripting language can be used to send packets in pre-defined 

sequences at specific times and data rates. Once a script is 

written in which the SpaceWire instrument simulation behavior 

is defined, it is compiled and loaded into the EGSE unit using 

software. When configured the SpaceWire EGSE operates 

independent of software resulting in real-time performance. 

This paper briefly describes the SpaceWire EGSE 

hardware, software, scripting language, capabilities, benefits 

and the current known limitations. 

II. SPACEWIRE EGSE HARDWARE 

The SpaceWire EGSE hardware consists of two SpaceWire 

interfaces for transmitting and receiving SpaceWire traffic, 

four external triggers (three in, one out) for interfacing with 

external equipment, 128MB of memory in which packet 

definitions are stored, two mictor logic analyser connectors to 

show device state and a USB connection to the host PC. The 

status of the SpaceWire interfaces, external triggers and USB 

port are indicated by LEDs. 

 

 

Fig. 1.  SpaceWire EGSE Front Panel 

III. SPACEWIRE EGSE SOFTWARE 

The SpaceWire EGSE software consists of four 

components: a compiler, loader, C API (Application 

Programming Interface) and GUI (Graphical User Interface). 

The compiler is a command line application that is used to 

compile EGSE scripts to configuration files. The loader is 

another command line application that is mainly responsible 

for configuring a SpaceWire EGSE unit using a configuration 

file. The C API software allows users to write their own code 
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# Set the line rates to 200Mbit/s 

config 

 spw_tx_rate(1, 200Mbps) 

 spw_tx_rate(2, 200Mbps) 

end config 

 

# Packet defined with 8 hex 

# bytes followed by EOP 

packet pkt1 

 hex(0A FF 34 C8 11 4D 54 AB) 

 eop 

end packet 

 

# Send “pkt1” 0.5s after schedule 

# starts at 100Mbits/s 

schedule schedule1 @ 100Mbps 

 500ms send pkt1 

end schedule 

 

# SpW link 1 state machine 

statemachine 1 

 # State in which “schedule1” 

 # is executed repeatedly 

 state state1 

  do schedule1 repeatedly 

 end state 

end statemachine 

 

to interact with a SpaceWire EGSE unit. The GUI application 

combines a text editor, for creating and modifying EGSE 

scripts, with much of the functionality provided by the 

compiler, loader and C API including: script compilation, 

EGSE configuration, software event generation, state and event 

notification monitoring and periodic time-code generation. 

 

 

Fig. 2.  SpaceWire EGSE GUI 

IV. SPACEWIRE EGSE SCRIPTING LANGUAGE 

The SpaceWire EGSE is configured using a simple yet 

powerful scripting language that was designed specifically for 

SpaceWire applications. The scripting language can be used to 

send packets in pre-defined sequences at specific times and 

data rates. Dynamic packets are defined using packet and 

variable definitions. The sequence, timing and data rate at 

which packets are transmitted are defined in schedules. The 

current executed schedule is controlled by state machines and 

events. 

 

Fig. 3.  Simple SpaceWire EGSE Script 

A. Packet Definitions 

Packet definitions can consist of data defined in 

hexadecimal or decimal bytes, data imported from file, variable 

references, CRC and checksum calculations, EEP and EOP 

markers and time-code manager instructions. 

B. Variables 

Variables are used to define packets with dynamic data. 

Declared variables can be referenced in packet definitions. The 

value produced by a variable reference is dependent on its type: 

 

 Constant: Value remains the same each time it is 

referenced. 

 Random: Random value each time it is referenced. 

 Increment: Value is incremented by one each time it is 

referenced. 

 Decrement: Value is decremented by one each time it 

is referenced. 

 Rotate right: Bitwise rotate right is performed on the 

variable each time it is referenced. 

 Rotate left: Bitwise rotate left is performed on the 

variable each time it is referenced. 

 CRC: Used to perform automatic CRC calculations. 

This is the RMAP CRC. 

 Checksum: Used to perform automatic checksum 

calculations. 

C. Schedules 

Schedules are used to send pre-defined packets at specific 

times and data rates. The timing of packet transmission can be 

relative to the start of the schedule or relative to the start of the 

previous packet transmission. 

D. State Machines 

State machines are used to control the SpaceWire EGSE 

state. One state machine is defined per SpaceWire interface. 

Each state in a state machine is associated with a schedule 

which is executed when that state is entered. State transition 

statements specify the event(s) on which to transition from one 

state to another.  

E. Events 

Events are used to control the current state of the 

SpaceWire EGSE state machines and therefore the current 

packet generation schedule. The different event types are: 

 

 Software: Transition from one state to another in 

response to events generated from host software. 

 State machine: Raise an event when a state of interest 

is entered. 

 External trigger in: React to an external input trigger 

signal received from other equipment. 

 External trigger out: Generate an external trigger 

output signal in response to an event of interest. 

 Time-code received: React to the receipt of a time-

code on a SpaceWire interface. 
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# Set the line rate of 

# link 1 to 200Mbits/s 

config 

 spw_tx_rate(1, 200Mbps) 

end config 

 

# Define events 

events 

 # Software in event 0 

 swEvent0 = software_in(0) 

end events 

 

# Define packet “image_001” 

packet image_001 

 file(“image_001.ppm”) 

 eop 

end packet 

 

# Define packet “image_002” 

packet image_002 

 file(“image_002.ppm”) 

 eop 

end packet 

 

# Define empty schedule “nothing” 

schedule nothing 

end schedule 

 

# Define schedule “sendImages” 

schedule sendImages @ 100Mbps 

 100ms send image_001 

 200ms send image_002 

end schedule 

 

# Define SpW link 1 state machine 

statemachine 1 

 # Define starting state “off” 

 initial state off 

  do nothing 

  on swEvent0 goto sendImages 

 end state 

  

# Define state “sendImages” 

 state sendImages 

  do sendImages 

  goto off 

 end state 

end statemachine 

 

 

 Time-code transmitted: React to the transmission of a 

time-code from a SpaceWire interface. 

 Received pattern matched: Transition from one state to 

another when the SpaceWire traffic received on an 

interface matches a specified pattern. 

 Link error: React to a link error detected on a 

SpaceWire interface. 

V. SPACEWIRE EGSE EXAMPLE SCRIPT 

The following example script briefly illustrates some of the 

SpaceWire EGSE scripting language (please note that lines 

starting with ‘#’ are comments). Assume there is a requirement 

to simulate a camera that sends two images with a 100ms gap 

between each at a data rate of 100Mbits/s. Please note that two 

images are used in this example to keep the script size sensible 

but this could easily be modified to handle more images. 

Fig. 4.  SpaceWire EGSE Camera Script 

This example consists of a configuration block, an events 

block, two packet definitions, two schedules and a state 

machine. Within the configuration block is a command that 

sets the link speed of SpaceWire link 1 to 200Mbits/s. The 

events block contains a software in event named “swEvent0” 

associated with software event 0. A packet named 

“image_001” is defined containing the data held in the image 

file named “image_001.ppm” followed by an EOP. A packet 

named “image_002” is defined containing the data held in the 

image file named “image_002.ppm” followed by an EOP. A 

schedule named “sendImages” sends the two image packets, 

“image_001” 100ms after the schedule starts and “image_002” 

200ms after the schedule starts at a data rate of 100Mbits/s. An 

empty schedule named “nothing” does nothing. A state 

machine for SpaceWire link 1 contains two states named “off” 

and “sendImages”. “off” is the starting state and executes the 

schedule “nothing”. When software event “swEvent0” is 

detected a transition to the state “sendImages” will occur. The 

state “sendImages” executes the schedule “sendImages” before 

transitioning to the “off” state. 

 

 

 

Fig. 5.  Camera State Diagram 

When this script is compiled and the resulting configuration 

file is loaded into the SpaceWire EGSE, initially nothing is 

transmitted. When software event “swEvent0” is detected a 

state transition occurs and two pre-defined images stored on 

disk are sent as single packets. These are transmitted at 100ms 

intervals at a data rate of 100Mbit/s. The state machine then 

transitions back to the “off” state where nothing is transmitted. 

 

 

 

Fig. 6.  Link Analyser Mk2 Capture of Camera Output 

VI. CAPABILITIES AND BENEFITS 

Thanks to the ability of the SpaceWire EGSE to operate  

independent of software and the scripting language used to 

configure it, using the SpaceWire EGSE it is possible to 

rapidly simulate SpaceWire instruments or other equipment in 

real-time. The SpaceWire EGSE can transmit pre-defined 

sequences of packets consisting of varying payloads with 

accurate timing at specific data rates. The 128MB of memory 

available to the EGSE, in which pre-defined packet data is 

stored, makes it possible to simulate large payloads from high 

data-rate instruments. The SpaceWire EGSE monitors the 

received SpaceWire traffic and can respond to a matched 

pattern, time-codes and link errors. To interface with external 

equipment the EGSE has one output trigger, which can 
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generate a signal in response to a specific event, and three input 

triggers, that allow the EGSE to react to input signals. The 

SpaceWire EGSE supports time-code generation and can act as 

a time-code master. Notifications of state changes and events 

are sent from the EGSE unit to the host software. These can be 

used to monitor and debug the EGSE activity using the 

provided GUI. Alternatively, custom applications written using 

the provided C API can use these for their own purpose e.g. to 

integrate with other equipment which use an alternative to 

SpaceWire. 

VII. LIMITATIONS 

The SpaceWire EGSE scripting language is designed to 

meet the requirements of as many SpaceWire instruments and 

equipment as possible but there will be times where an 

instrument cannot be successfully simulated and traditional 

EGSE software development will be required. The SpaceWire 

EGSE has some limitations that we are aware of. One 

limitation is many of the structures used in the language have a 

finite limit. The number of variables, events, packets and states 

declared and schedule references each have a limit. Many of 

these limits far exceed the requirements of most simulations 

but there may be rare cases where these restrict the ability to 

simulate an instrument in its entirety. Another known 

limitation is the inability to retransmit the contents of a 

received packet. For example, using the pattern match received 

event it is possible to detect an RMAP read command received 

on a SpaceWire interface, however to transmit the read reply 

requires the transaction ID of the received read command. A 

solution to this problem has been identified and is expected to 

be implemented in the near future. 

VIII. CONCLUSION 

This paper has briefly described the SpaceWire EGSE, 

including the EGSE hardware, software and scripting language. 

To demonstrate some of the key concepts of the scripting 

language (link speed configuration, events, packet definitions, 

scheduling and state machines) an example script was shown. 

The capabilities, benefits and known limitations of the 

SpaceWire EGSE were then discussed. 

The compact and powerful nature of the SpaceWire EGSE 

scripting language combined with the hardware’s ability to 

operate independent of software and therefore in real-time, 

make it possible to simulate SpaceWire equipment in real-time 

in little more than a day. This rapid development time makes 

the SpaceWire EGSE an attractive alternative to traditional 

EGSE development.  
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Abstract— SpaceFibre is a new technology for use onboard 

spacecraft that provides point-to-point and networked 

interconnections at Gigabit rates with Quality of Service. 

SpaceFibre carries SpaceWire packets over virtual channels and 

provides a broadcast capability similar to SpaceWire time-codes. 

In order to assist with the development, testing and validation of 

the first SpaceFibre system a SpaceFibre diagnostic interface and 

analyser unit, called STAR Fire, was built by STAR-Dundee.  

This paper describes STAR Fire, the first complete test and 

development solution available for SpaceFibre. STAR Fire has 

two independent SpaceFibre interfaces compliant with the 

SpaceFibre standard, each one with an embedded link analyser 

and multiple very high data rate hardware data generators and 

checkers. The unit can be configured in interface or sniffer mode. 

The sniffer mode is used to monitor protocol and user data 

produced by an external unit passing in both directions along a 

SpaceFibre link, similar to the STAR-Dundee SpaceWire Link 

Analyser. The STAR Fire unit can also be used as a bridge 

between SpaceWire and SpaceFibre links, using an embedded 

router that interconnects some SpaceFibre virtual channels with 

the two SpaceWire ports provided.  

These and other functionalities are easily configured using a 

Graphical User Interface software in the host PC. The user can 

supervise the status of the unit and set the parameters of each 

link, broadcast channel, virtual channel data rate, Quality of 

Service and error injection. The link analyser module decodes 

and shows the SpaceFibre protocol and user data stream which 

can be analysed at character, word or frame level. 

STAR Fire has been designed to support the rapid and painless 

adoption of the SpaceFibre technology within the SpaceWire 

community. 

Index Terms—SpaceFibre, SpaceWire, STAR Fire 

I. INTRODUCTION 

SpaceFibre is a very high-speed serial link designed 

specifically for use onboard spacecraft and to be compatible 

with SpaceWire protocol [1]. The aim of SpaceFibre is to 

provide point-to-point and networked interconnections for 

Gigabit rate instruments, mass-memory units, processors and 

other equipment, on board a spacecraft. SpaceFibre is designed 

to be compatible with the SpaceWire protocol at packet level 

but providing a much higher data rate. 

STAR-Dundee in collaboration with the University of 

Dundee has developed STAR Fire, a complete SpaceFibre 

diagnostic unit configured through a Graphical User Interface 

(GUI) which also provides status information and analysis 

capabilities. Hence, STAR Fire provides a complete 

SpaceFibre test and development solution. 

STAR Fire hardware unit features two independent 

SpaceFibre interfaces compliant with the latest draft of 

SpaceFibre ECSS standard [2], each one with an embedded 

link analyser and multiple very high data rate hardware data 

generators and checkers. Furthermore, STAR Fire unit 

provides two SpaceWire ports and an embedded SpaceWire 

router. It also provides hardware triggering capabilities and the 

ability to access the data of the embedded analyser using two 

logic analyser MICTOR connectors or a PC, by using specific 

software. Additionally, STAR Fire unit allows user update 

through the USB port. In this way, it is easy for users to keep 

track of new developments and functionalities added to the 

design. 

STAR Fire software is based on a GUI that allows the 

configuration of the SpaceFibre interfaces and the use of the 

embedded link analyser. It also controls the parameters of the 

data generators and monitors the status of the data checkers for 

virtual channels and broadcast data. Furthermore, there is a 

trigger module that decodes the SpaceFibre data stream which 

can be analysed using the word or the frame based view. 

II. SPACEFIBRE OVERVIEW 

SpaceFibre high-speed serial link carries SpaceWire 

packets over multiple channels, called virtual channels (VC), 

each one with a defined Quality of Service (QoS) and provides 

an improved broadcast mechanism similar to SpaceWire time-

codes but offering much more capability. SpaceFibre has two 
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types of user interfaces to send data. The VC interface 

comprises a number of virtual channel buffers for sending 

SpaceWire packets and the same number for receiving 

SpaceWire packets. SpaceFibre is compatible with the packet 

level of the SpaceWire standard. This means that applications 

developed for SpaceWire can be readily transferred to 

SpaceFibre. The broadcast interface is designed to send short 

messages of up to 8 bytes with very low latency across the 

network, in a similar manner as the SpaceWire time-codes, but 

providing not only timing distribution but also signalling and 

interrupt services. SpaceFibre currently operates at 10 times the 

maximum data-rate of SpaceWire – i.e. link speed of 2.5 Gbps 

– and can run over fibre optic (up to 100 m) or copper media 

(up to 8 m). 

SpaceFibre provides a completely reliably link with the 

fastest possible error recovery time for transient and persistent 

errors. This is fulfilled with a retry mechanism that guarantees 

reliability in the communications link. This allows recovering 

from transients and persistent errors on the SpaceFibre link. 

The retry mechanism uses the following Fault Detection, 

Isolation and Recovery (FDIR) mechanisms: 

 Notification of data or control information using positive 

and negative acknowledgements (ACKS/ NACKS) 

 Error detection using sequence numbers, 8B10B error 

detection capabilities and CRC codes 

 Automatic resending of data frames, broadcast frames and 

flow control tokens using a Go-Back-N scheme when 

sporadic errors occurs 

 Automatic re-initialisation of the link when an error is 

persistent 

In addition, SpaceFibre provides timely data delivery and 

determinism using a medium access controller that determines 

which channels can send data and in which order. The QoS is 

independently configurable for each VC. Three mechanisms 

can be configured and combined: 

 Priority: provides less latency to virtual channels with 

higher priority 

 Bandwidth allocation: provides a minimum guaranteed 

throughput 

 Scheduling: provides deterministic packet delivery 

These different QoS parameters work together in a 

consistent manner. Hence, it is possible to work at the same 

time with a VC that requires minimum latency for command 

and control operations, a VC with a guaranteed throughput for 

payload data, and a deterministic delivery for packets that need 

to be sent and processed in a specific order. 

III. SYSTEM ARCHITECTURE 

The STAR Fire hardware unit consists of two SpaceFibre 

interfaces (eSATA connectors), two SpaceWire interfaces 

(micro-miniature D-type connectors), four external triggers 

(SMB connectors, three input and one output) for interfacing 

with external equipment and two logic analyser (MICTOR 

connectors) interfaces. The status of the SpaceWire and 

SpaceFibre interfaces is notified by LEDs. The hardware 

design provides, in addition to the SpaceFibre and SpaceWire 

ports, multiple very high data rate data generators, data 

checkers, link analysers and an embedded SpaceWire router. 

The system architecture is shown in Fig. 1. 
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Figure 1 System Architecture 

Each SpaceFibre port contains eight VCs that are arbitrated 

following the QoS requested. The SpaceWire interfaces and 

some SpaceFibre VCs are connected to an embedded 

SpaceWire router as shown in Figure 1. This allows SpaceWire 

packets from SpaceWire interfaces to go into SpaceFibre VCs 

and vice versa. However, in order to achieve the much higher 

data rate of SpaceFibre, the hardware data generators and 

checkers connected to virtual channels 2 to 7 can be used. 

Similarly, each SpaceFibre port also features a broadcast data 

checker and generator. Finally, an RMAP [3] target allows 

accessing to configuration and status registers of the 

SpaceFibre cores and the data generators and checkers. The 

RMAP target is accessed by the software through the router by 

a USB port but can also be accessed through the SpaceWire 

ports. 

IV. STAR FIRE CONFIGURATOR SW AND TRIGGER 

STAR Fire also includes dedicated software developed to 

control and monitor the hardware unit. STAR Fire 

Configurator allows the configuration of the SpaceFibre 

interfaces and the use of the embedded link analyser. It also 

controls the parameters of the data generators and monitors the 

status of the data checkers for both VC and broadcast data. The 

software suite also includes STAR Fire Trigger. This Trigger 

module allows programming the trigger and decoding the 

SpaceFibre data stream. Two different display views for the 

decoded data are offered. Analysis of the data is possible using 

either Word or Frame based view.   

Figure 2 presents a screenshot of the STAR Fire 

Configurator (top) and Trigger windows (bottom). There are 

different regions in the Configurator tool window which 

control the different parameters of the unit.  
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A. Unit 

This region identifies the unit selected. Several units can be 

connected to the same computer and controlled from a single 

Configurator instance at the same time. 

 

 

 

Figure 2 STAR Fire Configurator (top) and Trigger 

windows (bottom) 

B. SpaceFibre Ports 

The two SpaceFibre ports can be controlled in this region. 

The lane status of the port is displayed. The starting mode 

(Start or AutoStart) can be configured. Additionally, the 

initialisation timeout can be controlled for debugging purposes. 

C. Modes 

STAR Fire can be configured in sniffer or interface mode. 

When the sniffer mode is set the STAR Fire is only used to 

analyse the data stream of an external SpaceFibre capable unit. 

On the other hand, in interface mode each SpaceFibre port of 

the unit is a source and a destination of SpaceWire packets 

encapsulated in SpaceFibre frames. Besides, the whole setup of 

a unit can be saved and loaded into different files for faster 

configuration. 

D. Virtual Channels 

Each SpaceFibre interface has eight VCs. Independent data 

generators and checkers are connected to each of the input and 

output of VCs 2-7. The generation rate, packet size and 

working period can be controlled in this region. The generation 

rate specifies the duty cycle of the specified period. For 

example, if a 75% bandwidth and 100 word period are 

selected, the data generator will generate consecutive 75 words 

and remain idle for 25 words before starting to send data again. 

VCs 0 and 1 are connected to an internal SpaceWire router 

and are used to transmit SpaceWire packets from the two 

SpaceWire ports. 

QoS parameters (priority, bandwidth, scheduling) for each 

VC are also configured here. A bar shows the current 

generation rate of the selected channel and an error counter 

verifies that no errors are encountered in the data pattern. 

E. Broadcasts Generator 

Broadcast frames can also be generated. A single broadcast 

or periodic broadcasts can be sent through the SpaceFibre 

selected port with a configurable period. The data received is 

checked by a broadcast checker and the number of errors is 

displayed. 

F. Error Injection 

In addition to the status and control information, it is 

possible to automatically insert random disconnections on the 

selected link or a specific bit error rate in the form of a power 

of 10. This feature is useful when simulating persistent errors 

or bit flip conditions on the line. 

G. Trigger 

The Trigger window allows two operation modes. By 

default the Simple Trigger mode is shown. However, the 

Advanced Trigger mode can be selected in the GUI. This 

advanced mode shall only be used for debugging purposes or 

when using complex setups (e.g. several STAR Fire units 

connected to the same PC, using external trigger signals, cross-

triggering between units, etc.). For the sake of simplicity only 

the Simple Trigger is shown. 

When different units are connected to a PC, the Device 

drop-down list allows selecting the appropriate one. Port 1 

and 2 can be selected for any unit, and also whether the trigger 

analyses the RX or TX side of the selected port. Finally, the 

condition that triggers the unit is selected in the Condition 

drop-down list. Any control word defined by SpaceFibre can 

be selected. The Advanced Trigger offers the possibility of 

triggering the unit not only on words but also on certain events, 

namely, disparity or not-in-table errors, data checker errors, 

etc. This can be useful for analysing specific situations during 

development. Furthermore, the Analyser will show by default 

the RX and TX sides of the selected Port. But the Advanced 

Trigger also offers the possibility of displaying the RX side of 

both ports of the selected Unit instead. 

After setting up the trigger, the Run button activates it. The 

status of the trigger is continuously shown. When triggered, a 

Search Text box allows searching for particular strings in the 

captured data. The row in which the text is found is shown in 

the STAR Fire Analyser window. The data can also be saved 

or loaded, and exported to be analysed in other software if 

necessary. 
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V. STAR FIRE ANALYSER 

The STAR Fire Analyser shows two separate views which 

analyse data captured by the trigger or loaded from a data file 

(Fig. 3). The main window is called the Word Viewer (top 

panel of Fig. 3) and shows the SpaceFibre words received. The 

Word Viewer presents the analysis of data at word level. Each 

SpaceFibre word consists of four 8B10B symbols or characters 

[4]. In the central part of the window the word is decoded, 

sometimes complemented with some additional information 

such as the frame sequence number. Apart from this 

information, the four different symbols composing a word are 

also displayed in the external part of the window. 

 

 
 

 

Figure 3 STAR Fire Analyser: Word Viewer (top) and  

Frame Viewer (bottom) 

The other window is the Frame Viewer (bottom panel of 

Fig. 3) and shows a more compact analysis of the data. The 

received data and broadcast frames of each side is displayed, 

with a separate column for each VC. Note that it is possible to 

have broadcast frames in the middle of data frames, but at any 

particular time selected by a row there can only be one VC data 

frame on each side (as these frames are being multiplexed 

through a single SpaceFibre link). If there is an EOP within a 

data frame it is shown together with the number in bytes of the 

SpaceWire packet that the EOP terminates. This allows a quick 

inspection of the SpaceWire packets travelling through the 

VCs.  

Finally, both viewers share the same row numbers. Thus, 

their view is automatically updated to always show the selected 

row in both windows.  

VI. CONCLUSION 

The STAR Fire diagnostic interface and analyser unit has 

been presented here. This unit can be easily configured through 

a Graphical User Interface providing complete status 

information and analysis capabilities. STAR Fire provides a 

complete SpaceFibre test and development solution. It features 

an internal SpaceWire router which allows connecting two 

SpaceWire interfaces to the SpaceFibre virtual channels. 

Furthermore, STAR Fire also contains embedded data 

generators and checkers which can individually operate up to 2 

Gbps, broadcast generators, and error and link disconnections 

insertion. An embedded analyser allows triggering on certain 

events (e.g. errors or specific data words) and to display and 

store the captured data. These hardware capabilities are 

combined with a software package which provides a GUI to 

control STAR Fire operation and triggering, and also to access 

the analyser with byte, word and frame level views. All in all, 

STAR Fire is a flexible and powerful tool which provides 

support for adoption of the SpaceFibre technology. 
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Abstract—The Solar Orbiter spacecraft data handling and 

instrument communication architecture comprises a SpaceWire 

network. This includes command and monitoring of instruments, 

transfer of data for on-board storage/retrieval and inter-

instrument communication. 

Index Terms—SpaceWire Network, Solar Orbiter DHS, FDIR. 

I. INTRODUCTION  

The European Space Agency’s Solar Orbiter mission is 

designed to carry an extensive complement of scientific 

instruments to the near-Sun environment and generate unique 

insights into the workings of the Sun. While the mission 

presents many challenges, this paper focuses on just one: the 

distribution of data and command packets between instruments 

and the data handling functions of the spacecraft platform.  

The Solar Orbiter payload consists of ten instrument suites, 

each providing scientific data and engineering telemetry data 

for downlink, and requiring command interfaces to the 

spacecraft. In addition, many instruments intend to share 

measured parameters to optimize the scientific return. The 

Spacecraft must support all these data flows. As the downlink 

bandwidth is small at large spacecraft-Earth distances, high 

capacity storage of science data intended for transmission must 

also be provided. 

SpaceWire has been selected as the sole communication 

interface between the payload instruments and the spacecraft, 

building on heritage from the BepiColombo mission. This 

paper gives an overview of the architecture and the design 

choices made in response to the need for inter-instrument 

communication and robust failure handling. 

II. MISSION OVERVIEW 

The Solar Orbiter mission takes the next step in the Sun’s 

observation from space. The mission profile and 

instrumentation enables the exploration of the largely 

uncharted innermost region of the solar system. The selected 

orbit allows observations of Sun from as close as 0.28AU and 

includes perihelion fly-bys that are tuned to the Sun’s rotation 

rate in order to provide a co-rotating vantage point of the Sun’s 

surface.  

The mission focuses on four fundamental questions about 

the interaction of the sun with the heliosphere: 

• What drives the solar wind and where does the 

coronal magnetic field originate?   

• How do solar transients drive heliospheric variability?   

• How do solar eruptions produce energetic particle 

radiation that fills the heliosphere?   

• How does the solar dynamo work and drive 

connections between the Sun and the heliosphere?   

In order to address these questions, the Solar Orbiter 

spacecraft carries then instrument suites that will gather data 

and provide observations of the Sun. The instruments can be 

partitioned into “remote sensing” – which image the solar 

photosphere and the corona in a number of different 

wavelengths – and “in-situ” – which measure key 

characteristics of the solar wind (e.g. particle content and 

magnetic & electric fields from DC to several MHz) at the 

spacecraft location. The in-situ instruments are expected to 

generate a steady, low bandwidth flow of data throughout the 

spacecraft operations. The remote sensing operations are 

restricted to three key phases in each orbit and will typically 

alternate between quiet periods and periods of high bandwidth 

data production. 

The spacecraft will follow a highly elliptical orbit between 

0.28AU and 0.9AU. The orbit is design to incorporate a 

number of Gravity Assist Manoeuvers at Venus which will 

systematically increase the inclination of the orbit with the 

solar equator over the mission life, making the poles of the sun 

accessible to the imaging instruments. The characteristics of 

the orbit mean that the available bandwidth for downlink of 

science data will vary greatly over time and there will be long 

periods when the spacecraft is out of line-of-sight from the 

Earth. For this reason, the spacecraft data handling must 

provide a central mass memory function where data can be 

stored until sufficient downlink resources are available. 

Naturally, the mass memory function must have sufficient 

flexibility to receive data from the instruments according to 

their selected data generation schedules.  

As well as generating data for downlink, there is a 

requirement for the instruments to be able to transfer 

information amongst themselves. These interactions are 

intended to facilitate optimal science return both by allowing 
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measurements to be focused on the most interesting events and 

by ensuring optimal use of the able downlink bandwidth via 

intelligent data reduction.   

The inter-instrument interactions come in two types. The 

first is the transfer of key measured parameters to allow results 

from one instrument to be shared with others in real-time. For 

example, the Magnetometer (MAG) instrument will provide a 

measurement of the magnetic field vectors to the Solar Wind 

Analyser (SWA). SWA measures the velocities of incoming 

electrons. Although it is able to measure a full 360⁰ field of 

view, this cannot be done at high rate. When provided with 

field vectors it is able to focus high rate measurements of 

electron velocities at the most interesting point – along the 

magnetic field lines.  

The second type of inter-instrument communication 

permits one instrument to alert others to specific events, which 

may trigger specific or high rate measurements. Bandwidth 

restrictions would not permit continuous high rate 

measurements, but there are occasions when more frequent 

measurements are particularly desirable. For example, the 

Radio & Plasma Wave (RPW) experiment will indicate the 

detection of an interplanetary shock to SWA (and others). This 

trigger allows the receiving instruments to switch into a so-

called burst mode for the duration of the shock event. 

In addition to supporting messaging between payloads, the 

spacecraft is required to provide a precise time distribution to 

allow multiple instruments to carry out coordinated and 

correlated measurements. 

III. ARCHITECTURE 

SpaceWire has been selected as the sole communication 

interface between each of the instruments and the spacecraft 

data handling subsystem (DHS). It also provides a key 

interface within the DHS itself, between are the On-Board 

Computer (OBC) and the Solid State Mass Memory (SSMM).  

A. Network Requirements 

From the above system description we can identify a 

number of key traffic flows that the SpaceWire network must 

support: 

• Telemetry & science data from instruments to SSMM  

• Telecommands & operational telemetry between the 

OBC and instruments 

• Telecommands & operational telemetry between the 

OBC and SSMM Processor 

• Inter-instrument exchanges (see above) 

• Time Code distribution 

For Solar Orbiter, the average science data rates are 

sufficiently low that a multiplexing of data and TM/TC packets 

is not critical for system performance. The average science data 

rate is driven by the available downlink bandwidth; the 

maximum allocation for any instrument is 20.5 kbps. Further, 

the commanding rate is expected to be low.  

The network must ensure that the message latency – both 

from routing and packet collisions – is low. The primary driver 

on latency is the inter-instrument communication. It will only 

be possible to take full advantage of instrument collaboration if 

the time to transfer triggers and parameters is kept short. 

Naturally, the network architecture must also ensure 

failure-tolerant routing between the various nodes on the 

network. This should include handling of failed links and 

unwanted node behavior. 

B. Nodes 

Before detailing the network implementation, it is useful to 

summarise key aspects of each of the nodes that must be 

supported – the OBC, SSMM, and instruments. 

The OBC (supplied by RUAG, Sweden) is the primary 

computer on the spacecraft and hosts the central control 

software. As well as processing resources, it provides 

reconfiguration electronics, 8 Gibits (EoL) of redundant Mass 

Memory (used for storing platform housekeeping data) and the 

Transfer Frame Generator (TFG), which handles all traffic for 

transmission to the ground. The OBC provides two sets of 

SpaceWire interfaces. One set is associated with the processing 

function and is available for management of the other units on 

the network. The other is associated with the TFG and is 

dedicated to reception of data from the SSMM for downlink. 

The SSMM (supplied by TAS, Milan) provides a central 

Mass Memory of 512 Gibits (EoL) for storage of telemetry 

packets. The storage is available to the instruments for both 

science measurement and housekeeping data. (It is also able to 

accept data from the OBC, but this capability is not utilized by 

the Solar Orbiter system design.) The SSMM is functionally 

partitioned into a Memory Array, which provides the data 

storage; an input function, which routes incoming packets to 

the appropriate memory array locations; an output function, 

which transfers packets from the memory array to the OBC 

TFG; and a Memory Controller, which provides control and 

monitoring.  

The instruments vary in implementation, but typically 

include an instrument controller consisting of a LEON 

processor and accompanying FPGAs. Each instrument is 

required to provide redundant SpaceWire interfaces to the 

Spacecraft, which support both commanding, telemetry, and 

the transfer of science data. It is left open to the instrument 

designers whether these interfaces are each connected to 

separate, cold redundant controllers or whether they are both 

managed by a single controller.  

Many instruments have elected to incorporate large 

memories internally for buffering of science data. This allows 

some flexibility in selection of the data transmitted to the 

ground. For example, an imaging instrument may store a large 

number of image files and only send to the SSMM those 

associated with the most interesting events. This ensures that 

available downlink bandwidth is focused on the most important 

information. The consequence for the spacecraft is that these 

instruments are likely to employ a very low data rate during an 

observation window followed by a high rate transfer once data 

selection is complete. 

The SSMM and instruments all function as packet 

terminals based on the ECSS Packet Utilisation Standard.  
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C. Network Implementation 

The Solar Orbiter SpaceWire network builds on the 

architecture developed for the BepiColombo Data Handling 

Subsystem (under project prime contractor Astrium Gmbh). 

Both missions share the same basic network configuration 

between the Onboard Computer (OBC), Solid State Mass 

Memory (SSMM) and instruments. The differences are limited 

to the number of instruments in each mission and the detailed 

transactions that the network is expected to support. 

When considering the network design, it is important to 

keep in mind the accommodation of the routing function as 

well as the basic topology. There are many possible topologies 

that could support the required data flows, but the final 

selection must map to a hardware configuration that is feasible 

both technically and industrially. For example, an optimal 

theoretical solution might involve a standalone routing box 

near to a group of instrument nodes, but the need to provide a 

dedicated power converter and mechanical housing could 

quickly result in an over-complicated implementation. 

For Solar Orbiter and BepiColombo, the decision has been 

made to accommodate the entire network infrastructure into the 

SSMM alongside the data storage and retrieval. In fact, this is a 

natural choice since all other network nodes already interface 

with the SSMM directly, either for storage or commanding. 

The supplementary function that the SSMM must provide is to 

allow packets from the OBC to be routed through the SSMM to 

the instrument and vice versa. 

The SSMM contains a suite of routers that connect the 

external units to SSMM resources and also allow external units 

to send packets amongst themselves. In this way, packet 

transfer between external units is transparent to the SSMM and 

places no load on the SSMM processing resources. The SSMM 

provides cross-strapping between nominal and redundant 

interfaces by linking routers directly. This reduces the amount 

of cross-strapping needed external to the unit and provides a 

high degree of flexibility. 

All routing in the system is implemented using Logical 

Addressing (with the exception of router configuration 

packets). The same Logical Address is used for both nominal 

and redundant interfaces with external units. This simplifies 

messaging for the OBC and instruments, since it is not 

necessary for them to know which interface is operational 

when constructing SpaceWire packets. 

A simplified depiction of the network architecture is given 

in figure 1. Further details of the SSMM implementation are 

provided in [1]. 

While the OBC has overall responsibility for the system 

configuration, the SSMM handles the low-level configuration 

of the routers. For instance, the OBC can specify a particular 

instrument interface to be used and the SSMM will reconfigure 

the routers as necessary. Similarly, if a router is identified as 

failed, the OBC commands the SSMM to power this 

component down and the SSMM updates the network to ensure 

that packets are still routed correctly. For complex recoveries, 

the SSMM provides commands for low-level configuration. 

D. Protocols 

As noted above, all nodes on the SpaceWire network are 

PUS packet terminals and, hence, data are transferred on the 

SpaceWire links via the CCSDS Packet Transfer Protocol. The 

only exception is the use of RMAP packets sent within the 

SSMM to configure the router ASICs. 

Solar Orbiter and BepiColombo implement the same 

scheme for distribution of the on-board time (OBT). The OBC 

sends a time code each second. The “time count” in the packet 

is in units of 1 second and reflects the current OBT value 

(modulo 2
6
s). On arrival of a time code the receiving unit sets 

the sub-second component of the local time to zero and aligns 

its local seconds count with the value supplied in the time code 

packet. For a full update of the local time of a payload, a 

combination of time code and telecommand packet is used. In 

this case, the TC packet specifies the full OBT to be applied at 

receipt of the next time code.  

IV. INTER-INSTRUMENT COMMUNICATION 

As discussed above, it is important that the Solar Orbiter 

instruments have the ability to communicate with each other in 

real-time and without the need for ground interaction.  

One possible fulfillment of this requirement would be to 

simply allow all instruments to send data directly to each other 

via the SpaceWire network. So, for example, the MAG payload 

could generate a packet containing field vectors and send 

copies of this to the interested instruments. A cursory 

inspection of the architecture outlined will show that the Solar 

Orbiter routing topology has the flexibility to support this. 

However, this approach would not be robust against anomalous 
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Figure 1: SpaceWire network architecture 
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behavior of a single network node. A better solution is to use 

the OBC as a hub for collating & disseminating information. 

That is, the OBC provides a facility for each instrument to 

submit data for distribution; at regular intervals it then 

consolidates the data provided by all instruments and sends a 

single combined packet to all the payloads. 

Two system-level considerations motivate this centralized 

approach. The first is the risk associated with permitting 

payload mode changes that are not managed by the ground or 

the platform (e.g. transition to a measurement burst mode). The 

concern is that such mode changes could impact spacecraft 

performance without warning or opportunity for OBC veto. 

The second is related to spacecraft validation. It is important to 

demonstrate that the whole system can operate in a correct and 

robust way. Clearly, allowing free communication between all 

network nodes will make this validation process highly 

complex, both in analysis of traffic scenarios and in testing. In 

particular, final proving of robustness would not be possible 

until all components are integrated.  

Although the primary motivation comes from the system 

level, a centralized architecture presents a number of benefits 

for the instrument teams as well. To understand these, it is 

useful to note that the proposed approach is strongly analogous 

to the Mediator pattern used in object-oriented software 

engineering and brings with it many of the same advantages. 

Most importantly, use of a Mediator object allows decoupling 

of the system components and reduction of interface 

complexity. For Solar Orbiter the consequences of decoupling 

are that the instruments can be designed with minimal reliance 

on other payload developments. In testing, they can be 

validated with a single, simple interface and do not need to 

consider the interaction of messages arriving from multiple 

sources. Operationally, the source instrument for a trigger does 

not need to know if the recipients are present or operational 

before sending packets into the network; only the OBC needs 

to be available and, as it already has knowledge of the system, 

can distribute information appropriately. Similarly, receiving 

instruments do not need to be aware of the ultimate source of 

data or triggers, or even the interface definition of other system 

components. If an instrument is not operational for some 

reason or changes its interface (rate, format) late in 

development, only the OBC needs to know and the other units 

will be largely unaffected.  

The messaging approach used to support this centralized 

architecture is based around PUS service packet exchanges (see 

figure 2). Each instrument sends a fixed TM packet to the OBC 

at regular intervals. The data in these TM packets are extracted 

by the OBC software and placed in a data pool. The OBC then 

collates the data to be shared from the data pool into a single 

periodic TC packet; copies of this TC packet are then 

distributed to all operational payloads. The rate at which the 

TM and TC packets are transferred can be defined by the 

instrument developers up to a maximum of 8Hz. 

As will be seen below, this periodic messaging between 

OBC and instruments has further advantages for network 

failure detection. It also provides a natural method for 

instruments to be warned of potential spacecraft anomalies: 

When the spacecraft experiences a major anomaly, the OBC 

will halt communications with the instruments and focus on 

essential tasks to save the spacecraft. It is also likely that all 

instruments will need to be powered down in this mode. In 

some cases it may be necessary for an instrument to take action 

before power is removed (for example, closure of a protective 

door). With the scheme envisaged here, the instrument may 

identify an imminent power down by monitoring the incoming 

TC packets used for inter-instrument communications and/or 

Time Code arrivals. When a pre-defined number have been 

missed in a row, it may assume that a problem has occurred 

and a power down should be expected.  It is not important to 

the instrument whether this loss of traffic is due to a controlled 

recovery by the spacecraft software or an OBC hardware issue.   

V. FDIR 

The design of a SpaceWire network and messaging must 

ensure the system can respond to failures and to unexpected 

behaviour of nodes. The experience of Solar Orbiter and 

BepiColombo has clarified a number of problems that must be 

addressed to ensure a robust system. Issues identified in these 

missions include network hardware failures, excessive traffic to 

the DHS units and failures in communication with instruments.  

A. Network failures 

The primary need to ensure a robust network is the ability 

to detect any link or routing failures, isolate the problem and 

reconfigure appropriately. For Solar Orbiter, the detection 

mechanism has two layers. At system level, detection is built 

on the inter-instrument communication protocol. Failure will 

be identified by noting halts in the regular packet transfer. This 

provides a natural way to identify problems in the paths 

between the instruments and OBC. In effect, the regular 

periodic TM packets act as a “heartbeat” for each respective 

source, which the OBC can monitor. Any extended loss of the 

“heartbeat” can be used to identify a potential failure and, if 

appropriate, trigger recovery actions.  

In fact, the “heartbeats” can be used to diagnose the 

location of a failure with some precision. For example, if the 

missing packets are limited to a single source then it is likely 

that there are problems either in the instrument itself or on the 

link between the instrument and the SSMM. Alternatively, if 

the OBC fails to receive packets from multiple nodes then it is 

likely that the problem is in a router common to those nodes. 
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The architecture of the SSMM network is sufficiently simple 

that this will often be enough to localise the problem. 

In addition to the system-level detection, the SSMM itself 

provides a further layer of protection. Since the SSMM 

memory controller has visibility of the key network 

components it can monitor for low-level failures and report 

these to the OBC. For some cases, the recovery can be made 

autonomously (e.g., time-outs due to stalled transfers, see [1]). 

The instruments will also indicate if they do not receive 

expected packets. In particular, if time codes are missing then 

this can be signaled either with a dedicated telemetry packet or 

by setting a dedicated bit in the instrument time field. 

B. Anomalous instrument behaviour 

It is well know, that a so-called “babbling idiot” has the 

potential to compromise operations on a bus or network. With 

a large number of instruments present on the BepiColombo and 

Solar Orbiter networks, we must ensure that one unit failure 

does not threaten the other instruments or even the entire 

mission. 

The feared scenario is that of an instrument sending an 

excessive number of packets into the network either due to a 

failure in the unit or due to a cascade of events resulting in a 

high rate of corresponding TM packets. In some cases this 

behaviour will be relatively benign, with a highly constrained 

impact on system performance and simple recovery. For 

instance, if an instrument sends packets at a high rate to the 

SSMM Memory Array it may lead to some Packet Stores 

filling unexpectedly and loss of science data, but will not 

threaten overall operations. Similarly, packets sent to an 

incorrect logical address may cause a small amount of 

congestion in the network, but will eventually be discarded by 

a switch or node. The critical scenario is when an instrument 

sends an excessively high rate of packets to the OBC. In this 

case, there is a strong possibility that the spacecraft control 

software could become overloaded while trying to handle the 

high traffic volume. For example, if the SpaceWire packet 

handling is interrupt-driven then a high number of small 

packets would lead to a high interrupt rate; processing these 

interrupts could quickly dominate the CPU budget and 

ultimately cause the OBC to crash. Some protection against 

such events can be built into the spacecraft software, but we 

must also incorporate safeguards into network where possible. 

Solar Orbiter and BepiColombo both include guards against 

babbling instruments, but due to other design considerations 

have elected to handle the failure in different ways.  

BepiColombo gives the SSMM the additional role of a 

“gatekeeper” for the OBC traffic. That is, instrument telemetry 

packets are never sent directly to the OBC, but are written to a 

dedicated Packet Store within the SSMM Memory Array. This 

packet store acts as a “cache” for the telemetry packets. A 

separate process in the SSMM then polls this “cache” packet 

store at regular intervals. If packets are present, they are 

forwarded to the OBC, but with a strict limitation on packet 

rate. Configuration of the SpaceWire routers will ensure that 

instrument packets can never be routed directly to the OBC 

(even if there are physical links available for this path). In this 

way, the SSMM isolates the OBC from the instruments. Since 

the SSMM is designed to handle high packet rates into packet 

stores it is unlikely to be affected by a babbling source and, in 

any case, in contrast to the OBC a temporary degradation of 

SSMM performance is not catastrophic. 

In contrast, Solar Orbiter allows the possibility of high 

packet rates arriving at the OBC, but will react to any problems 

by deactivating the SpaceWire link between the OBC and 

SSMM. That is, rather than employing a “gatekeeper” to 

control the flow, the gate is simply closed under excess traffic 

conditions. The link deactivation can be triggered in one of two 

ways: either the software detects the problem and commands 

the hardware appropriately or, if the failure forces an OBC 

reconfiguration, the hardware links are not restarted 

automatically and will only be reactivated when it is 

considered safe. 

As noted above, these different approaches are driven by 

other system needs and are not simply transferable between the 

two. For Solar Orbiter, the caching approach is not viable due 

to the tight latency requirements. The value of the inter-

instrument communication depends on maintaining low 

message latencies throughout the network. If data is buffered in 

a packet store during transfer then the latency requirements are 

quickly exceeded. On the other hand, link deactivation is not 

possible for BepiColombo because the SSMM is used to store 

all of the system telemetry. For this reason, the link between 

the OBC and the SSMM Memory Array must be available at 

all times and especially during disruption of normal operation. 

If the link is lost for a significant period then important 

telemetry data will not be available to ground operations, 

impeding monitoring and, possibly, fault diagnosis. 

C. Loss of packets 

Since SpaceWire does not currently provide a guaranteed 

delivery service, the system operations design must ensure that 

no key events are missed due to packet loss. This is particularly 

important when routing though multiple switches. In a point-

to-point transfer, both of the nodes will be aware of link 

interrupts and, hence, will know when packets have been lost. 

For a network such as the one considered here, an intermediate 

link might fail and cause a packet spill. In this case, one can 

envisage scenarios where neither end of the transaction has 

sufficient information to initiate a retransmission: the sending 

node is unaware of the loss and the need to retransmit; the 

receiving node may receive a partial packet, but partial or 

corrupted packets cannot be evaluated to determine the source.   

The approach taken in Solar Orbiter is to ensure that all 

critical information that requires a reaction by the OBC is 

conveyed via status parameters in cyclic TM packets (e.g. in 

periodic housekeeping packets). Loss of one of these packets 

will only result in a short delay in the recovery action, since the 

next edition of the packet will provide the missing information. 

Non-critical information can be conveyed by a non-cyclic TM 

packet, with the accepted risk that the packet may be lost. 
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Abstract— In order to demonstrate the feasibility of the 

instrument concept the development of a prototype was initiated 

following the submission of the NEAT instrument as a M-class 

mission to ESA. The development is currently supported jointly 

by CNES, CNRS and CEA in France. This prototype relies on a 

fast readout (1000 frames per second) CCD-based camera. The 

CCD is located in the focus of an optical bench to simulate the 

instrument transfer function and thus creates interferogram 

patterns on the detector. The space electronics laboratory of the 

Astrophysics Department of CEA Saclay is in charge of the 

design of the fast CCD camera while the Institute of Planetology 

and Astrophysics of Grenoble is in charge of the optical bench 

design. The functions of the camera are split in two units: the 

front-end electronics encompasses the analog functions and an 

acquisition system for control visualization and archive 

functions. The acquisition system features the new 4 SpaceWire 

to PCIexpress interface board using the SpaceWire CEA IP to 

handle the 160 Mbps camera data rate. In the present paper we 

will describe the acquisition hardware focusing on the SpaceWire 

to PCIe interface board and present the end-to-end performance 

of the acquisition system as well. 

Index Terms—EGSE, Linux, NEAT, PCIexpress, , SpaceWire. 

I. INTRODUCTION 

Since long time ago the Astrophysics Department of CEA 

in Saclay is developing innovative imaging detector systems 

for the astrophysics. These detector systems are primary 

designed to operate aboard satellites but find application in 

ground based astrophysics instruments as well. Detector 

systems are composed of the sensor whose function is to 

convert photon to electron and readout electronics. In turn 

readout electronics is usually composed of a proximity readout 

electronics (the so called cold electronics since most of the 

applications require cooled-down sensor) coupled as closed as 

possible to the sensor and a front end electronics (the so called 

warm electronics) The space electronics laboratory main 

activity is to develop such warm electronics for instruments 

aboard satellites, for ground based instruments and for detector 

test bench as well. Thus we have recently developed 

electronics for the readout of CCD for demonstrators and test 

benches for the forthcoming ESA Cosmic Vision missions 

such as EUCLID, PLATO, ECHO and NEAT [1]. Similarly to 

other applications, astrophysics instruments require more and 

more spatial resolution leading to million-pixel sensors. 

However since astrophysics instruments deal in observing 

mainly faint sources, image integration time are long (up to 

hundreds of second) and consequently output data rate of 

readout electronics remains reasonable. In the opposite the 

NEAT (Nearby Earth Astrometric Telescope) aiming in 

identify and characterize planetary systems close to our solar 

system requires smaller sensors but high readout rates for 

specific observing modes [2]. Indeed instrument is constantly 

switching between a low image rate and high rate image mode 

respectively for star observing and metrology observing. 

Metrology consists in imaging Young’s interference fringes 

and is implemented to measure regularly the telescope 

geometry (split in two parts since the mission relies in two 

satellites in formation flying configuration) in order to achieve 

a localization of the source with a resolution of 10
-6

 with 

respect to the pixel size. To reach such extreme performance a 

large number of photons has to be collected within a shortest 

period of time to limit statistics errors leading to image rate 

beyond 1000 per second.  

The development of the demonstrator electronics has been 

initiated in early 2012 on the basis of previously designed 

cameras. Thus we choose to implement a SpaceWire interface 

between the front-

end electronics and 

the acquisition 

system taking 

advantage of 

existing hardware 

(SpaceWireCEA IP, 

SpaceWire to PCI 

express interface 

board) and software 

pieces. Beyond the 

development of the demonstrator we have considered the 

opportunity to experiment high data rate SpaceWire links and 

Figure 1 - Instrument layout 
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acquisition system and thus be ready for further high data rate 

demanding developments. 

II. OVERALL ARCHITECTURE 

The demonstrator consists in a mirror, a CCD camera, five 

punctual white sources (they represent stars, so called “pseudo 

stellar sources”). The pseudo stellar sources are fed with white 

light, the wavelength ranging from about 400 to 800 nm. 

Additionally, single-mode metrology optical fibers are located 

on the mirror plane. A schematic of the system’s components 

is shown in the next figure (figure 2). The most innovative 

aspect of this experiment is the metrology system that will 

allow the micro-pixel calibration of the CCD. This system 

consists in at least two metrology bases (i.e. two pairs of 

single mode fibers transmit a laser generated coherent 

illumination), respectively aligned along the horizontal and 

vertical axis. The fiber extremities are located next to the 

mirror and project Young’s fringes on the detector. 

Additionally a phase modulator is used to dynamically sweep 

the fringes over the focal plane. By measuring the intensities 

variations of the signal for each pixel, one can characterize the 

inter- and intra-pixel response of the CCD and bring the 

centroid error down to the level of a few micro-pixels. The 

optical test bed is located inside a vacuum vessel in order to 

limit effect of thermal fluctuation of the atmosphere along the 

optical path. 

III. FRONT END ELECTRONICS OVERVIEW 

In the framework of the demonstrator development we have 

fully designed the front-end electronics. These electronics 

housed in an enclosure for mechanical, thermal and EMC 

aspects is mounted directly on the optical test bed enclosure to 

limit as much as the distance between the detector and the 

readout electronics. The electronics unit has analog interfaces 

toward the CCD for clocks and biases driving and from the 

CCD for video signals processing. The unit has also digital 

interfaces; one being devoted to its control and configuration 

while the second; which will be discussed later in this paper is 

devoted to the transmission of the processed video signals. 

Finally power supplying is achieved by mean of an external 

laboratory power supply (Fig. 3). Internally the various 

functions of the front-end electronics are implemented in three 

printed circuit boards. On top the first board hosts the four 

video signal processing chains. Each chain features an AC 

coupled preamplifier followed by the double sampling stage. 

Finally a single to differential amplifier feeds the 16-bit analog 

to digital converter with the processed video signal. This 

analog chain is optimized to sample the detector’s video signal 

at a 3-MHz pixel rate. Bellow, a second board is hosting the 

sensor’s clocks and biases generators: it receives from the 

digital board the clock sequence pattern and shifts the logical 

low and high levels to detector’s compatible low and high 

analog levels. Thanks to a bench of digital to analog converters 

all clocks and signals levels are tuneable to optimize detector’s 

performance. Monitoring of all the generated voltages is 

achieved by mean low speed analog to digital converters. The 

last board is a digital board whose function is manifold. Its 

main function is to control and configure the analog functions 

of the units including the digital to analog converters setting, 

the acquisition of the four digitized video signals and the 

generation of the clock sequence. It implements the digital 

interfaces of the camera as well. A demonstrator requiring high 

level of flexibility a fully programmable clock sequencer is 

implemented to allow users to experiment with CCD readout 

modes. Basically this sequencer has a time resolution of 100 ns 

that is compliant with the slow readout of large sensors but too 

coarse for fast readout as required by NEAT. Therefore this 

clock sequencer has been upgraded to achieve better time 

resolution: a 50-ns time resolution design have been developed. 

Better clock resolutions could probably be reached with highest 

FPGA’s clock frequency but keeping in mind further 

developments for space born instruments our design is optimal. 

IV. ACQUISITION HARDWARE DESCRIPTION 

The acquisition hardware which will determinate the 

performance of the camera in term of image relies on a dual 

SpaceWire link interface between the front-end electronics box 

and the acquisition system. Two SpaceWireCEA IP cores are 

embedded into one of the XILINX SPARTAN FPGA of the 

digital board of the front-end electronics. Along with the IPs a 

state machine are in charge of the readout of the four 16-bit 3 

Msps parallel interface analog to digital converters by using the 

combined busy flags of the devices. This state machine then 

transfers the digitized data of two of the analog to digital 

converters to one of a first SpaceWire transmitter while it 

transfers the two others to the second transmitter. On the same 

digital board a second FPGA (so-called SECOM) is hosting the 

clock sequencer for controlling the CCD readout sequence and 

the sequencing of the front-end electronics analog operation 

(including CDS switches and analog to digital converters 

control). It provides as well an image sync signal to the 

SpaceWire FPGA (so-called INAC). This signal being asserted 

Figure 3 - Electrical Architecture 

Figure 2 - Test bed layout 
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synchronously with the beginning of the detector readout 

sequence trigs the generation of both previous image frame 

trailer and the next image frame header. Since the generation of 

the header data may occurs while the first pixels are read out a 

small memory buffer is implemented in the detector data path. 

During the header generation the incoming pixel data are 

stored temporarily into this small memory buffer. Thus this 

memory may have a depth equal to the size of the frame header 

only (few tenth of bytes). Once the whole header data has been 

transferred to the link’s transmitter the buffer memory is 

flushed toward the SpaceWire at the max data rate of the 

interface. Then the link transmission rate has to be selected 

such as the overload of the small memory buffer never occurs. 

In our application a link signalling rate of 120 MHz is required 

to afford an incoming data rate of 80 Mbps. Again this solution 

is optimal for space-born instrument since it limits the size of 

the memory buffers to be implemented to amount compatible 

with FPGA internal memory capacity. A functional block 

diagram of the SpaceWire FPGA is depicted in figure 4. As 

shown two clock domains are defined: a 40 MHz signal is 

clocking the ADC acquisition blocks the memory buffers 

working as FIFOs and the RMAP initiator block. A second 

signal running at 120 MHz clocks the two SpaceWire IP cores. 

In between two FIFOs are implemented for the transfer of the 

data from one clock domain to the other. As described 

previously the frames are RMAP formatted: the header and the 

trailer are compliant with the RMAP standard and thus contain 

addresses for both ‘target’ and ‘initiator’ identifiers for 

‘process’ ‘instruction’ and ‘key’ and ‘data length’ and CRCs as 

well [3]. The ‘data’ field of the packet contains the ‘frame 

number’ followed by the ‘image’ data and a ‘data CRC’ 

(Figure 5).  

The next major part of the acquisition hardware is the 

SpaceWire PCIe acquisition board (so-called PCIe4SpW). This 

board has been designed in our laboratory to fulfil test 

equipment needs. It is derived from our previous PCI board 

and is focusing in high data rate acquisition application. The 

board is equipped of a PEX8311 PCIe bridge from PLX that 

merge a PCI to local bus bridge and a PCI to PCIe translator. 

This device implements a one lane PCIe compliant with the 

1.0a specification of the bus. Along with the bridge a VIRTEX 

4 FPGA from XILINX is implementing the four SpaceWire 

links as well as the interface with the PCIe bridge. Both input 

and output data buffering is achieved by means of two-

4Mbytes SDRAM chips, one for each direction. The board has 

a extension connector (see picture in figure 6) whose purpose is 

be able to add SpaceWire link interfaces using space grade 

LVDS transceivers as required for the design of an electrical 

ground support equipment (EGSE). 

The complete FPGA architecture is depicted in figure 7. As 

shown each one of the four channel encompasses a SpaceWire 

block (the SpaceWireCEA IP core) interfacing with three 

blocks: ‘data formatting’ – for RMAP format implementation, 

‘cmd sequencer’ – for command scheduling and ‘time 

management’ for implementation of CCSDS Time 

Management Standard [4]. In addition a ‘clock manager 

block’ is in charge of the generation of various clocks either 

Figure 5 - RMAP formatted frame 

Figure 4 - SpaceWire FPGA block diagram 

Figure 7 – PCIe4SpW board architecture 

Figure 6 - SpaceWire acquisition board 
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used by the ‘PEX’ interface or by the SpaceWire blocks. In 

particularly it enables the selection of link signalling rate 

individually ranging between 2 and 200 MHz. Another block 

(‘configuration & status registers’) is a bench of read / write & 

read only registers respectively used to configure the board, 

i.e. to set the link signalling rate and for the communication 

with the acquisition software, i.e. the number of data to be 

read out. Finally the last block ’ PEX interface’ implements 

the interface between the blocks of memory and the local bus 

interface with the PEX8311 device.  

V. ACQUISITION SOFTWARE DESCRIPTION 

The acquisition software has two high-level functions: the 

acquisition task and the control task (Figure 8). 

The acquisition task is in charge of the control of the 

acquisition board: when launched it initializes the board by 

resetting the FPGA and loading the configuration settings. 

Once initialization is achieved the task starts polling the 

number of data available into each link’s input buffer by 

reading SpaceWire FPGA registers. Then the DMA engine of 

the PCIe bridge is set to perform copy of data from the board’s 

memory into a DMA buffer. This operation is performed 

successively for each link. The next step of the acquisition 

process consists in storing the contents of the DMA buffers 

either directly into the hard disk of the acquisition PC or into a 

very large bank of the PC memory (sized to 4 GBytes 

according to the NEAT demonstrator requirements). In our 

Linux operating system this memory is declared as a shared 

memory. Once full or upon reception of a low-level command 

the data stored in the shared memory is archived into a 6-

Gbit/s SATA SSD disk. The acquisition task is in charge as 

well to feed a second shared memory: this memory is 

implemented to allow the transfer to the GUI of small amount 

of data used to perform a quick look analysis of the images. 

Finally a third shared memory is implemented to achieve 

reception in the acquisition of low-level commands. These 

commands enables to switch acquisition software between 

acquisition / no acquisition and file / no file modes. The 

acquisition software is written in C++ that makes easier the 

implementation of the four SpaceWire links: an ‘acquisition’ 

class is defined and is instantiated for every connected link. 

The PLX provided API is used to implement access to the 

low-level bridge driver.  

The control task is a large virtual instrument (VI) taking 

advantage of the flexibility of LabVIEW environment. The VI 

allows the user to select and download into the camera the 

operating parameter such as the detector readout sequence 

script or the detector bias set. Interfaces with the shared 

memories are implemented thanks to a wrapper, which is 

linking a LabVIEW VI, using the ‘Call Library Function Node’ 

feature, to a Linux shared library (.so equivalent to dll). In the 

current design of the camera the configuration is achieved by 

mean of an USB interface. This interface is driven using the 

API provided by FTDI to dialog with the USB to serial port 

device implemented in the front-end electronics. 

VI. SYSTEM ‘PERFORMANCE 

Performances of the acquisition system have been assessed 

for two configuration of the acquisition software. In a first 

configuration the software was directly streaming the data into 

the acquisition PC’s disk while in the second the data is stored 

in a 4-GByte shared memory. The following sums-up the 

performances of the system expressed in terms of maximum 

data rate. 

 

Configuration 

Max data rate Compliancy: 

data rate 

≥ 113 Mbits/s 
1x SpW 

(MBytes/s) 

2xSpW 

(Mbits/s) 

Direct stream to disk 5.03 80.5 No 

Shared memory buffering 9.86 157.8 Yes 

 

As shown in the table the only configuration suitable for 

the NEAT camera makes use of the shared memory.  

VII. CONCLUSION 

We have designed an acquisition system based on the 

SpaceWire standard, which fulfill the requirement in terms of 

acquisition data rate of the NEAT demonstrator fast readout 

camera. In the near future it is planed to extend the handle to 

the four links of our acquisition board as required for 

forthcoming infrared detector test bench development. In order 

to take advantage of the command sequencer capability of the 

board we also plan to use the SpaceWire uplink to control the 

camera rather than using a dedicated USB interface.  

Optimization of the performances is still possible the 

acquisition being relying on a generic API to have access to the 

PCIe bridge device. 
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Abstract— Some space missions for earth observation and 
space science require high data rate and large storage capacity 
data recorders for spacecraft. The Japan Aerospace Exploration 
Agency (JAXA) and Mitsubishi Electric Corporation (MELCO) 
have developed a high-speed and large-volume non-volatile data 
recorder (NVDR) for these advanced requirements. This NVDR 
has 1 Tbytes storage capacity at the end of its life excluding ECC 
redundant regions. The input and output data rate for recording 
and replaying are over 1 Gbps. The NVDR is composed of input 
interface boards, output interface boards, memory boards, a 
DCDC board and a control board. The memory boards use 
NAND flash memories for non-volatile data storage. The control 
board controls the other boards by SpaceWire via a backplane. 
The SpaceWire network increases the storage capacity and the 
data transmission rate. SpaceWire requires fewer I/O signals of 
each FPGA than other types of interface. Therefore, the FPGAs 
in the NVDR are able to have more I/O signals for controlling 
NAND flash memories. Consequently, the NVDR achieves high 
storage capacity and high data rate by implementing many 
NAND flash memories. The SpaceWire used in the NVDR has a 
unique protocol based on RMAP. The NVDR uses this protocol 
only for internal control. For user interfaces, the NVDR offers 
standard SpaceWire protocols such as CPTP and RMAP. In this 
paper, we show how the architecture of the NVDR applies 
SpaceWire and describe the effect. 

Index Terms— mass memory, data recorder, NAND flash, 
RMAP, non-volatile.  (key words) 

I. INTRODUCTION 

Space missions for earth observation and space science 
have required high data rate and large storage capacity data 
recorders for spacecraft [1]. JAXA and MELCO have 
developed a high speed and large volume non-volatile data 
recorder (NVDR) for these advanced requirements. The NVDR 
uses NAND flash memories. So far, data recorders have 
commonly used SDRAMs which are volatile memories with 
low storage density. On the other hand, NAND flash memories 
have much higher storage density, so the NVDR has larger 
storage capacity. Moreover, the NVDR is able to retain stored 
data during power down mode because of the non-volatility of 
NAND flash memories. No vendor provides NAND flash 

memories for space applications (but screened COTS devices 
embedded with special circuits with radiation tolerance are 
available [2] [3]). We verified the radiation tolerance of some 
commercial products with heavy ion tests, proton radiation 
tests and total dose tests. As a result, we recognized that 
commercial products are usable for space applications by 
selecting appropriate products and using adequate protection 
methods. 

Apart from redundancy, the NVDR consists of two input 
interface boards, one output interface board, six memory 
boards, one DCDC and one control board. One backplane 
board includes these boards. The control board controls the 
other boards by SpaceWire. SpaceWire improves the 
performance of the NVDR.  

II. STATUS OF DEVELOPEMENT 

The development of the NVDR started in 2009 with 
performance targets as shown Table I. In 2009, we made a 
conceptual design and conducted radiation tests for NAND 
flash device candidates. The next year, we designed the 
detailed architecture based on the results. In 2011, we produced 
a BBM and performed the evaluation tests. 

TABLE I.  TARGET PERFORMANCE 

Item Target Value 

Capacity at EOL ( End of Life ) > 1 [Tbyte] 
Input/Output Data Rate > 1 [Gbit/s] 

Mass < 20 [kg] 
Power < 100 [W] 

BER(Bit Error Rate) < 1×10-16 [/bit/day] 

 
 

III. NVDR ARCHITECTURE 

A block diagram of the NVDR is shown in Fig. 1. The 
architecture of the NVDR provides the following features: 

 
 The mission data bus and SpaceWire control bus are 

independent from each other. 
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 The input interface boards and output interface board 
can have various sorts of interfaces.  

 Additional memory boards can be mounted in the 
NVDR for larger capacity and more reliable 
redundancy  

 
While the mission data bus transfers record and replay data, 

the SpaceWire control bus transfers data for controlling the 
NVDR behavior. While the former has a data rate of more than 
1 Gbps, the latter has a data rate of 10 Mbps. To avoid decrease 
of the mission data bandwidth, these buses are separated. The 
mission data bus is composed of channel links [4], which use 
dedicated ICs for high speed serialization and deserialization. 
The control bus uses SpaceWire for which a unique protocol is 
used. This protocol is based on RMAP [5]. Because we 
suppose that the NVDR is applied to both earth observation 
and space science satellites, various input and output interfaces 
have to be prepared. To handle this requirement, we properly 
assigned storage functions and interface functions to the 
memory boards and the interface boards. As a result, the 
NVDR is only able to meet a variety of interface requirements 
by replacing the input or output interface boards. The input 
interface boards are able to receive both low rate data (e.g., HK 
telemetry) and very high rate data (e.g., SAR sensor data). The 
output interface boards are able to transmit both low rate data 
to S-band modulators and high rate data to X-band modulators. 
Table II shows capable interfaces in the NVDR. The NVDR 
has communication interfaces to DH subsystems for telemetry 
and command. These interfaces are included in the control 
board. SpaceWire, RS422 and MIL-STD-1553B are available. 

We can easily increase or decrease the number of memory 
boards because the storage function and interface function are 
strictly separated. This results in enhancement of the scalability 
of the NVDR capacity and redundancy. 

Fig. 1.  Block diagram of NVDR 

IV. CONTROL BUS  

As previously noted, the control board controls the input 
interface boards, output interface board and memory boards in 
the NVDR by SpaceWire. These controls mainly include 
configuration of the interface boards and management of the 
storage area in the memory boards. All SpaceWire buses are 
connected to a SoC (system on chip) on the control board via a 
SpaceWire router. To implement a bus on the backplane, 
generally we have a choice between shared buses such as PCI 
and serial buses such as SpaceWire. SpaceWire as a backplane 
bus gives the NVDR an advantage in terms of I/O signals. A 
shared bus requires many I/O signals of connected devices. 
However one SpaceWire node needs only four I/O signals with 
LVTTL (low voltage transistor-transistor logic), PCI occupies 
about 50 I/O signals. This advantage enables more NAND 
flash memories to be connected in parallel to an FPGA or 
ASIC. Although NAND flash memories have modest access 
performance compared to SDRAMs, this wide parallel 
connection increases the bandwidth between the device and 
NAND Flash memories. This technique provides the NVDR 
with comparable record and replay performance to SDRAM 
type data recorders. A shared bus needs many more I/O signals 
when taking into account redundancy. This results in low 
record and replay performance. On the other hand, one 
SpaceWire node needs only eight I/O signals with LVTTL 
even when including nominal and redundant connections.  

 

TABLE II.  NVDR INTERFACES 

Item Interface 
Input  
I/F LVDS/SpaceWire/Channel Link/RS422

Output 
I/F 

LVDS/SpaceWire 
Wizard Link [6]/Channel Link 

DH I/F SpaceWire/RS422/MIL-STD-1553B 
Internal Mission 
Data Bus Channel Link 
Internal Control 
Bus SpaceWire 

 
 

V. RECORD AND REPLAY METHOD 

When the NVDR starts recording, the software on the 
control board decides the location of the storage area and 
calculates the starting address for replaying. To do this 
operation, the software sends several sets of commands and 
addresses to memory boards by SpaceWire (Fig. 2). The 
memory boards receive data from the input interface boards via 
channel link. Then, they record the data in accordance with 
area specified by the command and address. When replaying, 
the memory boards read data from the indicated memory area. 
Next, they transmit the data to the output interface board via 
channel link. After these operations, the memory boards wait 
for new sets of commands and addresses to continue recording 
and replaying. To provide new sets of commands and 
addresses rapidly, the software must recognize the end of the 
operation, but NAND flash memories have quite different 
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access sequences compared to SDRAMs and SRAMs. The 
NAND flash memory sequence makes it difficult to recognize 
the end of sequence. NAND flash memory needs long busy 
time after write data cycles (Fig. 3). This busy time is 
indefinite and can vary with each access. To wait for the 
fluctuating busy time, there are two general methods. 

 
1) Polling 
2) Interruption 

 
 

Fig. 2.  Control method by SpaceWire 

 

Fig. 3.  NAND flash write access sequence 

Both methods have disadvantages. The polling method may 
lower the software processing performance and the interruption 
method requires an interrupt controller and many signal 
connections between the memory boards and the control board. 
SpaceWire can resolve these problems. The full duplex 
communication of SpaceWire enables the memory boards to 
send status messages to the control board. These backward 
messages notify the control board of the sequence end. As a 
result, the polling method and interruption method are not 
necessary. The protocol for sending the messages is explained 
in the next section. 

 

Fig. 4.  Photo of memory board 

 
Fig. 5.  Photos of evaluation test 

VI. CONTROL BUS PROTOCOL 

In the NVDR, the control board controls other boards by 
SpaceWire with a unique protocol based on RMAP. RMAP is 
suitable for the control bus. In this case, the initiator of RMAP 
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will be assigned to the control board and the targets to the 
memory boards. However, each memory board should also be 
an initiator to notify the control board of the sequence end. 
Otherwise, the polling method or interruption method will be 
needed. Another solution using RMAP is to assign the roles of 
initiator and target to the control board and the memory boards 
respectively. But to realize a network with multiple RMAP 
initiators, complex hardware logic is required in the FPGAs in 
the memory boards. Therefore, we did not employ the multiple 
RMAP initiator method. Instead, we allow the memory boards 
to send data with a fixed 64-bit payload to the control board at 
any time from the target side. Any other rules follow the rules 
for RMAP. In the payload, the memory boards can include the 
status data of the record or replay completion. We call the data 
an “interrupting packet”. The initiator in the control board can 
easily descriminate between RMAP reply packets and 
interrupting packets by decoding their protocol identifiers. The 
targets have an arbitration circuit for sending RMAP replies 
and interrupting packets. 

The NVDR uses the unique RMAP with the interrupting 
packets only in the internal control bus. The NVDR provides 
standard protocols such as RMAP or CPTP [7] for the external 
input/output interfaces or the DH interface. 

  

VII. EVALUATION TESTS 

We manufactured a BBM for the NVDR, which was 
composed of one input interface board, one output interface 
board, one control board and three memory boards (Fig. 4), and 
evaluated it. In evaluation tests, we tests for the capability of 
the data rate during recording and replaying, functions for 
correcting data errors with ECC, and long time stability (Fig. 5).  

 

TABLE III.  RESULT OF THE EVALUATION 

Item Specifications 
EOL 
storage 1.17 [Tbyte] 

Input 
Rate 1760 [Mbps] 
Output 
Rate 800 [Mbps]* 

Mass 20 [kg] 
BER < 1×10-16 [bit/day] 
Power MAX. 98 [W] 
Size 310 ×375 ×265 [mm3] 

*The output rate was determined by specifications of receiving instruments  

 

The results of the evaluation show the NVDR satisfies the 
specifications shown in Table III. The FPGA logic in the 
memory boards can generate intentional data errors for the 
ECC functional tests. The intentional data errors mimic various 
errors that happen in the NAND flash memories. We 
concluded that data errors that may occur in GEO or LEO will 
be properly recovered by the ECC. Moreover, we confirmed 
the NVDR can continue the record and replay operation 
without any failure for up to 80 hours. 

 

VIII. CONCLUSION 

In this paper, we showed how SpaceWire is applied in the 
NVDR. SpaceWire contributes effectively to the record and 
replay performance and the scalability. Our unique protocol 
based on RMAP optimizes the network architecture of the 
control bus. Our evaluation test showed that the NVDR 
architecture is a good design that satisfies the required 
specifications. The next step would be to develop an 
engineering model and a flight model.  
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Abstract—A hard real-time intelligent navigation system which 
adopted SpaceWire has been developed for HAYABUSA2.  A 
deterministic communication scheme established by SpaceWire-
D draft standard is applied to the optical navigation system for 
autonomous touch-down and take-off operation proceeded on an 
asteroid. An image recognition unit and optical sensor interface 
modules are connected through a SpaceWire router, which is 
used as an active backplane. Real-time optical navigation 
capability has been achieved in every one hertz with its natural 
image recognition technology and SpaceWire-D compliant 
transmission system. 

Index Terms— SpaceWire, Image Recognition, Real-time, 
Optical Navigation, Networking, Spacecraft Electronics. 

I. INTRODUCTION 
HAYABUSA2 is an asteroid probe planned to be launched 

in 2014, and aims at sample-return from a C-type asteroid 
considered to contain organic or hydrated materials.  Figure 1 
shows the HAYABUSA2 prepared for the preliminary 
integration test. 

Round trip communication time between an asteroid and 
the Earth is more than thirty minutes, in consequence automatic 
and autonomous operation by the probe itself is required for 
compensating the navigation operation from the ground station 
on the Earth in order to achieve touch-down onto the asteroid 
and take-off from it.  Autonomous optical navigation system 
with LIDAR (Light Detection and Ranging), LRF (Lazar 
Range Finder) , and ONC (Optical Navigation Camera) are 
adopted for its optical navigation subsystem. 

The electronics unit of ONC accommodates a real-time 
natural image recognition module and 64bit central processor 
unit (CPU) based on Space Cube2 design [1], [2], and its 

SpaceWire interface complies with SpaceWire-D draft 
standard [3], [4]. 

Since the deterministic implementation scheme of 
SpaceWire, which is the premise of real-time operation, was 
established by SpaceWire-D draft standard, the onboard 
network system for satellite bus has been replaced with 
SpaceWire as shown on Japanese scientific satellites and small 
low earth orbit observation satellites [5], [6].  The first 
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Fig. 2.  The outlook of ONC-E 
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Fig. 3.  SpaceWire active backplane inside ONC-E  

HAYABUSA employed original onboard communication 
protocol PIM (Peripheral Interface Module transmission 
protocol).  The second generation HAYABUSA2 inherited the 
technology and equipment developed for the forerunner, and 
we developed protocol bridges for the translation between PIM 
and SpaceWire.  The protocol for accessing the interface of 
each components and the scheduling scheme is close to RMAP 
(Remote Memory Access Protocol) and SpaceWire-D, so the 
development of those protocol bridges were straight-forward. 

Although the optical navigation subsystem for AOCS 
(attitude and orbit control subsystem) of HAYABUSA2 
accommodates SpaceWire interfaces and connected to legacy 
onboard devices with PIM interfaces through protocol bridges, 
the operation scheme is the same as its predecessor.  As a result 
the ground operation system is the same as that for fully 
SpaceWire compliant satellites. 

 

II. NATURAL IMAGE RECOGNITION MODULE 
Natural image recognition module for the optical 

navigation subsystem is a built-in module of an optical 
navigation camera electronics unit (ONC-E). 

Figure 2 shows the outlook of ONC-E, and the technical 
feature of ONC-E is shown in table 1. 

JAXA authorized 64bit microprocessor is used for ONC-E 
CPU (Central Processing Unit) module, whereas preliminary 
image processing is carried out by dedicated hardware 
implemented on ACTEL RTAX2000S FPGA (Field 
Programmable Gate Array).  This architecture is inherited from 
the ONC-E of prior HAYABUSA asteroid probe in order to 
access local image buffer memories without accessing main 
memory of CPU.  This architecture enables synchronous 
operation of the natural image recognition module with AOCS 
(Attitude and Orbit Control Subsystem). 

TABLE I.  OPTICAL NAVIGATION CAMERA ELECTRONICS TECHNICAL 
FEATURES 

Parameter Value 
Image 
recognition rate 

2Hz (max) 
1Hz (nominal) 

SpaceWire port 
Telemetry/Command: 2ch (redundant) 
Data recorder interface: 1ch 
Sensor interface: 2ch (nominal) 

Conventional 
ports 

PIM: 1ch 
UART (RS422): 3ch (Proprietary 

interfaces are included) 

Memory Buffer 
SDRAM: 1Gbytes (*) 
Flash Memory: 2Gbytes (*) 
(*) includes Reed-Solomon encoding 

Size 95.2(W) x 230.8(D) x 177.8(H) (mm) 
Mass < 2.94kg 
Power 
consumption < 33.8W 

 
We have extended the deterministic communication 

scheme with SpaceWire and RMAP protocol onto the inter-
module communication inside the ONC-E of HAYABUSA2.  
SpaceWire active backplane have been implemented in order 
to guarantee a hard real-time performance required for the 
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optical navigation subsystem. 

TABLE II.  IMAGE OPERATIONS EXAMPLES 

Category OPE-code Operation 

Arithmetic 
Operation 

ADD, SUB, 
MULT, DIVOP 

Arithmetic image 
operation between 
stored images 

Compression 
COMP_SPIXSEL, 
COMP_JP2K 

Lossless/lossy 
compression with 
StarPixle® or 
JPEG2000 

Operation 
Control NOP, BUF_CLR Do nothing, Image 

buffer clear operation 
Transfer 
Control MOVE Transfer an image 

(copy) 

Image 
processing 

MEDIAN, MEAN, 
MODE, BIN 

Calculate median, 
mean, mode of 
images or make 2x2 
binning image 

Image 
processing 
(Hardware 
operation) 

HW_THRES, 
HW_EDGE, 
TMPLBL, GRV 

Binary image 
acquisition, edge 
detection, temporary 
labeling, the center of 
gravity acquisition 

Since a large memory buffer is mounted on the natural 
image recognition module, high resolution images are captured 
and stored simultaneously with image recognition operation.  

The images are used for the calibration of the result of image 
recognition by an attitude and orbit control processor (AOCP) 
as well as for scientific purposes.  The images are stored in 
Data Recorder through SpaceWire/RMAP port. 

Image operations of ONC-E are programmable using its 
dedicated script language.  Examples of the operations are 
shown in table 2. 

One-chip SpaceWire router is mounted on the CPU in order 
to configure SpaceWire active backplane system.  The real-
time natural image recognition module and an optical sensor 
interface module are connected to the router chip through 
SpaceWire and RMAP protocol.  Each module is connected 
through bus connectors embedded inside the metal frames of 
the modules, so that physical backplanes are eliminated, which 
resulted in reducing the mass of ONC-E in order to meet the 
requirement for the deep space mission.  Figure 3 shows the 
block diagram of ONC-E, and SpaceWire interconnections are 
shown. 

III. REAL-TIME OPTICAL NAVIGATION SYSTEM 
The image operations of ONC-E described in previous 

section are to be processed simultaneously along with the 
operation of AOCP, which processes navigation calculation.  
In order to synchronize operations processed by ONC-E and 
AOCP, the deterministic operation scheme is adopted.  The 
scheme is compatible with SpaceWire-D draft standard, and 
established through the activity of the SpaceWire user’s group, 
Japan [7].  The guideline is adopted on ASTRO-H [5] for 
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satellite bus communication, so the same established manner is 
also adopted for AOCS subsystem of HAYABUSA2. 

Figure 4 shows the diagram of the real-time optical 
navigation subsystem of HAYABUSA2. 

The communication protocol of data handling subsystem is 
PIM protocol, so the protocol bridge in implemented on AOCU 
(Attitude and Orbit Control Unit), ONC-E, and DE (Sensor 
Digital Electronics). 

Time master of the SpaceWire network for AOCS 
subsystem is AOCPs.  One minute is divided into 64 time slots 
in accordance with the guideline [7], and SpaceWire Time-
Code corresponds to each time slot.  The time indicator (TI) is 
distributed by DHU (Data Handling Unit) as 32bit value for 
larger than one minute.  The time indicator (TI) is concatenated 
with the 6bit value of SpaceWire Time-Code, and 38bit value 
of the time code is used to synchronize all components in 
AOCS subsystem.  In order to concatenate system time 
indicator and SpaceWire Time-Code, CCSDS Unsegmented 
Time Code is employed as proposed at SpaceWire working 
group in ESA/ESTEC [8]. 

The operation scheme enables simultaneous operations by 
ONC and AOCP, and real-time optical navigation is realized.  
There are three optical navigation functions are implemented 
through the deterministic communication scheme described 
above, 

- Asteroid Image Tracking (AIT) 
- Target Marker Tracking (TMT) 
- Characteristic Geography Tracking (CGT) 
AIT is used for the tracking of the asteroid image.  The 

bright points in the field of view are evaluated through the 
criteria of evaluation based on the brightness, and the center of 
gravity is derived from several image of the surface of the 
asteroid.  This function is used for processing the whole image 
of the asteroid. 

TMT is used for the tracking of a target marker.  As 
HAYABUSA2 is approaching the surface of an asteroid, it 
deploys bright target markers with fine reflectors.  Once those 
target markers have been ejected from the satellite bus towards 
the surface of an asteroid, they are used for tracking.  
HAYABUSA2 has a flash light for detecting target markers.  
The target marker images of the off phase of the flash light are 
subtracted from the images of the on state by ONC-E, then the 
differential image is evaluated through the criteria based on 
their size and brightness.  The center of balance of those bright 
points are calculated by ONC-E, and extracted information 
through the images are transferred to AOCP for identifying 
target markers. 

CGT is used for natural image tracking identifying specific 
geographical image as rocks and craters. Characteristic point of 
view is specified by commands from ground stations or an 
autonomous operation programmed prior to the operation.  

Once the characteristic image is identified, a window is 
associated with the image and ONC-E starts to track the 
specific image within the associated window.  The AOCU can 
specify a template for specific image is the template can be 
transferred to ONC-E for specific correlation calculation for 
identifying a specific image.  The representative value of axis 
is transferred form ONC-E to AOCP in real-time, and AOCP 
use the value for navigation. 

IV. CONCLUSION 
Real-time optical navigation has been achieved in every 

one hertz for HAYABUSA2, which is an asteroid probe 
planned to be launched in 2014.  Its optical navigation is 
realized by natural image recognition technology synchronized 
between an optical navigation camera and an attitude and orbit 
control processor through the deterministic synchronization 
scheme established by SpaceWire-D draft standard. 
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Abstract— The system integrator has to manage many 

suppliers each providing specific data-source design constraints. 

Designing a SpaceWire network based on each of these 

constraints is a challenge at system level as progressive 

refinement and modification during development phases might 

impact all other data-sources performances. For instance, 

insuring the routing for all network resources without losing data 

requires to oversize all network and source’s performance from 

the theoretical worst cases. 

Based on traffic data analysis, consolidations have been 

conducted to segregate all data flows of all data-sources in order 

to optimize links rates and buffers with respect to the useful data-

rates and their required margins. 

Network optimization had been checked with MOST 

(Modeling of Spacewire Traffic), a toolset developed by Thales 

Alenia Space as a SpaceWire library running on OPNET 

Modeler®. The simulations of the network have been realized on 

worst-case scenarios in order to verify the previous analytic 

traffic analysis. The simulation successfully confirmed the 

analytic analysis. 

Index Terms—SpaceWire Networks, Traffic analysis, FDIR 

I. INTRODUCTION  

 

MTG satellites implement a SpaceWire (SpW) network for 

handling the science data exchange between payload and 

platform (mission data). Mission Data packets are provided by 

four different sources, two instruments (Flexible Combine 

Imager (FCI) and Lightning Imager (LI)), a RF payload called 

Data Collection Platform (DCP) and the Satellite Management 

Unit (SMU). MTG mission data handling main characteristics 

are the following: 

- Continuous acquisition of formatted data according to 

Packet Utilization Standards (PUS) 

- Continuous real time download of data to the ground 

station from the geostationary orbit 

- Fast configuration of FCI instrument with 8,3Mbytes 

scanning tables 

- Internal SpW network in the FCI instrument with 

several sources routed to the satellite SpW network 

through a SpaceWire switch 

- Fully cross-strapped network to avoid any single point 

of failure and maximize the network reliability. 

As shown in Figure 1, the Payload Data Downlink system 

(PDD) which holds the satellite SpaceWire routing switch is 

the merging point of every source (FCI, LI, DCP, SMU). 

The first hypothesis was made to cope with bottlenecks 

possibly occurring at the SpW router side of the PDD. In order 

to minimize this network access time and the corresponding 

buffer sizes, all the link rates were specified to the highest rate, 

200Mb/s in compliance with the maximal 10X-SpW router 

theoretical capability. The second hypothesis was that each 

source sends its packets at maximal rate without insertion of 

NULL between data characters thanks to the preparation of its 

packet in an emission buffer.  

 

 
Fig. 1.  MTG spacewire network presentation 

 

This approach was considered not suitable because: 

- It was difficult to implement the maximal link rate 

due to severe skew and jitter constraints 

- Bottlenecks between instruments creates a strong 

coupling between multiple sources manufactured by 

different suppliers, which can create contractual 

issues. Traffic from each instrument had to be 

partitioned to avoid this issue and facilitate the 

network constraints break-down per units. 

- Due to the FCI instrument internal SpaceWire 

network including different link rates, the second 

requirement (no Null characters interleaved within 

packets) was not verified.  For instance, a source from 
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the FCI is emitting at 50MHz inside a network 

running at higher speed. Even if no Null character is 

inserted on the 50MHz link, they are inserted on the 

higher speed link to maintain the synchronization 

 

In order to remove contractual and technical risks, the mission 

data handling using the SpaceWire network has been 

consolidated taking into account partitioning of the different 

SpaceWire sources. This segregation has allowed optimizing 

link-rates for all sources. FCI SpaceWire internal network has 

been taking into account during the analysis. Analytic 

occupation budgets on each link has been computed and 

confirmed later by MOST simulations taking into account 

satellite and FCI internal SpaceWire network. Initialization and 

stop sequences, Fault Detection Isolation and Recovery (FDIR) 

for SpW network have been specified in the frame of the MTG 

project taking into account its specificities. 

Finally, skew & jitter budget has been apportioned on receiver 

and transmitter sides taking into account current skew & jitter 

budget on FCI and PDD side. 

II.  SPACEWIRE CONSOLIDATION AND LINK-RATE RELAXATION 

 

Mission data flows have been segregated to ensure that no 

direct blocking from an instrument to another occurs on the 

satellite SpW network to avoid taking into account the impact 

of traffic congestions from an instrument to another due to the 

routing through the network. To perform this segregation, it 

has been decided to feed in parallel the Virtual Channel 

Assembler (VCA) of the PDD system with four “links”, one 

dedicated to each source (FCI, LI, DCP, SMU). 

The merging of each source is ultimately performed by the 

Virtual Channel Multiplexer (VCM) which merges the 

different Virtual Channels allocated to each source on the 

Master channel. As the global amount of data able to be 

downloaded through the Master Channel is higher than the 

nominal (mean) data input, the bottlenecks can be simply 

managed by adding buffers on the VCA input. Hence we 

considered in the analytic approach that each source is 

independent from the other to size each SpaceWire link rate. 

 

Each SpW link has been relaxed to fit with the real needs and 

to maintain acceptable link margins with 50% as objective and 

25% as minimum. On MTG, SpW links are specified to use the 

same link-rate on both directions.  

FCI SpaceWire internal network uses the following link-rates:  

- 120Mbit/s for two of  FCI internal links 

- 50 Mbit/s for one of the FCI internal links. 

On MTG, the satellite SpaceWire network uses the following 

link-rates: 

- 140Mbit/s for the FCI 

- 100Mbit/s for the LI and the RF payload 

- 50 Mbit/s for the SMU 

 

Contrary to the first approach, the SpW network has now 

heterogeneous link-rates. According to SpW standard and SpW 

router behavior this impacts the method used to compute the 

link margin. 

III. SPACEWIRE NETWORK ANALYSIS AND MOST SIMULATION 

RESULTS 

 

FCI aggregates several sources into the output link to the DDU. 

As the FCI internal SpaceWire network has heterogeneous 

link-rates and according to the SpaceWire standards, the 

margin on output link could not be easily computed. If packets 

are forwarded from a 50Mbit/s link to a 200Mbit/s link, NULL 

chars will be interleaved between each data characters. As an 

output port is blocked to a specific source during packet 

forwarding, this interleaving of NULL char wastes some part 

of the Bandwidth. The result is the same when the destination 

link has a lower link-rate than the input link, flow control will 

be used to slow down the input flow, thus NULL char will be 

interleaved. 

 

On MTG, it has been decided to compute useful margin, i.e. 

margin that could be used to increase the data flow. Thus, 

NULL char interleaved inside a packet should not be taken into 

account as they cannot be used to carry data. 

 

As a first approach, the minimum time to transfer a packet 

from a source node to a destination node across a SpaceWire 

router is equal to the time required to transfer the packet across 

the slowest link used. 

 

Equation 1 allows computing the time “Ttransfer” taken to carry a 

packet of size P flowing through a router from a link L1 with 

link-rate C1 to another link L2 with link-rate C2  

 

           
 

           
  

 

As the time to transfer a packet is constant through the 

network, it is possible to estimate the equivalent size of a 

packet in each link of the network according to the time needed 

to transfer the packet and the link-rate.  

Equation 2 allows estimating the equivalent packet size P’ on 

the link L2 of a packet of size P flowing through a router from 

a link L1 with link-rate C1 to another link L2 with link-rate C2. 

 

   (2) 

 

Equation 3 allows evaluating the equivalent mean data-rate 

DR’(according to the equivalent packet size) of a flow F1 with 

a data-rate of DR flowing through a router from a link L1 with 

link-rate C1 to another link L2 with link-rate C2. 
 

         
  

           
 (3) 
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As a router can merge several flows into a single output port, it 

is necessary to sum-up each input data-rate to going on a single 

output port to get the actual link margin.  

 

Equation 4 allows calculating an estimation of the available 

margin “Comargin” on the link 0 for n input flows with DRi 

Data-rates from n links with link rate Ci merged to the link 0 

with a link rate Co. 

              ∑ (    
  

           
) 

 

 (4) 

 

This latter formula has been taken into account for link margin 

estimation on MTG SpaceWire network. This estimation is 

based on the minimum required time to transfer a packet 

without taking into account possible delays in the router. 

(Routing delay, delay through the router etc...) Furthermore, 

the required bandwidth for SpaceWire Flow control has not 

been taken into account in this estimation. Thus it is clear that 

the margin is slightly overestimated, but considered correct at 

first order.  

However, concerning flow control, as the mission data streams 

are mainly from instruments to the PDD, flow control tokens 

are principally from PDD to instrument thus flow control token 

are not added to mission data flow. The only Flow control 

token stream is in the same direction as the mission data and 

has to be taken into account, is the one corresponding to the 

FCI mission configuration sent from the platform (SMU) to the 

instrument. Lower margin during this transfer is acceptable as 

it is a transient state. 

 

MOST simulations have been defined in order to check if 

network specification is correct and to confirm the engineering 

traffic analysis at satellite level.  

MOST simulations have been done on the complete SpaceWire 

network of the MTG mission including the overall satellite 

network and the FCI actual internal network. As the aim of the 

simulations is the validation of the nominal state of the 

network, only the nominal part of the actual nominal & 

redundant cross-strapped architecture flows have been 

simulated. These simulations were performed with a worst case 

scenario with: 

 Data acquisition in parallel to the sending of FCI 

configuration table 

 All biggest packet of each source sent at the same 

time to stress the VCM 

 FCI data transfer is done in character forwarding 

mode (null characters are interleaved within a packet 

transfer instead of packet forwarding in which the FCI 

network has to store and then forward the packet 

without interleaving of NULL char)  

 

Contrary to the margin estimation with analytic solution, 

MOST simulations allow computing the margin in worst case 

taking into account the hardware performance and the flow 

control tokens. That will lead to a worst case margin taking 

into account the full SpaceWire characteristics.  

In MTG there is a requirement for maximum delivery delay 

between acquisition and availability on ground, thus MOST 

simulations results have been used to estimate the End to End 

delay (ETE) between source and destination node in worst case 

(All sources sending biggest packet at the same time). As all 

sources are merged on a single RF downlink, the MOST 

simulations simulated the nominal output data-rate of the PDD 

in order to check if the mission data network is correctly 

designed. MOST simulations have been defined to be as 

relevant as possible to the embedded mission data network and 

have allowed simulating the satellite network behavior during 

short interruption and recovery. Moreover, the VCM input 

buffers have been under-sized in MOST to worsen the traffic 

analysis and check the impact on the communication from each 

instrument. 

 

Table 1 compares the available margins computed with MOST 

simulations and analytic analysis. As expected FCI link margin 

calculated with MOST simulations is lower than the analytic 

one as flow control tokens and delay in SpaceWire router(s) are 

taken into account by MOST. However analytics results are 

really close to the simulated ones thus we considered that, as a 

first approach, the proposed analytics computation is validated. 

Note that in the below table in which both margins are 

compared, analytic figure (for LI and DCP) may be slightly 

pessimistic, lower than the one from the simulation, because of 

short bottleneck terms that speed up the transfer when 

recovered. 

TABLE I.  MARGIN RESULT WITH MOST SIMULATION AND ANALYTICS 

SOLUTION 

Link source Available margin 

Source Link-rate Analytics calculus MOST simulations 

FCI 140 Mb/s 28,80% 28,00% 

LI 100 Mb/s 62.34 % 62,50% 

DCP 100 Mb/s 53.97 % 54,10% 

 

IV. SPACEWIRE NETWORK MANAGEMENT 

 

SpW logical addressing without header deletion is used on 

MTG instead of physical addressing. That allows having a 

fixed address for each destination whatever the current network 

configuration. Then, only the router configuration has to be 

updated when the network configuration is changed for FDIR 

purpose to use redundant equipments. As all the network is 

cross-strapped and only one link is enabled at one time, it is 

also possible to use Group Adaptive Routing (GAR), hence as 

only one link of the group is active at one time, we can switch 

the network configuration without having to reconfigure the 

routing table. Use of Group Adaptive Routing is still optional 

defined in the project and shall be consolidated in future 

analysis. 
 

PDD interfaces are configured in auto-start in order to accept 

any communication started by mission data sources. This 
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allows commanding only source side of the link and managing 

easily redundancy at source level. In order to start a 

communication, the platform computer has to command 

sources to enable their interfaces. This is performed in MTG 

using an independent Command/Control link. The 

disconnection is also very simple by commanding source to 

disable its interface. 

As SpaceWire link starts hand-shake procedure at a slower 

link-rate than the nominal one, both sides of the link have to 

alter their SpW emitter link-rate to the nominal link rate 

autonomously after the connection success when reaching run 

state. This alteration has to be done at each reconnection. 

SMU is in charge of monitoring the SpaceWire network health 

according to received telemetry packets and event packets from 

instrument and payload. 

 

The following FDIR detection and isolation actions are 

performed on-board: 

 level-1C for link transient disconnection detected at 

source level and recovered autonomously by the source  

 level 2 for persistent disconnection managed at source 

and satellite level 

 

As described in the SpW standards, any error on a SpaceWire 

link leads to a disconnection of the link. A parity check could 

lead to a disconnection from the receiver side, as showed in the 

SpW connection process. After a disconnection, it is necessary 

to request another start of the link to reconnect. In case of 

transient error, the reconnection will be quick and then it is 

better to let the source manage autonomously the recovery of 

the error. 

 

FDIR level 1C has been defined to try to reconnect a 

disconnected link when detected by the source without 

intervention of the SMU. In case of successful reconnection, 

sources shall inform the platform computer that a 

disconnection has been detected and autonomously recovered. 

 

Since satellite safety is not endangered by a SpW failure, all 

recovery for more severe errors are planned to be performed by 

ground. Thus a fail-safe FDIR approach has been defined for 

level 2.  

If a link disconnection is not recovered 100 ms after the 

detection, (Reconnection without any disturbance could be 

done in few microseconds, thus 100 ms of disconnection 

means a permanent anomaly on the link) the failed source shall 

report to the SMU this problem and then a fail-silent approach 

shall be performed.  

 

In case of FDIR level 2 the platform computer will isolate the 

failed link by disabling the two SpW link interfaces. (Source 

and Destination). As the mission data link is not available, the 

failed source is reconfigured in standby mode, and then the 

ground is informed with an anomaly report. During ground 

investigation the other sources of the mission continue to send 

their mission data without any impact. 

V. SKEW & JITTER APPORTIONMENT  

 

One of the critical point for 200Mb/s SpaceWire link was the 

electrical performance in terms of skew and jitter required at 

Emitter and Receiver sides to allow correct transmission. To 

ensure that SpW network will work properly, the electrical 

level has also been consolidated in compliance with the 

proposed link-rate relaxation. 

As detailed in the SpW standards, the maximum data signaling 

rate that can be achieved is different from one system to 

another (Pending on device and harness), limited by skews and 

jitters. Hence Skew & jitter performance requirement has been 

built for both Emitter and Receiver. This budget allocation has 

been needed to certify that any interface which is compliant 

with this requirement will be able to communicate with any 

other interface at the MTG maximum SpaceWire signaling 

rate. 
 

Skew and jitter at Emitter side are merged into a single value 

which is called Encoder contribution. Encoder contribution 

shall not exceed 1,4 ns.  

As shown in SpW standards, Tds is defined as the minimum 

specification for the separation of consecutives edges on Data 

and Strobe signal at the input of the decoder. In MTG Tds shall 

not be above 3,3 ns.  

On MTG, maximum link-rate is 140Mb/s for FCI which leads 

to 2,44 ns for both harness contribution and margin. 
 

VI. CONCLUSION 

 

Network has been consolidated and optimized, with suitable 

contractual management, correct electrical, data-handling 

designs and FDIR design.  

The skew and jitter budget has been specified for Emitter and 

Receiver and is in line with current SpaceWire chips used in 

MTG and current maximum link-rates.  

The new approach for link margin computation and 

engineering spacewire network analysis has been confirmed by 

MOST simulations. 

Advanced validation of SpW interfaces for each protocol layer 

will be performed by coupling payload and platform 

representative test benches, in order to secure AIT sequences. 
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Abstract— SpaceWire is widespread as data interface for flight 
missions. In order to keep up with the demands from both 
projects and test platforms a new, fully configurable, SpaceWire 
codec called Swift has been developed by RUAG Space AB. The 
codec is easy to integrate into projects, thanks to its internal data 
buffers and standardized interface. The codec features self 
calibrating timeout counters, reducing the need for configuration 
pins or register accesses prior to link initialisation. In order to 
improve timing and reach high data rates in both ASIC and 
FPGA technologies, the codec has small and uncomplicated 
receive and transmit regions. The Swift codec has been fully 
tested and validated and has so far been incorporated into 
several ESA funded and commercial projects. 

Index Terms— SpaceWire,  codec,  Swift,  component 

I. INTRODUCTION 

RUAG Space AB has developed systems and components 
that utilize the SpaceWire interface for years. During this time 
a couple of different SpaceWire codecs have been used, each 
with their own merits and drawbacks. As more and more 
projects use the SpaceWire interface, RUAG Space identified 
the need for a single solution that is both easy to use for 
designers and adaptable to suit the needs of different projects. 

Furthermore we saw the need for a SpaceWire solution that 
could be used in different test setups without the need to 
incorporate more people than the engineers needed to assemble 
the system. 

A. Outline 

This paper starts with stating the design goals for the Swift 
codec development followed by a description of the 
development process. The next chapter explains the design 
partitioning of the Swift codec as well as the main features of 
the new design. The last chapter holds the conclusion. 

II. DESIGN GOALS 

Going into this project our aim was to develop a codec that 
was adapted to the needs of our everyday use of the SpaceWire 
interface. This would be done by developing a SpaceWire 
codec that incorporates our experiences of the interface so far 
and focusing on the issues we would like to address. 

Fast turnaround times for test setups as well as easy 
instantiation were key factors when designing our new 

SpaceWire codec. This brings us to the main design goals for 
the new codec; these were twofold and primarily aimed at 
usability and efficiency.  

A. Usability 

The codec should be easy to integrate into projects, 
reducing the manual steps when performing detailed ASIC and 
FPGA routing of the critical receive and transmit data paths. 

The codec should also be a self contained entity and 
provide an easy to use standardized system interface. This 
means that the codec should handle all SpaceWire protocol 
specific characters and be able to initialize and sustain a link 
without interference from supporting logic. 

B. Efficiency 

The codec should be configurable to suit different projects. 
In low bandwidth configurations the codec should be small 
enough to be suitable for remote terminal applications. In high 
bandwidth configurations it should have the capability to reach 
the preferred 200 Mbps data rates in all commonly used ASIC 
and FPGA technologies. 

III. DEVELOPMENT 

The development of the Swift codec was done in two 
phases; the prototype phase and the industrialisation phase, i.e. 
making the codec ready for flight missions.  

A. Prototype phase 

During the first phase a prototype was developed as part of 
a master thesis [2]. The goal of the thesis was to design and 
develop a new SpaceWire codec and in the process learn more 
about the SpaceWire protocol and how to efficiently 
implement it in hardware.  

The prototype phase enabled us to test design ideas, in a 
fast and inexpensive format, and to optimize the design from a 
system point of view early in the process. 

The design proposed in the thesis turned out well and 
proved easy to integrate into projects. Initial tests also showed 
that the design was both small and fast enough to be able to 
provide high data rates in both FPGA and ASIC technologies. 
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The prototype was verified enough to make us confident 
that the design concept worked. The prototype was also subject 
to rudimentary live tests against both a well known, validated 
SpaceWire codec as well as connected in loopback. The test 
setup can be seen in Figure 1. 

 

 
Figure 1 Prototype test setup 

 
The thin arrows in Figure 1 represent the Data/Strobe 

connections and the thick arrows represent the internal data 
interface within the system clock region. 

B. Industrialisation phase 

During the second phase the design was finalized and a full 
industrialisation procedure was performed. The documentation 
as well as the specification was updated to incorporate findings 
from the prototype phase.  

A codec was subjected to a complete functional verification 
of the design to ensure that the codec complied with the 
documentation. After the verification procedure was complete 
the Swift codec was validated to ensure that the codec is 
suitable for space missions. 

The codec has been validated using both commercial 
products and certified flight hardware. The commercial 
products used during the validation test where; 

• 4Links RG401/8 [3] 
• 4Links RG408-LS [4] 
• Star Dundee SpaceWire Conformance Tester [5] 
 
The Swift SpaceWire Codec has passed the tests conducted 

with all the above mentioned commercial tools. Tests have also 
been conducted using certified flight hardware developed both 
in-house and externally. 

IV. SWIFT DESIGN 

The design partitioning of the Swift SpaceWire Codec 
differs from the example design in the [1] Clause 8 in some 
aspects. The subchapters below will go through each of the 
major differences and give our reasoning for the decisions. The 
first subchapter gives an overview of the design partitioning 
within the Swift codec. 

A. Design partitioning 

The Swift design partitioning can be seen in Figure 2. A 
walkthrough of the logic function of each block follows in the 
subchapters below. 

1) Control logic 
The structure labeled Control Logic in Figure 2 is responsible 

for handling the link initialization and link error recovery 
procedures [1] Clause 8. The Control Logic also functions as a 

hub for control and status signals inside the Swift codec, 
relaying them to and from System. The Control Logic also 
connects the functions of the receive and transmit data paths  
that needs synchronization i.e. the reception and transmission 
of flow control tokens. 

 

System

Swift SpaceWire Codec

Character Generation

Transmitter

Transmit FIFO

Dout Sout

Character Check

Receiver

Receive FIFO

Din Sin

Control
Logic

 
Figure 2 Swift design partitioning 

2) Transmit data path 
Tracing the transmit data path, starting from the top of 

Figure 2; The Swift SpaceWire Codec provides the System with 
a standardized data interface. The structure labelled Transmit 
FIFO contains the data buffer needed to store the bursts of data 
from System. End of packet characters are automatically added 
by the codec at packet limits. The size of the buffer is 
configurable depending on system specifications. The structure 
labelled Character Generation contains the logic that generates 
SpaceWire L-Chars when commanded to by Control Logic. 
This block is also responsible for making the N-Chars ready for 
the Transmitter upon arrival of flow control tokens. The 
Transmitter in the bottom left corner, handles serialisation of 
the data bound for the link as well as parity and strobe 
generation. 

3) Receive data path 
Next we trace the receiver data path, from the Data/Strobe, 

Din/Sin in Figure 2, towards System. The Receiver samples the 
data and feeds the data flow directly to the structure marked 
Character Check. This is done without first decoding the 
received characters. The Character Check serializes the data 
stream, decodes the characters as well as performs the parity 
check. All L-Chars are handles by the Control Logic and the 
N-Chars are transferred to the Receive FIFO for credit check 
and storage. The size of the Receive FIFO is configurable to 
allow for stutter free data transfer up to at least 200 Mbps. 

4) Clock regions 
All structures except the Transmitter and the Receiver, 

marked with dashed and dash-dotted lines in Figure 2, are 
synchronous to the system clock. The transmitter region can be 
configured to use the system clock in small applications where 
size considerations are more important than transmit rates. The 
receiver is always asynchronous to the system clock. 
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B. Configurable data rates 

In order to make the Swift codec a general purpose design, 
the codec is fully configurable with respect to the bandwidth 
needs of the project. This enables the designer to trade 
bandwidth for size when optimizing the system. 

When opting for bandwidth, the codec can receive as well 
as transmit one useful byte, i.e. 10 bits, each system clock 
cycle. These bits can be any combination of SpaceWire 
characters. 

When opting for size, the Swift codec consumes less than 
half the digital logic needed in high bandwidth applications. 
Asymmetrical receive and transmit rates are allowed if the 
application demands it.  

Table 1Resource usage in RTAX FPGA 

Size vs. 
performance 

Resource usage in RT AX2000 

BAUD rate 
with 40 MHz 
System clock 

Combinational 
Cells 

Sequential 
Cells 

Total 
Cells 

80 Mbps 1339 495 6 % 

160 Mbps 2447 758 10 % 

200 Mbps 2691 835 11 % 

400 Mbps 3581 1012 15 % 

 
The data in Table 1 is gathered from synthesis of the design. 

As seen in the Total Cells column of Table 1, the size of the 
Swift codec scales almost linearly with the bandwidth needed. 

So far successful place and route have been performed up 
to 200 Mbps in RT AX2000. The last entry seen in Table 1 will 
not be able to transfer data at 400 Mbps due to the limitations 
of the RT AX2000 technology. This configuration is rather an 
option when high bandwidth is needed in slow system clock 
implementations. 

C. Self-calibrating  timers 

The Swift codec features self-calibrating timeout counters. 
This means that the codec does not need to be configured by 
the application to know the length of the timeout times.  

Instead the codec uses the well defined bit rate during start-
up to calibrate its internal timeout counters. This is to avoid 
forcing the codec to be pre-configured at instantiation, or 
having to rely on configuration through strapped pins or 
configuration registers.  

This feature saves configuration pins or register accesses in 
preconfigured off-the-shelf products, enabling us to use the 
same build for different system clock speeds. 

D. Internal data buffers 

In order to make the Swift codec a self contained entity, a 
few changes to the design proposed in the SpaceWire standard 
was made. All data buffers needed to sustain the SpaceWire 
link are codec internal, as is the logic responsible for handling 
the exchange of flow control tokens.  

These features, together with a system clock synchronous 
data interface, make the Swift codec a self contained entity that 

can connect and sustain the link without interference from 
supporting logic. This means that all system level functions 
need only to handle packets of data and time codes, all link 
specific characters like EOP and EEP are handled by the codec. 

E. Clock regions 

In order to facilitate synthesis and reach high data rates, 
special care has been taken to keep the fast running receive and 
transmit regions as small and as uncomplicated as possible. No 
advanced decoding or time consuming decisions are performed 
in the fast running receive and transmit clock regions. Instead 
all time consuming decisions are performed in the slower 
running system clock region.  

This means that there are three separate clock regions 
inside the Swift codec. All interconnections and control signals 
are running via the system clock region and all asynchronous 
interfaces are codec internal for ease of use by designers.  

The region running on the receive clock only contain 
around 25 registers in a normal instantiation. The transmit 
region is substantially larger than the receive region and 
contains roughly four times the number of registers. This is 
caused by the buffers for the asynchronous interface residing in 
this region. However the timing paths are short and transmit 
rates in excess of 200 Mbps are possible in all commonly used 
technologies. 

The decision to divert from the design proposed in the 
SpaceWire standard [1] Clause 8 was taken since the design is 
hard to optimize without centralizing all SpaceWire 
functionality inside the codec. 

V. CONCLUSION 

The Swift SpaceWire codec has so far been successfully 
incorporated into systems and IP-cores for ESA funded as well 
as commercial projects. The codec is used daily in in-house test 
equipment and has completed and passed all validation tests we 
have conducted. The design can handle data rates of over 200 
Mbps in all commonly used ASIC and FPGA technologies and 
has proved to be easy to integrate into projects. The Swift 
codec has fulfilled the design goals initially set up for the 
project and is in use in flight programmes. 
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Abstract— CASTOR is a new radiation tolerant SPARC V8 

processor chip which is currently being developed by Atmel in 

partnership with STAR-Dundee. The chip is implemented on a 

90 nm radiation tolerant process which will deliver an expected 

processor clock speed of 200 MHz. The CASTOR chip is targeted 

at data processing and instrument control applications, and will 

deliver functional improvements over previous SPARC 

processors. The chip has eight SpaceWire interfaces running at 

200 MBits/s, a CAN bus interface and IEEE 1553 bus interface.  

At the core of the CASTOR chip is a number of dedicated high 

performance SpaceWire Remote Memory Access Protocol 

(RMAP) and Direct Memory Access (DMA) engine’s connected 

to the SpaceWire interfaces through a SpaceWire router. Each 

SpaceWire engine is capable of acting as an RMAP target, 

RMAP initiator or as a general purpose SpaceWire packet 

transmitter and receiver between the SpaceWire network and 

packet data defined in internal memory. Dedicated SpaceWire 

DMA channels are used to ensure software involvement in 

SpaceWire packet generation and reception is kept to a 

minimum. The SpaceWire interfaces support the SpaceWire-D 

protocol used for guaranteed latency and deterministic packet 

delivery. In conjunction with the RMAP initiator the chip can 

rapidly be configured as a highly capable SpaceWire-D initiator. 

The chip can act as an RMAP target, initiator or both. The 

RMAP target provides a mechanism to allow remote access to the 

internal memory space.  Two modes of operation are supported 

to allow direct access to a pre-defined area of memory or 

controlled access using authorisation by software. The RMAP 

initiator uses information stored in internal memory by the 

application software to access remote memory in equipment 

connected to the SpaceWire network. The engine is capable of 

initiating a number of RMAP transfers from remote memory, 

either writing data from internal memory to a remote memory 

location or receiving data from a remote memory location and 

writing it to internal memory, then interrupting the host when all 

transactions are complete. 

The DMA channels allow the application software to send and 

receive data packets using data structures defined in internal 

memory. Each SpaceWire engine has a number of DMA channels 

which can operate independently of each other. 

Index Terms—SpaceWire, CASTOR, RMAP, Sparc V8 

I. INTRODUCTION 

An onboard SpaceWire [1] system comprises a number of 

SpaceWire nodes and routers connected together through high 

speed serial links. The nodes on the SpaceWire network can be 

sensors, mass memories and processing units. CASTOR is a 

new radiation tolerant SPARC V8 processor chip which is 

currently being developed by Atmel in partnership with STAR-

Dundee. 

The CASTOR chip has eight SpaceWire interfaces to 

facilitate communication over the SpaceWire network. The 

application software running on the processor has access to a 

number of dedicated high performance SpaceWire Remote 

Memory Access Protocol (RMAP) [2] and Direct Memory 

Access (DMA) engines to provide RMAP and application 

specific packet generation and reception without excessive 

processor workload. 

II. FEATURES 

The CASTOR chip has dedicated RMAP target and 

initiator hardware which offloads RMAP packet generation and 

checking from the processor. The target can be configured to 

allow a remote unit to read and write memory locations inside 

the processor memory space without interrupting the host 

software. The initiator facilitates access to remote memory 

spaces through RMAP protocol commands and offloads 

multiple transaction generation and reply packet checking from 

the processor. 

A multi-channel DMA packet transmission and reception 

controller is available to the processor to send and receive data 

through a SpaceWire router. The DMA channels are optimised 

to support high throughput of SpaceWire packets with minimal 

interruption of the processor. Generation and checking of 

CRC-8 and CRC-16 checksums are supported by the DMA 

channels. 

Packets are routed to the SpaceWire network through an 

eight port SpaceWire router. This allows the CASTOR chip to 

connect too many peripherals and also act as a routing device. 
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Protocol support is provided for the SpaceWire-D deterministic 

data delivery protocol [3], the SpaceWire plug and play 

protocol [4], multiple time-code counters and distributed 

interrupt time-codes [5]. 

III. SYSTEM ARCHITECTURE 

The system architecture is defined in Fig. 1. 

 

 
The SpaceWire engines contain an RMAP target [6], an 

RMAP initiator and a multi-channel DMA controller. Each 

engine facilitates packet generation and checking of RMAP 

and DMA transfers between the processor and the SpaceWire 

router, offloading the processor for other tasks. The SpaceWire 

router [7] has 8 SpaceWire ports running at 200 MBps and 3 

internal FIFO ports for connection to the engines. The routers 

internal configuration port, port 0, facilitates configuration of 

the internal registers through RMAP or Plug and Play. The 

APB interface is used to configure and read status registers 

from SpaceWire engines, time-code controller and SpaceWire 

router. The interrupt controller provides event notification to 

the host processor for packet, time-code and error events which 

occur. The time-code controller implements time-code 

forwarding and distributed interrupt forwarding. 

IV. SPACEWIRE ENGINE 

The CASTOR chip has three SpaceWire engines which can 

act as an RMAP target, an RMAP initiator and to transmit and 

receive data from internal memory through a multi-channel 

DMA controller. The engine performs memory accesses 

through an AHB master interface and is configured through an 

APB interface. 

The SpaceWire engine architecture is shown in Fig 2. The 

engine is comprised of a protocol multiplexer which connects 

to the SpaceWire router, an RMAP target, an RMAP initiator, a 

multi-channel DMA controller, an AHB interface and an APB 

interface. 

 

A. Protocol Multiplexer 

When sending, packets to the SpaceWire Router, the 

multiplexer selects the next packet to be sent and waits for the 

end of packet before selecting the next packet to be 

transmitted. 

When receiving, packets from the SpaceWire Router, the 

protocol de-multiplexer checks the first four packet bytes 

against a configurable pattern and mask to determine the 

destination of the packet, either RMAP target, RMAP initiator 

or a specific DMA channel. The pattern and mask are 

programmable by the host processor through the APB registers.  

The protocol multiplexer allows multiple destination nodes 

or multiple protocols to be handled by the DMA channels. A 

packet received at a node which conforms to the ECSS-E-ST-

50-51C [8] standard will have a leading logical address byte 

and a protocol identifier byte, followed by the packet cargo 

bytes and an end of packet. The protocol multiplexer transfers 

data packets from the RMAP target, initiator and the DMA 

channels into the SpaceWire FIFO. Arbitration is performed 

between the channels using a fair arbitration scheme where 

each packet source takes it in turn to transmit packets. 

B. RMAP target 

The RMAP target accepts RMAP commands from a remote 

system, performs read and write memory access commands 

over the AHB bus to system memory and returns an optional 

reply packet to the remote system. The target supports all 

RMAP commands with the option of limiting the commands 

which can be performed by configuration from software. A 16 

byte verified write buffer is provided to support verified write 

commands. 

An RMAP command received by the target is required to 

be authorised before it can access system memory. The 

processor can configure the RMAP target to act in two modes 

of operation. 

The first mode requires the host processor to authorise 

commands through the APB register interface. Authorisation is 

requested using the Interrupt output of the core. The host 

software should read all the authorisation fields and then 

decide if the command is valid by authorising the command 
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through the RMAP target command register. When the target 

has completed the RMAP command it will interrupt the host 

processor again with the notification status. 

In the second operation mode the host processor sets which 

RMAP operations are authorised and the address range in 

which RMAP commands can operate. Any command which is 

performed outside of the address range or other authorisation 

fields is not authorised and recorded as an error. 

C. RMAP initiator 

The initiator uses the RMAP protocol to write data from 

system memory to a remote system, or read data from a remote 

system and place it in a pre-defined area of memory. The 

initiator can be used by the processor to collect data from 

remote targets into system memory and check the data 

received. The initiator uses RMAP transaction specific data 

structures in memory to control the command type and 

command fields which will be used to generate the RMAP 

packet. A transaction table is stored in memory to facilitate the 

transmission of multiple command packets before the replies 

for those commands have been received. The initiator validates 

all reply packet fields against the expected fields stored in the 

transaction table. If an error occurs the error is recorded and the 

reply packet is not acted upon. 

Before the initiator can be used to send RMAP commands 

it must be given space in system memory to store outstanding 

transactions. An outstanding transaction is required to tell the 

initiator where in memory it should store reply data and 

notification status 

The initiator is split into three separate entities: the encoder, 

decoder and timeout checker. Each of the initiator entities can 

operate in a different mode. The encoder and decoder have 

three modes of operation: notification mode, list mode and 

watchdog mode (modes 1, 2 and 3). The timeout checker has 

two modes of operation: notification mode and passive mode. 

Encoder/Decoder modes: 

In mode 1, notification mode, the initiator waits for the host 

software to respond to each initiator command sent and reply 

received before continuing. This mode is suitable for hosts 

which wish to know when commands are sent or received and 

process the command data and status immediately. 

In mode 2, command list mode, the initiator can send a 

number of commands or receive a number of replies before the 

host software is notified. The status for each command and 

reply is stored in a transaction defined notification area of 

memory. The host can check the command/reply status after 

the command list has been completed. 

In mode 3, watchdog mode, the initiator can send a number 

of commands and receive a number of replies while the host is 

waiting for a timer to expire or another interrupt/event to occur. 

The host uses the timer, or other interrupt/event, to check if the 

commands have completed and the status of each command. 

This mode is useful when the host needs to know if the 

commands have been sent within a defined time period but 

does not need to check the operation status until the time 

period has expired. 

The initiator implements an optional timeout counter for 

each outstanding transaction. When a reply is not received 

within the timeout period the transaction will be discarded and 

an error recorded. 

Timeout checker modes: 

In mode 1, notification mode, a transaction which times 

out, reply not received within the selected timeout period, will 

cause the notification bit in the status register to be set. The 

notification bit is acknowledged by the host software before the 

initiator can perform any further operations.  

In mode 2, passive mode, a transaction which times out will 

be deleted from the initiator table and no notification will be 

generated. The timeout status will be recorded in the 

transaction defined notification area of memory. 

D. Transmitting packets using the DMA channel transmitter 

The DMA controller supports multiple concurrent TX 

channels which can be programmed to send one or multiple 

SpaceWire packets continuously. Channels can be disabled and 

enabled at any time, affecting the data rate of the 

corresponding channel without producing data loss. This 

allows a simpler implementation of MAC algorithms by 

software. 

A packet consists of one or multiple data chunks stored in 

different memory locations. This allows the packet header to be 

stored in a different location that the packet data content.  

Sending of PUS [9] packets is supported by providing the 

hardware computation of its CRC-16. Continuous transmission 

of packets is provided using circular buffer architecture with 

data and packet descriptor pointers. Interrupts can be set to 

monitor the progress of transmission of packets without halting 

the actual operation. This makes it possible to achieve the 

maximum SpaceWire data rate with minimum CPU utilization. 

Errors in one channel do not affect the operation of other 

channels. 

E. Receiving packets using the DMA channel receivers 

Each channel can be associated to a different packet type or 

protocol using a packet filter based on the first four bytes of the 

header. Packets which are received on the same DMA channel 

are stored contiguously in memory and their packet length is 

stored in packet descriptors. Reception of RMAP packets is 

supported by providing the hardware computation of its CRC-

8. Reception of PUS packets is supported by providing the 

hardware computation of its CRC-16. Continuous reception of 

packets is provided using circular buffer architecture with data 

and packet descriptor pointers. It is possible to enforce that a 

packet is not split at the end of the memory region. Interrupts 

can be set to monitor the progress of packets received without 

halting the actual operation. The user application or the SW 

driver should free the space used by packets already processed. 

This procedure allows data to be received at the maximum 

SpaceWire data rate with minimum CPU utilization. When an 

error occurs the reception is halted and the system is 

interrupted. 

322



V. SPACEWIRE ROUTER 

The SpaceWire router has eight SpaceWire interfaces, three 

external port interfaces and an internal configuration port 

which supports the RMAP protocol. The internal configuration 

and status registers are also accessible through an APB 

interface. A control register is used to determine if the router is 

controlled through the configuration port or through the APB 

interface. Configuration by both masters at the same time is not 

supported although reading the status information from both 

masters at the same time is supported. 

The SpaceWire router architecture is illustrated in Fig 3. 

 

VI. TIME-CODE CONTROLLER 

The SpaceWire time-code controller has functions to 

forward time-codes dependent on the time-code flags or to 

generate time-codes from software, processor timer interrupt or 

an internal dedicated time-code master count. The time-code 

controller has a time-code register for each of the four time-

code flags, therefore allowing independent time-code 

forwarding for each flag code. 

The time-code controller stores the last time-code received 

for each type of control flag and can indicate to the host that a 

time-code has been received through the status/interrupt 

interface. 

The time-code forwarding mechanism checks that received 

time-codes are one more than the last time-code received then 

the time-code will be forwarded through all ports except the 

port the time-code arrived on. If the time-code is a distributed 

interrupt code then the interrupt vector is checked and the 

controller will forward the time-code if the interrupt vector bit 

is 0. If the interrupt vector bit is 1 the time-code is discarded as 

the interrupt has already been set. The time-code will be 

forwarded through all ports except the port the time-code was 

received on. 

The controller can act as a time-code master either by 

software insertion of a time-code, sending time-code on a 

processor timer interrupt or by setting up an internal time-code 

master counter. The time-code frequency can be controlled by 

the host software with up to 1 micro-second precision. 

Status bits and processor interrupts are provided for 

received time-codes for each time-code flag value, time-codes 

transmitted for each time-code flag value and distributed time-

code interrupt occurred. 

VII. CONCLUSION 

The CASTOR chip is a capable SpaceWire processing unit 

which comprises a SPARC V8 process with an enhanced 

floating point unit and memory management unit running at 

200 MHz on a radiation tolerant process. The SpaceWire 

engines inside the CASTOR chip provide high performance 

SpaceWire RMAP and DMA functions including dedicated 

RMAP target and initiator hardware to reduce the processor 

workload.  
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Abstract—The Next Generation Microprocessor is a quad-
processor system-on-chip that contains a SpaceWire router with 
eight external SpaceWire links and four on-chip AMBA ports. 
This paper describes the validation work done for the SpaceWire 
router within the Next Generation Microprocessor functional 
prototype development. 

Index Terms— SpaceWire, Networking, Spacecraft 
Electronics. 

I. INTRODUCTION 
The Next Generation MicroProcessor (NGMP) is a quad-

processor system-on-chip currently being developed by 
Aeroflex Gaisler. The design includes four LEON4 
SPARCV8+ processors with a shared Level-2 cache, DDR2-
800 SDRAM main memory interface, a SpaceWire router with 
eight external SpaceWire links and four internal AMBA ports, 
two 10/100/1000 Mbit Ethernet MACs, 32-bit 66 MHz PCI 
interface and other interfaces. 

The SpaceWire router allows the NGMP to act both 
passively and actively in a SpaceWire network. The target 
frequency for the NGMP device is 400 MHz. Preliminary 
results for this target frequency show that, using only internal 

routing, the architecture is able to sustain a data throughput of 
1.5 Gb/s per SpaceWire AMBA port. In a scenario where the 
two full-duplex Ethernet links and all SpaceWire AMBA ports 
are run at full speed, the sustainable throughput is roughly 1.5 
Gb/s for the Ethernet links and 1 Gb/s per SpaceWire AMBA 
port. In addition to this, the SpaceWire router will also be able 
to simultaneously route packets at maximum speed. 

The implementation of NGMP in rad-hard technology was 
put on hold in April 2011, pending advances in the 
development of a suitable Deep-Sub-Micron technology for 
space. Development has instead progressed in the development 
of a NGMP functional prototype (NGFP) device targeting 
eASIC Nextreme2, a structured ASIC technology based on a 
45 nm process. Silicon was received in August 2012 and an 
evaluation board has been manufactured. 

One of the primary goals of the NGFP development is to 
allow use of the architecture at higher clock frequencies than 
what is attainable with FPGA prototype implementations. The 
prototype devices do not reach the full target frequency of the 
final device (400 MHz) but can be run at a system frequency of 
200 MHz with the same clock frequency used for the 
SpaceWire router. 
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II. DESCRIPTION OF NGMP FUNCTIONAL PROTOTYPE 
ARCHITECTURE 

The system consists of five Advanced High-performance 
Buses (AHB); one 128-bit Processor bus, one 128-bit Memory 
bus, two 32-bit I/O buses and one 32-bit Debug bus. The 
Processor bus connects four LEON4 processor cores connected 
to a shared Level-2 (L2) cache. The Memory bus is located 
between the L2 cache and the main external memory 
interfaces, DDR2-600 SDRAM and PC100 SDRAM, and also 
connects a hardware memory scrubber. As an alternative to a 
large on-chip memory, part of the L2 cache can be turned into 
on-chip memory by cache-way disabling. 

The two separate I/O buses connect all the peripheral cores. 
All memory-mapped interfaces of peripheral cores that can be 
directly accessed by the processors have been placed on one 
bus (Slave I/O bus), and all master/DMA interfaces have been 
placed on the other bus (Master I/O bus). The Master I/O bus 
connects to the Processor bus via an AHB bridge that provides 
access restriction and address translation (IOMMU) 
functionality. The two I/O buses include all peripheral units 
such as timer units, interrupt controller, UARTs, general 
purpose I/O port, PCI master/target, Ethernet MACs, MIL-
STD-1553B, Serial Peripheral Interface bus and SpaceWire 
router. All I/O master units in the system contain dedicated 
DMA engines and are controlled by descriptors located in main 
memory that are set up by the processors. Reception of, as an 
example, Ethernet and SpaceWire packets will not increase the 
CPU load. The cores will buffer incoming packets and write 
them to main memory without processor intervention. 

The fifth bus, a dedicated 32-bit Debug bus, connects a 
debug support unit (DSU), PCI and AHB trace buffers and 
several debug communication links. The Debug bus allows for 
non-intrusive debugging through the DSU and direct access to 
the complete system, as the bridge connecting the Debug bus to 
the Processor bus allows unrestricted access to the memory 
space. 

The NGMP architecture has been designed to provide a 
significant performance increase compared to earlier 
generations of European space processors. The platform has 
improved support for profiling and debugging and will have a 
rich set of software immediately available due to backward 
compatibility with existing SPARC V8 software and LEON3 
board support packages. The design also includes specific 
support for asymmetric multi-processing configurations. Five 
memory management units (MMUs), one per CPU core, and 
the IOMMU provide access protection. Several dedicated 
interrupt controllers allow interrupt steering to a specific CPU 
and duplicated timer units allow to run one operating system 
per CPU core with full space-partitioning. 

III. SPACEWIRE ROUTER IP CORE AND CONFIGURATION 
The design includes Aeroflex Gaisler’s GRSPWROUTER 

SpaceWire router IP core. The IP core implements a 
SpaceWire routing switch as defined in the ECSS-E-ST-50-
12C standard. It provides an RMAP target for configuration 
port 0 used for accessing internal configuration and status 
registers. In addition to this, the implementation described by 

this paper implements two different port types; external 
SpaceWire links and on-chip AMBA interfaces. 

One AMBA AHB slave interface is also provided for 
access in the port 0 registers from the on-chip AMBA bus. 
Group-adaptive routing and packet distribution are fully 
supported. 

The GRSPWROUTER was implemented with the 
following characteristics: 

• 64 entries per 9-bit receiver FIFO (N-Char FIFO) 
• 32 entries per 32-bit AMBA port FIFO 
• Four DMA channels per AMBA port 
• Hardware RMAP target in each AMBA port 

IV. SPACEWIRE ROUTER ROLE IN SYSTEM-ON-CHIP DESIGN 
The system-on-chip architecture is a multi-processor 

architecture that provides a significant performance increase 
compared to earlier generations of European space processors, 
with high-speed interfaces such as SpaceWire and gigabit 
Ethernet on-chip. 

The NGMP was initially specified to include for SpaceWire 
codecs with AHB host interfaces and hardware RMAP targets. 
The four SpaceWire codecs would use redundant ports giving a 
total of eight external SpaceWire links, where four of the links 
could be used separately. 

The four SpaceWire codecs where later replaced by the 
SpaceWire router. The register interface of the AMBA ports of 
the SpaceWire router are software compatible with the register 
interface of the previously used codecs, giving little or no 
overhead for software implementations. While the SpaceWire 
router supports redundant ports the choice was made to 
implement the eight ports as separate links and instead to 
recommend group-adaptive routing as an alternative to the 
redundant port feature. This gives users the alternative to 
forego redundancy and instead use all eight available links 
simultaneously. 

The NGMP is targeted at general payload processing with 
the main design goal of increasing the average processing 
performance. The main use of the SpaceWire router within this 
context is not to route SpaceWire traffic from external entities 
but instead to provide the same functionality as the previously 
included SpaceWire codecs. 

The inclusion of the SpaceWire router provides more 
options to system designers. The device can be used to both 
provide SpaceWire connectivity to the on-chip processing 
components while also acting as a router for external entities. 
Protection mechanisms in the architecture also allow the use of 
the SpaceWire router to be completely separate from the rest of 
the design. In effect packaging the router and microprocessor 
components together with the gain of reducing the number of 
required devices. 

V. TRAFFIC ROUTING 
The first use of the SpaceWire router within the NGFP 

validation effort was to study the effects of routing AMBA 
traffic either through or behind the system’s Level-2 cache. 

The test consists of an RTEMS application that is 
transferring data over the four AMBA ports simultaneously. 
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Fig. 2 Example of test rig setup 
 

The router is configured to route the SpaceWire packets from 
AMBA port 0 to AMBA port 1, then AMBA port 1 to port 2 
and so on back to AMBA port 0. This means that every packet 
will exercise eight DMA operation channels every time one 
packet makes one round-trip. The number of round-trips is 
counted and performance figures are calculated based on these 
counts. 

The packets are marked with a unique sequence number 
and contain 16-bit incremented data. This is done to be able to 
verify packet receive/transmit ordering and data correctness. 
The packet sequence is verified for every received packet. The 
data is verified after all transmissions are finished. 

The tests were performed with the internal SpaceWire 
fabric and AMBA system running at 200 MHz. 

The test was run in several different configurations, of 
which three are considered here: 

• CFG2 – Cache-coherent system with Level-2 
cache, caching all traffic 

• CFG5 – Cache-coherent system with Level-2 
cache, SpaceWire DMA buffers and traffic not 
cached 

• CFG10 – System with Level-2 cache. SpaceWire 
DMA buffers not cached by Level-2 cache.  
SpaceWire DMA traffic does not pass through 
Level-2 cache. In this configuration the cache 
coherency of the L1 cache cannot be maintained 
through bus snooping. The processor MMU is 
used to mark the DMA buffers as noncachable to 
solve the coherency issue. 

 

The results of the tests showed that the highest performing 
configuration is CFG2 where the Level-2 cache caches all 
DMA traffic. This is expected as the software execution causes 
little interference and the Level-2 cache is essentially dedicated 
for DMA buffers. In a configuration where additional software 
instances made use of the Level-2 cache it is expected that the 
SpaceWire traffic throughput and software application 
performance would be negatively affected due to the shared 
resource in the Level-2 cache. The combined throughput for all 
DMA ports was measured to 1.54 Gbit/s. 

The test case CFG5 showed that SpaceWire throughput is 
more than halved when marking the DMA buffers as uncached 
in the Level-2 cache. In this configuration the Level-2 cache 
does not add any benefit when fetching data from external 
memory, instead the cache only adds latency on each DMA 
access. 

The CFG10 test case showed the effects of bypassing the 
Level-2 cache and routing traffic directly to the main memory 
controller and was completed using a FPGA prototype due to 
NGFP IOMMU silicon errata. The test showed that the 
throughput decreases with 18% in CFG10. 

While the data throughput for this particular test is lower 
when bypassing the Level-2 cache it is important to recognize 
the effects on the processor system. When bypassing the Level-
2 cache the DMA traffic will have negligible, if any, impact on 
software instances with high Level-1 and Level-2 cache hit 
rates. This allows large amount of data to be transferred to 
main memory without processor intervention and without 
impacting performance of software.  
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VI. SPACEWIRE ROUTING TESTS 
The traffic routing test described in the previous section 

studied the effects of using the AMBA ports to transfer large 
amounts of data. The second set of validation tests performed 
on the functional prototype device that involved the SpaceWire 
router focused on the routing capabilities of the router. The 
tests were divided into four major groups: 

• All SpaceWire ports – Exercise the router by 
generating traffic on all ports 

• Group-adaptive routing 
• Packet distribution 
• Priority routing 
• Packet timeout 

All tests described below were performed with the internal 
SpaceWire fabric running at 200 MHz and the AMBA system 
running att 200 MHz. All SpaceWire links were configured to 
operate at a bitrate of 200 Mbit/s.   

A. All SpaceWire ports 
To validate that all the SpaceWire ports of the SpaceWire 

router can handle both receive and transmit at a rate of 200 
Mbit/s, each SpaceWire port was connected to another 
SpaceWire port. 4 MiB packets were then sent from an AMBA 
port, routed out onto a SpaceWire port, received at another 
SpaceWire port, and then routed to an AMBA port were the 
data was validated. This test was repeated so that all 
SpaceWire ports were utilized, and both path addresses and 
logical addresses were used for the packets. 

B. Group adaptive routing  
The SpaceWire router supports group adaptive routing for 

all path addresses and logical addresses. Group adaptive 
routing means that packets can be routed through the network 
over different paths depending on which of the router's ports 
that are available when the packet arrives. For example, a 
packet with address 0x40 arrives at SpaceWire port 1 of the 
router, and address 0x40 is configured with group adaptive 
routing to SpaceWire port 2 and 3. The router will then route 
the packet to either port 2 or port 3 depending on which port 
becomes available first. If both ports are available, the router 
will send the packet on the port with the lowest port number. 
The group adaptive routing mechanism was validated by 
connecting four SpaceWire ports together and then sending 
packets from an AMBA port where the address byte of the 
packets were configured with group adaptive routing to two of 
the four ports. When the packets arrived at the router again 
they were routed to another AMBA port. It was then verified 
that the packets arrived correctly as long as one of the two 
SpaceWire used as output ports were connected to another 
port. If none of the two SpaceWire ports used as output ports 
were connected then the packet was not received at the AMBA 
port used as destination. Group adaptive routing as also 
verified further in the packet distribution validation (see 
below). 

C. Packet distribution 
Packet distribution - which means that data arriving at a 

input port is sent to multiple ports simultaneously - is 
supported by the SpaceWire router for both path addresses and 
logical addresses. This feature was validated by connecting 
four SpaceWire ports to each other and then sending a packet 
with two address bytes from an AMBA port. The first address 
byte was configured with header deletion and packet 
distribution out on the four SpaceWire ports, and the second 
address byte was configured with group adaptive routing to 
AMBA ports 0-3. When the packet was sent from the AMBA 
source port the first address byte was removed by the use of 
header deletion, and the packet was routed out onto the four 
SpaceWire ports. It was then verified that the four packets, 
arriving at one SpaceWire port each, was routed to one AMBA 
port each (because group adaptive routing was used for the 
second address byte). This test also adds additional validation 
of group adaptive routing since the test validates that group 
adaptive routing works when the destination ports are busy 
with transmitting data. The validation of group adaptive 
routing described above only validated the case when the 
destination links were not running. 

D. Priority routing 
When packets are to be routed, each destination port is 

arbitrated individually using a two level priotiy. The priority is 
based on the first address byte of the incoming packet, and all 
path addresses and logical addresses can be assigned either a 
high or low priority. Round-robin is used when one or more 
packets with the same priority competes about the same 
destination port. The validation of the priority routing 
mechanism was done by enqueueing four different packets, 
each one from a different AMBA port, where all packets were 
to be routed out on the same SpaceWire port. Three of the 
packets contained an address that had been assigned a low 
priority, while the fourth packet contained an address with high 
priority. The SpaceWire port that the packets would be routed 
out onto was connected to another SpaceWire port of the 
router, and the second address byte in all packets was the path 
address of one of the AMBA ports (same for all packets so that 
the order could be observed). The three low priority packets 
were sent slightly before the high priority packet, and it was 
then validated at the destination AMBA port that the first 
packet received was the first low priority packet, followed by 
the high priority packet, and then followed by the two 
remaining low priority packets. It was also validated that if the 
high priority packet was instead changed to low priority it was 
received last of the four packets. 

E. Packet timeout 
The SpaceWire router implements packet timers in order to 

prevent situations where the ports becomes blocked for ever if, 
for example, a source stops sending data without terminating 
the packet with an end of packet marker (EOP and EEP). In 
such a situation the router will detect that no data has been sent 
for a certain amount of time (configurable), and the packet will 
then be spilled and the destination port released. Connecting 
two of the router’s SpaceWire ports to each other has validated 
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the packet timeout feature. Then a packet containing two 
address bytes was sent from an AMBA port. The first address 
byte made the router route the packet out onto the first of the 
two mentioned SpaceWire ports. The second address byte 
made the router try to route the packet to a SpaceWire port that 
was not connected to anything. After the first packet was sent 
another packet was sent from a second AMBA port. The first 
address bytes of the second packet informed the router to route 
the packet out onto the same SpaceWire port as the first packet, 
and the second address byte was the address of a third AMBA 
port. In the case that the SpaceWire routers timers were not 
enabled it was verified that the second packet never reached its 
destination (because the first packet blocks the outgoing 
SpaceWire port for ever). If timers were enabled it was verified 
that the second packet eventually reached its destination, since 
the first packet was spilled by the router after a timeout period 
when it failed to route it. 

 

VII. CONCLUSION 
The parts of the NGFP validation effort that included the 

SpaceWire router aimed to prove the design decision to allow 
AMBA traffic to be routed so that it bypasses the Level-2 
cache and to demonstrate core functionality of the router.  

The functionality to bypass the Level-2 cache was 
successfully demonstrated using the SpaceWire router AMBA 
ports and as a side effect also verified high-speed 
communication between the router’s AMBA ports. 

Core functionality of the router was also demonstrated by 
generating traffic on all ports and execution of test cases using 
group-adaptive routing, packet distribution, priority routing and 
packet timeouts. 

The NGMP is part of the ESA roadmap for standard 
microprocessor components and it will be commercialized 
under fair and equal conditions to all users in the ESA member 
states. The NGMP is fully developed with manpower located 
in Europe, and it only relies on European IP sources. It will 
therefore not be affected by US export regulations. 
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Abstract—This paper summarizes the need for galvanic 

isolation in SpaceWire networks, reviews the limitations of 

current isolation solutions, and proposes a new SpaceWire Link 

Isolator device based on radiation-hardened Silicon-on-Sapphire 

(SOS) technology.  As a stepping-stone to the proposed device, a 

discrete galvanic isolation solution was demonstrated using 

Silanna's core isolator chip along with commercial off-the-shelf 

(COTS) LVDS transceivers and isolated DC-DC converters to 

power all circuitry across the isolation barrier. SpaceWire links 

operating at 200 Mbps were successfully isolated and handled the 

introduction of up to 50 V of common-mode voltage on the 

demonstration unit.  The proposed integrated solution is expected 

to have an on-chip isolated power and operate up to 400 Mbps, 

handling a common-mode of 100 V-RMS, and a galvanic 

isolation of 1 kV-RMS. 

Index Terms— Spacewire, SpW, isolation, fault propagation, 

LVDS, common mode voltage, galvanic, component 

I. INTRODUCTION 

SpaceWire (SpW) as defined in the standard [1] uses the 

Low Voltage Differential Signaling (LVDS) electrical interface 

which has the advantage of reducing the power required for a 

high speed data link, however the existing LVDS buffer and 

ASIC devices have 2 principal drawbacks for implementing 

high reliability systems: 

 

1. limited common mode voltage tolerance 

2. fault propagation paths 

 

The common mode tolerance is +/-1V; if this voltage is 

exceeded then the link data may be corrupted.  In the worst 

case the transmitter/receiver devices may either be stressed or 

permanently damaged.  Stressing of the LVDS buffer may not 

be evident but often results in a reduced reliability leading to 

premature failure later.  Within a spacecraft, it is practical to 

control the common mode voltages within the specified limits 

and thus once launched problems would not be anticipated.  

Control of the common mode voltages during ground testing of 

spacecraft with remote Electrical Ground Support Equipment 

(EGSE) that use long cables becomes more problematic; 

drivers and receivers have failed in test configurations either 

due to incorrect test setups, poor grounding setups, or the 

effects of  EMC testing. Clearly it is important to implement an 

effective grounding scheme and ensure that methods for 

monitoring the common mode voltages are in place rather than 

wait for failures to occur or assume acceptable conditions are 

met.  

Fault propagation paths exist between LVDS link ends due 

to the direct silicon to silicon connection between the devices 

at the two ends of a link [2].  A power supply failure in one 

piece of equipment could propagate to another equipment by 

injecting out of specification voltages at the LVDS buffer 

terminals [3].  Due to the constraints of high speed signaling, it 

is not practical to use series protection resistors in the signal 

lines to reduce potential fault currents to an acceptable level; 

thus, it is necessary to add protection to the internal supply rails 

of each equipment. 

 

 
The mitigation methods for both the common mode and 

fault propagation issues are time consuming to analyse for 

failure mode effects and they typically result in an increased 

complexity of the flight equipments. 

It is thus highly desirable to incorporate galvanic isolation 

in the link paths, this will permit the legacy Mil-Std-1553B 

command and control links to be replaced with the more 

capable SpW bus and to eliminate failures in test environments 

with EGSE.  

II. LIMITATIONS OF CURRENT ISOLATION SOLUTIONS 

The Data and Strobe lines of SpW are non-DC-balanced 

signal streams with data rates up to 400 Mbps.  Since the signal 

streams are not DC-balanced, typical capacitive or inductive 

(transformer) AC coupling methods for isolation are not viable; 

in comparison, by design, high speed digital isolators are 

capable of handling non-DC-balanced signal streams.  

However, the high speed digital isolators available today have 

maximum data rates of 150 Mbps; this falls below SpaceWire’s 

Spacecraft 
main bus

LVDS linkVsupply 1

Avionics unit 1 Avionics unit 2

V
Common mode voltage difference

Vsupply 2

Fault propagation 
path between 
supply rails

 

Fig. 1   Common mode voltages and fault propagation 
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Fig. 3.  Silanna SpW Demonstration Module 
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Fig. 2.  Silanna SpW Link Isolator 

 

 
 

Fig. 4.  Sample Statistics of Isolated SpW Link Transfer 

 

400 Mbps maximum data rate.  Isolators based on opto-

couplers are relatively slow (~10 Mbps), susceptible to 

radiation, and degrade in performance over time.  Silanna has 

already demonstrated the digital isolation of signal streams 

greater than 500 Mbps using a 0.5μm Silicon-on-Sapphire 

(SOS) process. [4] 

III. PROPOSED SPACEWIRE LINK ISOLATOR 

The proposed SpW link isolator device would have four 

high-speed data channels (two in each direction) to handle Data 

and Strobe transmit & receive signaling; with LVDS levels on 

the cable-side & selectable LVDS/LVTTL levels on the 

module-side of the isolation barrier, both discrete and 

integrated SpW links could be isolated with a nearly drop-in 

isolation solution.  To further simplify the adoption of the SpW 

isolator, the device would also include the integration of a DC-

DC isolator to optionally provide power to the cable-side from 

the device side without the need for additional active 

components (see Fig. 2). 

A summary of the target features are: 

 4 high speed (400 Mbps) channels 

 Cable-side: LVDS 

 Module-side: LVTTL or LVDS 

o LVTTL: LV049 Mode 

o LVDS: Repeater Mode 

 LVDS failsafe per SpW standard 

 Cold sparing for redundant backup 

 Isolation voltage: 1 kVrms 

 Working voltage: 100 V (common mode 

voltage) 

 Integrated DC-to-DC isolator to power cable-

side from module-side 

 Cable-side data lines align well w/ SpW cable 

connection 

 Ground-based device in 20-pin plastic package  

 Space grade device in 20-pin ceramic package 

 Silicon-on-Sapphire (SOS) technology 

 Target Radiation Tolerance > 100 krad(Si) TID 

(for Space grade) 

 

IV. DEMONSTRATION MODULE 

To demonstrate the high speed digital isolation capabilities 

in a SpW application, a demonstration (demo) module was 

built around the Silanna SIL1042L 4-channel isolator device 

(Fig. 3).  A pair of LV049 (dual channel LVDS transceiver) 

type devices was used for the LVDS I/O.  An isolated DC-DC 

converter was also included as an option to power the isolated 

side of the module.  The module demonstrated the wide 

common mode range of the isolated interface and the 

capability to handle the non-DC-balanced SpW data streams 

up to 400 Mbps. 

V. INITIAL TESTING 

The demonstration module was successfully tested with 

non-DC-balanced pseudo-random bit streams at data rates up 

to 400 Mbps; common mode voltages of up to 10 Volts were 

also introduced without disruption. 

Testing in SpW environments is currently in progress with 

promising results, the links operating at DC and AC common 

mode voltages up to 50V. 
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VI. CONCLUSIONS 

The initial testing of the SpW demo module clearly 

addressed one of the principal drawbacks for implementing 

high reliability SpaceWire systems – limited common mode 

voltage tolerance.  The unit was able to pass 400 Mbps data 

with up to 50 Volts of common mode voltage present; the 

proposed integrated SpW link isolator is targeted to have 100 

Volts of common mode voltage tolerance.  Although galvanic 

isolation should readily eliminate the problem of fault 

propagation paths, testing continues at Silanna and within the 

SpaceWire community to confirm that this drawback is also 

addressed. 
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Abstract— This paper reports on the major achievements of 

the ESA project to develop a Low Mass SpaceWire cable design, 
the main content of which was previously presented at the last 
International SpaceWire conference in San Antonio, November 
2011.   

Today, the team has completed the project with a cable mass 
reduction by at least 50 per cent, and is able to report on the final 
selections of the different cable versions presented in 2011, along 
with their relative mechanical, electrical and shielding 
performances versus mass savings.   

Two versions remain from the 4 initial versions after final 
selection. The first version uses twisted shielded pairs and 
presents electromagnetic, mechanical and electrical 
performances similar to the existing standard, and is therefore 
recognized by ESA. The second version uses pairs of coaxial 
cables and presents higher attenuation, thus limiting the usage 
length, but significantly increased flexibility and an even lower 
mass.  This version, however, is not ESA recognized.  

The project team additionally concludes on the maximum 
advisable lengths for the different low mass versions assessed.  

Therefore, taking all of this into account, the team is currently 
working with ESA and Star Dundee to feed all of these 
conclusions into the latest draft of the ECSS-ST-50-12 assembly 
standard and the ESCC 3902/003 cable standard updates. The 
screen termination method has been reviewed in depth. The 
inner and overall shields are terminated together to the 
connector shell at both ends. 

SpaceWire, however, remains limited to 400Mbits/s or its 
maximum usable length.  The new SpaceFibre standard will be a 
multi-gigabit protocol proposing copper or fiber optic solutions 
for very high data rates and/or longer cable lengths.  A good 
connector candidate for a copper cable solution is named 
Axomach®, an Axon’ connector previously developed with CNES 
for transmissions up to 10Gb/s per channel. The latest tests run 
by Star-Dundee demonstrate that this cable and connector 
solution works very well for crossover transmission lines running 
at 2.5Gb/s. 

Index Terms— Relevant indexing terms: SpaceWire, 
SpaceFibre, Micro-D, Nano-D. (key words) 

I. BACKGROUND, EXISTING LIMITATIONS 

This short paper intends to provide a brief overview of the 

recently completed ESA project to develop a low mass 

alternative to the existing SpaceWire cable, and will discuss 

continued limitations and possible future developments in this 

area. 

An overview of the progress (at that time) has previously 

been presented at the last International SpaceWire Conference 

in San Antonio, Texas in November 2011.  This paper also 

serves as an update to that presentation. 

The existing SpaceWire cables, recognized by the ECSS-

ST-50-12 standard, have a number of limitations.  They are 

relatively heavy, at approximately 80g/m for the lightest 

(AWG28) version, they are fairly rigid, they are not 

particularly radiation tolerant, and they have quite a large 

minimum bend radius, particularly the bigger AWG26 version.  

All of these limitations reduce the suitability of the current 

SpaceWire cable for installation and use in spacecraft, although 

they remain currently the only approved options. 

In addition to these physical constraints with the cable 

itself, the standardized interface connector, the 9 way Micro-D, 

is not impedance-matched and therefore not optimized for the 

application, and the standardized wiring schedule is not 

optimized for EMC. 

The ESA ITT sought to address many of these issues, the 

principle one of which was weight reduction, and Axon’ Cable, 

the winner of the tender, has therefore been developing such 

optimized solutions along with their consortium partners, Star 

Dundee in Scotland and EADS Astrium in Toulouse, France. 

II. WAYS TO REDUCE MASS, TWO POTENTIAL VARIANTS 

SELECTED 

Mindful of the electrical performance requirements dictated 

by the standard, it was necessary still to use certain minimum 

dimensions and materials.  However, three main areas were 

focused on to bring about improvements: 

- The use of lighter materials.  Essentially broken down 

into conductors and insulators, the use of lighter 

conductors such as aluminium, was proposed where 
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appropriate, as opposed to copper; and for the 

insulators or dielectrics, the use of expanded or 

alveolar materials was selected, as being lighter than 

their solid counterparts. 

- Constructional changes.  The existing SpaceWire cable 

is a construction consisting of four individually 

screened and jacketed twisted pairs all laid together in 

an assembled bundle, which itself then has an overall 

braided screen and an overall extruded outer jacket.  

The project members sought to explore other 

constructions which could achieve the same or similar 

electrical performances while using a “lighter” 

combination of elements. 

- Flexibility and radiation.  While considering weight 

reduction, the project team also gave consideration to 

possible ways of increasing the flexibility and radiation 

tolerance of the finished cable.  

 

In all, some 12 suggested constructions were put forward 

for initial analysis and testing, following which two 

constructions of interest were finally selected. 

 

The first of these, known initially as Variant 03, and then 

given the project designation C-OA-TPA-A-2819, is 

similar to the existing SpaceWire AWG28 cable, with 

the following key differences: 

- The silver plated copper conductor is a 19 stranded 

AWG28 conductor, giving it more inherent flexibility 

than the existing 7 stranded version.   

- The primary insulation is of an aleveolar PTFE (or 

aPTFE) construction, where the material is not solid 

but has a number of air gaps in a lattice-like structure, 

see Fig 2.  This has the twin advantages of improving 

the dielectric constant whilst also reducing weight, 

 

 

 

 

 

 

 

 

 

Fig. 1.  Cross sectional view of an alveolar PTFE insulated conductor.  

- The inner screens of each twisted pair are silver plated 

aluminium instead of silver plated copper, thus 

substantially reducing weight (and not requiring 

termination) 

- The filler between the four screened pairs is of 

expanded PTFE, for which Axon’s trade name is 

CELLOFLON
®
, a material which is inherently very 

flexible, 

- An outer screen has been retained, also in silver plated 

aluminium, but which, very importantly, is in contact 

with the four inner screens, 

- And finally an outer insulation is constructed by the 

use of a CELLOFLON
®
 expanded PTFE inner tape 

and a polyimide (KAPTON) outer tape, providing an 

excellent combination of lightweight flexibility and 

good radiation tolerance. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Variant 03 (C-OA-TPA-A-2819) Low Mass SpW cable (Outer shield 

in contact with inner pair shields, all shields in silver plated aluminium) 

Having been proven to have acceptable performance results 

in all tests, this variant has been accepted in principle by ESA 

as a potential lightweight “drop in” replacement to the existing 

SpaceWire variants, and is in the process of being added to the 

latest revision of the standard. 

 

The second construction of interest, known as Variant 09, 

(C-OC-CPC-P-3407) takes a completely different 

constructional approach, based on four pairs of coaxial cables.  

Although these are not 100 ohm impedance pairs each coaxial 

has a 50 ohm impedance, and therefore under the required 

SpaceWire tests as defined by the Project scope they 

nevertheless perform satisfactorily.  An enhanced version of 

this variant employs an overall shield for improved EMC 

underneath an outer insulation of similar construction to that of 

Variant 03.  The mechanical advantages of this variant are 

substantial; 

- Mass of around 33 g/m – almost 70% weight saving, 

- Outer diameter of around 4.5 mm as opposed to over 7 

mm for existing SpaceWire, 

- Extremely small bend radius – the cable can almost be 

bent double during installation and still perform 

satisfactorily, see Fig 3. 

 

 

 

 

 

 

 

 

Fig. 3.  Alternative variant based on 8 x coaxial cables, with picture showing 

the tight bend radius possible whilst maintaining electrical performance 

However, it is important to note that according to ESA, the 

coaxial construction is not theoretically suitable for a floating 
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load LVDS application such as SpaceWire, and as such ESA 

does not currently endorse its use. 

 

This cable can be terminated using existing 9 way Micro-D 

connectors, or indeed the much smaller 15 way Nano-D 

connectors, thereby saving even more space and weight (but 

clearly that would then require devices with Nano-D mating 

halves).  It is not suitable for re-work, however, being based on 

AWG34 wires, significantly smaller than the minimum 

acceptable gauge size recognized by ESA, AWG30. 

 

III. COMPARISON BETWEEN BOTH VERSIONS 

Both cable types meet the SpaceWire performance criteria, 

although because of the smaller gauge size it would not be 

appropriate to use the coaxial version in longer lengths.  If we 

assume that an “acceptable” value for Insertion Loss over the 

whole assembly is 6dB, then we can calculate maximum usable 

lengths for each type, (not including connectors) and 

summarize as follows: 

TABLE I.  INSERTION LOSS COMPARISON 

Part number/ Bach N° 
P551259A / 

X19623 

P551260A^ / 

X19371 

Comments 
43g/m, twisted 

pairs, ESA 

endorsed 

33g/m, coaxial 

pairs, not ESA 

endorsed 

Code 
C-OA-TPA-A-

2819 

C-NO-CPC-P-

3407 

Performance 
at 250MHz 

 
Data rate 
100Mb/s 

S21 (dB/m) @ 

250MHz 

 
0.6 1.24 

Max length to 

reach 6dB in m 
10 4.8 

Performance 
at 500MHz 

 
Data rate 
200Mb/s 

S21 (dB/m) @ 
500MHz 

 
0.85 1.8 

Max length to 

reach 6dB in m 
7 3.4 

Performance 
at 1000MHz 

 
Data rate 
400Mb/s 

S21 (dB/m) @ 

1000MHz 

 
1.27 2.57 

Max length to 

reach 6dB in m 
3.7 2.2 

 

IV. SPACEWIRE SCREEN TERMINATIONS AND CONNECTOR 

CHOICE 

The wiring and screen bonding schedule for the current 

SpaceWire cable is not optimized, but rather was adopted at the 

time, partially due to the constraints imposed by a combination 

of the construction of the cable (where all the inner screens are 

isolated from the outer screen) and the 9 way Micro-D 

connector (which does not have enough contacts to terminate 

all 8 wires and all 4 inner screens).  We therefore have the 

existing standard wherein two of the inner screens are short 

circuited together and terminated to pin 3 at one end, and the 

other two inner screens are similarly terminated to pin 3 at the 

other end, meaning that no inner screen is continuously 

connected from one end to the other.  This was considered 

acceptable under previous EMI guidelines, but it is generally 

accepted today that shield bonding at both ends is far better.  

The outer screen is terminated to the shell of the connector (or 

backshell) but there is no specific requirement for a 360° shield 

termination. 

 

 

Fig. 4.  Existing SpaceWire wiring schedule 

Assuming, for backward compatibility reasons, we wish to 

retain the 9 way Micro-D connector for some time to come, we 

can now substantially improve this wiring schedule with the 

new (ESA endorsed twisted pair) cable construction.  Here, 

because all the inner screens are now directly in contact with 

the outer screen, we can remove any screen termination to pin 

3, thus avoiding the transfer of any EMI interference directly 

into the electronics.  We can then simply terminate the outer 

screen to the body of the connector or backshell, thus 

effectively terminating all screens together in one go.  For 

EMC purposes, it is highly recommended to employ a 

backshell at the rear of the Micro-D connector, with a cable 

entry funnel optimized to be only slightly larger than the inner 

bundle of four pairs, and then to terminate the overall shield 

over this funnel with some recognized form of 360° screen 

termination, such as a EMC band clamp.  This simplified, but 

improved, wiring schedule will now resemble Fig. 5. 

 

 

Fig. 5.  Proposed Low Mass SpaceWire Wiring Schedule 

The Micro-D connector family, however, is not designed to 

be EMC optimized.  There are no guaranteed 360° points of 

contact between the male and female bodies, so much of the 

screen connection tends to travel through the jackscrew and 

jackpost fasteners, known in the Micro-D industry as the 
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“hardware”.  This can be improved, however, by the addition 

of an EMC gasket on the mating face of the male flange, which 

if applied on both ends, will result in significantly better EMC 

performance, as shown by the Zt (Transfer Impedance) figures 

in Table II. 

TABLE II.  TRANSFER IMPEDANCE OF A SPACEWIRE LINK WITH AND 

WITHOUT EMC GASKETS 

Frequency in 
MHz 

Transfer Impedance (Zt) in mΩ 

Version Without gasket 
With gasket on 

one end 

With gasket 

on both ends 

DC 31.3 31.3 31.3 

0.03 29.7 31.6 28.1 

0.10 30.5 31.6 28.45 

1 38.2 39.6 34.3 

10 120 107 60.2 

20 182 150 75.9 

50 341 329 108 

100 646 453 146 

250 1642 594 378 

500 2929 2240 1505 

1000 28619 25855 1075 

 

As part of the Project scope, a survey was undertaken to 

identify possible connectors better suited to increasing data 

rates than the existing, non-impedance matched, 9 way Micro-

D (which nevertheless remains adequate for SpaceWire 

transmission, even at 400Mb/s).  A number of potential 

connector candidates were identified with varying degrees of 

performance, including both circular and rectangular varieties.  

These included connectors from Sabritec (US), Airborn (US), 

Molex (US) and Axon’ (F).  In all some 10 different connector 

families were reviewed on paper.  All have limitations relating 

either to performance, ease and suitability for SpaceWire 

termination, size, or restricted availability.   

In summary, there is no optimized connector (for both 

performance and size) available from a European source, 

indeed even although only one in particular from the US does 

appear promising, it is patent pending, and will therefore likely 

be restricted to a single source.   

There is scope, therefore, for a European manufacturer to 

come up with a suitably optimized connector for existing 

SpaceWire and Low Mass SpaceWire, which should be 

impedance matched to 100 ohms, EMC optimized, and with 

body dimensions that may allow for “forward compatibility” 

for future higher data rate applications, such as SpaceFibre. 

 

V. SPACEFIBRE – COPPER CABLE SOLUTION FOR UP TO 10GB/S 

Out with the Low Mass SpaceWire project, work is 

ongoing to develop the multi-gigabit SpaceFibre protocol, with 

potential media solutions in both copper and optical cable.  

Axon’ has already developed a space grade copper based 

solution in association with the CNES, which (cable and 

connectors combined) is capable of operating at up to 10Gb/s 

per 2 way channel.  A four channel version of this exists 

permitting total data transfer rates across the link of up to 

40Gb/s.  This solution is based on pairs of high frequency 

coaxial cables. 

In order to comply with the intended SpaceFibre 

requirements, a two way version of such an assembly, trade 

name, AxoMach
®
,  would be required in a crossover 

configuration, permitting full duplex operation servicing 

transmitter and receiver at both ends.  Such an assembly has 

been tested by Star Dundee at 2.5Gb/s with satisfactory results, 

see Fig. 6. 

 

 

Fig. 6.  AxoMach crossover 2 way link connected to a Star Dundee 

SpaceFibre test unit at 2.5Gb/s (with eSATA adaptors) 

VI. CONCLUSIONS 

A low mass alternative to the current SpaceWire cable now 

exists at approximately 50% of the standard weight, and can be 

used as a drop-in replacement with existing 9 way Micro-D 

connectors for compatibility with most systems.  This cable is 

currently being added to the updated SpaceWire standard. 

An ultra-low mass version, (70% weight saving) based on 

coaxial cable pairs also exists, but despite satisfactory test 

performance, is not ESA-endorsed for SpaceWire.  User testing 

would be required to determine if this solution could really be 

used in actual LVDS applications. 

The most common SpaceWire interface connector, the 9 

way Micro-D, is neither impedance-matched nor EMC 

optimized, and there is no ready European solution for an 

improved SpaceWire connector.  There is therefore scope to 

develop a matched impedance connector standard for 

SpaceWire, particularly if it can also provide forward 

compatibility for SpaceFibre operation. 

A fully compatible space grade copper-based cable and 

connector solution already exists for SpaceFibre transmission, 

and indeed can support much higher data rates of up to 10Gb/s 

per channel. 
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Abstract— SpaceWire can be considered a de-facto standard 

for onboard payload data systems to implement data links up to 

400 Mbps. SpaceWire has been adopted by all the major space 

agencies throughout the world and most future missions will use 

it. ESA, NASA, JAXA and ROSCOSMOS, for example, are all 

specifying missions with a requirement to use SpaceWire 

standard for the interface links. The standards are maintained 

and issued formally as ECSS documents (e.g. ECSS-E-ST-50-

12C) and this means that equipments designed by different 

agencies are interoperable, this is a significant advantage. 

Presently SpaceWire is mainly used between instrument units, 

however in order to facilitate a higher level of integration of 

onboard systems based on SpaceWire there is a need for a 

suitable connector for backplanes which offers a high number of 

power and discrete signal pins as well as impedance matched 

connectivity for high speed serial links. 

An extensive market survey of available connector types has 

revealed a lack of space qualified connectors that offer the high 

I/O density required as well as matched 100 Ω impedance paths 

for SpaceWire links. Looking at the market perspective, such a 

connector would be useful for applications not only for 

SpaceWire but also for the next generation of high speed serial 

links such as SpaceFibre Copper that will have a minimum data 

rate of 2.7 Gbps. 

This paper presents a new modular connector that Smiths 

Connectors, has designed and prototyped specifically for high 

integrity aerospace backplane applications, it incorporates a 

configurable set of power and discrete pins as well as controlled 

impedance pins that can operate at up to 10 Gbps.  

Index Terms—SpaceWire, SpaceFiber, connector, backplane, 

high speed, controlled impedance. (key words) 

I. INTRODUCTION 

The requirement for a robust, space qualified backplane 

capable of supporting 400 Mbps, 100 Ω  impedance matched 

SpaceWire (SpW) links and capable of transmitting power and 

high density discrete signals was established. An extensive 

market study of pre-existing backplane connectors was 

performed yielding no suitable candidates for the application. 

Initially three configurations were defined containing 

differing numbers of SpaceWire links, power and discrete 

contacts. The three configurations were estimated to cover a 

wide variety of, as yet undefined, applications for the 

connector standard within the SpaceWire community. 

Smiths Connectors proposed a highly configurable 

connector system that satisfied all three defined configurations 

and numerous additional configurations by virtue of a 

connector with a singular, columnar modularity in terms of its 

contact architecture. The modular connector proposed will 

become a standard connector range for Smiths Connectors 

which would be intended to be sold into numerous other 

markets requiring robust backplane connectors. 

The aim of this paper is to detail the features and explore 

the simulated performance of the connector system in various 

configurations and to demonstrate its ability to fulfill the 

requirements of numerous applications without requiring 

additional development and qualification. 

II. REQUIREMENTS 

The minimum requirements for the connector were defined 

by Systems Engineering and Assessment (SEA) with reference 

to ECSS specifications where applicable. Table 1 contains the 

requirements as defined by SEA. 

 

Requirements Table 
Req. 

No. 
Requirement Comment 

010  The SpW backplane connector 

shall fit 3U and 6U size cards. 

To support the 2 proposed 

card sizes. 

020 The SpW backplane connector 

shall permit 20mm pitch boards. 

 

030 The mass of the connector shall 

be minimised within the scope of 

environmental and material 
constraints. 

 

040 Both the connector body and 
contact materials shall be 

ECSS-Q-ST-70C [REF 1] 
ECSS-Q-70-71 [REF 2] 
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Requirements Table 
Req. 
No. 

Requirement Comment 

compatible with ECSS standards 
for flight connectors. 

ECSS-Q-ST-70-02 [REF 3] 

050 The connector shall meet ECSS 

standards for durability. 

ECSS-Q-ST-70C [REF 4] 

060 The connector shall allow for 

through hole solder fitting to both 
the backplane and daughter-card. 

 

070 Alignment pins shall be provided 

on the connector. 

To aid connector mating and 

prevent contact damage. 

080 A minimum of 8 connector 

polarisation or keying options 
shall be provided. 

To allow selective mating 

between connectors on 
different card types. 

090 The connector shall support a 

minimum of 4 SpW links. 

A SpW link is a full duplex 

communication path as 
supported by a standard SpW 

cable, (4 differential pairs). 

100 Each differential pairs shall have 

an impedance of 100 Ω . 

This is for all 4 differential 

pairs within a SpW link. To 

allow high speed 

communications. 

101 Each SpaceWire differential pair 

shall be shielded from cross-talk. 

 

110 Each SpW pair shall support a 

data rate of at least 2.75Gbit/s. 

To allow the use of SpFi 

Copper without changing the 
contact types. Ideally, the 

SpW pair should support a 

data rate of up to 10Gbit/s. 

120 The SpW connector shall have 12 

power pins and 12 returns (24 
contacts) capable of 5A constant 

carry and a minimum of 85V 

rating for each contact. 

Voltages envisaged to be 

+50V, +28V, +15V, +12V, -
12V, +5V, -5V, +3.3V, 0V 

130 The SpW connector shall have a 

minimum of 60 discrete contacts, 

each capable of 200mA (de-rated) 
constant carry and a minimum of 

50V rating for each. 

For carrying non-SpW 

signals. 

140 There shall be a minimum of 12 

contacts with a differential 

impedance of 100 Ω within the 
provided discrete contacts. 

For use as LVDS clocks. 

 

 The connector will also meet the requirements of ECSS 

3401 [REF 5], ECSS-Q-ST-70-08C [REF 6] & ECSS-Q-ST-

70-38C [REF 7] where applicable. In addition to the 

requirements defined by SEA and ESA Smiths Connectors 

identified further requirements that were deemed attractive and 

incorporated those elements into the design of the connector. 

III. FEATURES & PERFORMANCE 

The connector is comprised of two main sub-assemblies; a 

socket contact housing backplane mounted receptacle and a 90º 

daughter-card mounted plug containing pin contacts. The 

connector (mated) is 97.5mm x 25 mm x 12.5mm enabling 

comfortable mounting of 1 connector on a 3U card or two 

connectors on a 6U card (see fig.1 & fig. 2).  

 

 

Fig. 1.  Mated 3U connector, shown on 100mm PCBs.  

The potential exists to expand the range to include a 6U all 

in one connector to increase the capacity of the overall 

solution. The 3U connector was designed with a capacity of 22 

bays and can, therefore, house 22 modules. A single connector 

6U solution would contain up to 49 modules. The 12.5 mm 

depth allows for adjacent connector stacking heights of ~ 12.7 

mm in a surface mount (SMT) connector. 

Located at either end of the plug connector are polarizing 

guide pins which also form part of the mounting system 

connector mounting system. Each of these pins can be 

positioned in one of 4 orientations giving a total number of 16 

polarization permutations (see fig. 2).  

Chassis and insulator components have been manufactured 

from a nonconductive Polyether Ether Ketone (PEEK) 

composite but can be supplied in a conductive or selectively 

conductive PEEK composite to improve electromagnetic 

compatibility (EMC). In the aforementioned screened state the 

cross-talk between modules is minimized. Mounting hardware 

is stainless steel.  

The contacts located in both ‘halves’ of the connector are 

scoop proof, that is to say they are very well protected from 

accidental damage when unmated or during transport by virtue 

of being located wholly within small cavities (see figures 2, 3, 

4  & 5). 

 

 

Fig. 2.  Unmated 3U connector, shown on 100mm PCBs 
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A system for preferential mating has been devised and 

implemented for all module types, whereby early mate contacts 

will make electrical connections before late mate contacts (see 

figures 2, 3, 4 & 5). Mating interfaces of all contacts have a 

minimum of 1.27 µm of gold plating as per ECSS-3401. 

All modules have been designed to maximise their 

dielectric withstand voltage (DWV) capability without the 

requirement for interfacial seals and therefore enabling a high 

DWV offering without the typically associated (and deemed to 

be undesirable) increase in mating force. Further features have 

been incorporated into the internals of the connector to reduce 

mating force, which, when coupled with the use of 

Hyperboloid sockets throughout, are intended to yield a 

backplane connector with industry leading low mating forces.  

Both plated through hole (PTH) & SMT technologies are 

supported by the connector system. Connections to either 

and/or both printed circuit boards (PCBs) can be accomplished 

by three different methods, dependent upon application or 

customer preference; PC-tails suitable for plated through holes, 

surface mounted (soldered) and a solder-less, compliant, 

surface mounting method utilising spring probes. 

A. Power3.1 module 

Power3.1 modules contain 3 x 1 mm (size 20) contacts. 

These are rated at 7.5 Amps (A) nominally and are typically 

de-rated to 5 A when in a bunched configuration – i.e. when 

located in close proximity to one another whilst all are working 

at 5 A. Existing receptacle modules (see fig. 3) are configured 

with 3 x early mate contacts or with 3 x late mate contacts 

although a mixture of the two within one receptacle module is 

possible.  

 

         

Fig. 3.  Two Power3.1 daughter modules shown with early and late mate 

Power3.1 receptacle modules. 

B. Power5.075 module 

Power5.075 modules contain 5 x 0.75 mm (size 22) 

contacts. These are rated at 5 A nominally and are typically de-

rated to 4 A when in a bunched configuration. Existing 

receptacle modules are configured with 5 x early mate contacts 

or with 5 x late mate contacts (see fig. 4) although a mixture of 

the two contact types within one receptacle module is possible. 

 

        

Fig. 4.  Two Power5.075 daughter modules shown with early and late mate 

Power5.075 receptacle modules.  

C. Signal10.04i module 

Signal10.04i modules contain 10 x 0.4 mm contacts. These 

are rated at 400 mA nominally and are de-rated to 200 mA 

when in bunched configuration. Existing receptacle modules 

are configured as follows: early mate; containing 10 x early 

mate contacts, late mate; containing 10 x late mate contacts and 

mixed mate; containing 5 early mate and 5 late mate contacts, 

with the module exhibiting an early and late mate sidedness 

(see fig. 5). The module has been designed such that a higher 

rated contact can be used as a direct replacement to upgrade the 

current rating to 2 A nominally and 1 A de-rated whilst using 

the same mouldings (Signal10.04 module). 
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Fig. 5.  Three Signal10.04i daughter modules shown with (from the left) 

mixed mate, early mate and late mate Signal10.04i receptacle modules.  

The Signal10.04i module is impedance matched (100 Ω +/- 

6 Ω differentially). Differential pairs are routed across the 

connector, i.e. there are potentially 5 rows of differential pairs 

in each Signal10.04i module. Within each differential pair 

there is no skew as each line in a differential pair is comprised 

of identical contact components to its partner. Figure 6 shows 

the return loss simulated from 0 to 8 GHz in CST microwave 

studio for each differential pair. The 1 ns rise time particular to 

the SpW transfer protocol is, for the sake of the interpretation 

of these results, considered to be approximately equivalent to 

the Gaussian pulse used for all simulations at 1 GHz. Ports 

were labelled sequentially, i.e. differential pair row 1 was port 

1 to port 2, and row 5 was port 9 to port 10. Odd numbered 

ports were adjacent to one another, as were even numbered 

ports. Only the differential mode (mode 1) was simulated. 

 

Fig. 6.  Differential return loss for Signal10.04i module configured with 5 

differential pairs.  

If all contacts are to be utilised as differential pairs, cross 

talk will be at a maximum within the system.  As the following 

figures show, cross talk (X-talk) between differential pairs 

progressively diminishes with distance from the excited pair. 

Figure 7 shows the near (s1,3) and far (s1,4) end cross talk 

(NEXT and FEXT), when port 1 is excited, and the NEXT 

(s2,4) and FEXT (s2,3) when port 2 is excited.  Simulations 

were performed with a Gaussian pulse from 0 to 8 GHz. 

Simulated s-parameter data in figures 8, 9 & 10 follow the 

same nomenclature as used in figure 7.  

 

Fig. 7.  Differential X-talk between pair 1 & pair 2. 

Differential X-talk between pair 1 and 2 was approximately 

-23 decibels (dBs) for a 1 ns rise time pulse (see fig. 7).  

 

 

Fig. 8.  Differential X-talk between pair 1 & pair 3. 

Differential cross talk between row 1 and row 3 is 

approximately -47 dBs for a 1 ns rise time pulse (see fig 8). 
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Fig. 9.  Differential X-talk between pair 1 & pair 4. 

Differential X-talk between row 1 and row 4 is approximately -

66 dBs for a 1 ns rise time pulse (see fig 9).  

 

 

Fig. 10.  Differential X-talk between pair 1 & pair 5. 

Differential cross talk between row 1 and row 5 is 

approximately -85 dBs for a 1 ns rise time pulse (see fig 10). 

 

The Signal10.04i module was also simulated with the 

intermediate pairs (rows 2 & 4) grounded to assess whether 

changes in configuration could be implemented to improve s-

parameter performance. This configuration allows 3 

differential pairs per module. 

Differences in return loss performance were negligible 

between the two configurations and are not reported here. 

The differential X-talk between pairs 1 & 3 with 

intermediate pair 2 grounded exhibited an improvement of 

approximately 20 dBs at 1 GHz (see figures 8 & 11). 

 

 

Fig. 11.  Differential X-talk between pair 1 & pair 3 with pair 2 grounded. 

The differential X-talk between pairs 1 & 5 with 

intermediate pairs 2 & 4 grounded exhibited an improvement 

of approximately 15 dBs at 1 GHz (see figures 9 & 12). 

 

 

Fig. 12.  Differential X-talk between pair 1 & pair 5 (pairs 2 & 4 grounded). 

D. Quadrax Module. 

 

The Quadrax module differs in its construction from all the 

previously described modules. The module housing is 

constructed from a conductive material (either manufactured 

from aluminium or a conductive composite) acting as a 

waveguide for each of the differential pairs and screening them 

from electromagnetic interference (EMI). The 90º transition is 

accomplished via a PCB minimising inter and intra differential 

pair skew; the connections to which are made compliantly with 

a robust methodology suitable and specifically designed for 

high speed transmission lines situated in high vibration 

environments. The configuration of the differential pairs within 

this module is columnar and therefore orthogonal to those 

located within the Signal10.04i module (see figure 13). 

 

 

  

 

340



               

Fig. 13.  Two Power3.1 daughter modules shown with early and late mate 

Power3.1 receptacle modules. 

The transmission line characteristics of the Quadrax 

module differential pairs were simulated up to 20 GHz, 

corresponding to a digital pulse with a rise time of 

approximately 20ps. The simulated return loss s-parameters 

pertaining to the SpW protocol rise time were approximately -

40 dBs in the worst case (see figure 14). 

 

 

Fig. 14.  Return loss of both differential pairs within the Quadrax module. 

The simulated intra modular differential X-talk was 

approximately -80 dBs at the 1 GHz point under consideration 

in these analyses (see figure 15). 

 

 

Fig. 15.  Near and Far end X-talk between pairs within the Quadrax module. 

IV. CONCLUSIONS 

The goal of designing a robust highly configurable 

backplane connector system, capable of satisfying a large 

number of different signal types, was successfully achieved. 

The 3U connector can be populated with up to 22 of the 4 

types of module: 

 Power3.1, containing 3 x 7.5 A contacts. 

 Power5.075, containing 5 x 5 A contacts. 

 Signal10.04(i), modules which can contain up to 5 

differential pairs (400 mA) suitable for multi gigabit 

per second transmission rates or up to 10 discrete 2 A 

contacts.  

 Quadrax, containing 2 differential pairs, suitable for 

multi gigabit per second transmission rates with 

exceptional screening performance. 

 

The requirements set out by SEA and ESA have been 

designed for in full and in many cases exceeded. 

The connector, in its simulated performance, is suitable for 

use in SpaceWire and is certainly a candidate for SpaceFibre 

Copper applications. 

V. FURTHER WORK 

The prototype connectors currently being manufactured 

will be tested and their performance characterized at 

temperature and under vibration with respect to the following 

aspects: 

 

 Return loss 

 Insertion loss 

 Near end cross talk (intra and inter modular) 

 Far end cross talk (intra and inter modular) 

 Insulation resistance 

 Dielectric withstand voltage 

 Electrical lengths of all signal paths. 

 Mating forces (modular & connector) 
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Suitable test boards will be designed (& manufactured) in 

such a way as to enable the above outlined performance to be 

characterized in isolation.  

Further development of the Quadrax module design will be 

performed to optimize all s-parameter performance 

characteristics at higher frequencies. 

De-rating curves specific to the connector system will be 

derived from empirical data with respect to both bunching and 

temperature. 

Assess the optimized, simulated and measured s-parameter 

performance against the requirements of SpaceFibre Copper. 
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Abstract— The growing autonomy of scientific missions to 

remote planets requires highly capable on-board networks that 
are robust and durable, able to recover from transitory errors 
and faults automatically. SpaceFibre is a very high-speed serial 
data-link being developed by ESA which is intended for use in 
data-handling networks for high data-rate payloads. SpaceWire-
RT is then introduced as a logical development of SpaceWire and 
SpaceFibre, which aims to cover many on-board communications 
applications from low to very high data-rate networks. 
SpaceWire-RT standard is being developed under the scope of 
the 7th Framework programme. SpaceWire-RT uses the upper 
layers of SpaceFibre, which provide QoS, FDIR and multi-laning. 
The lower layers could be represented by both SpaceWire and 
SpaceFibre lower layers. 

The specification of the SpaceWire-RT standard, and its 
modeling is one of the key aspects of the proposed research 
programme. From the textual specification a formalised 
specification for the SpaceWire-RT was developed using the SDL 
language, which is itself a test of the specification for 
completeness and unambiguousness. As a result the consistent 
readable textual description and formalised specification in SDL 
were produced. The SystemC simulation language was used to 
model reconfigurable SpaceWire-RT networks with multiple 
nodes and routing switches. Such models can be used for 
investigating and proving the network level features and 
characteristics of the novel SpaceWire-RT technology: scalable 
performance, responsiveness, robustness, provision of quality of 
service, and ultimate low latency signalling.  

The research leading to these results has received funding from 
the European Community's Seventh Framework Programme 
([FP7/2007-2013]) under grant agreement n° 263148. This paper 
gives and overview of the specification and modeling work that is 
done by SpaceWire-RT Consortium. The main focus of the paper 
is application of modeling for the protocol stack development 
purposes, which advantages could it give and what the 
implemented models could be used for. 

Index Terms— SpaceWire-RT, SpaceFibre, modeling, 
specification, protocols, SDL, SystemC 

I. INTRODUCTION 

Simulation plays a very important role in a process of 
communication protocols design. It is used to validate the 
specification and to find ambiguities and inconsistencies in it. 
This was one of the key tasks in the newest onboard 
communication standard developments flow. The SpaceWire-
RT standard is developed in the scope of the 7th Framework 

Program project. The main project’s task is to conceive and 
create communications network technology, suitable for a wide 
range of demanding space applications where responsiveness, 
determinism, robustness and durability are fundamental 
requirements. This is a critical component technology for 
future spacecraft avionics and payloads.  

The project began with gathering of the requirements for 
the future network technology from Russian and European 
companies involved in the space and avionics industry. Based 
on these requirements the draft of the SpaceWire-RT 
specification was produced. So the next step was to validate the 
specification and check the standard for inconsistencies, 
ambiguities and errors in developed mechanisms. This was 
done by using the simulation models of SpaceWire-RT. 

The current paper gives an overview of the developed 
SpaceWire-RT standard and presents the simulation and 
research results. Moreover, it provides the description of SDL 
point-to-point model and SystemC network model that were 
implemented for the SpaceWire-RT simulation and validation. 

II. SPACEWIRE-RT 

Aerospace industry is one of the most rapidly growing 
areas in terms of communication protocols development. 
Avionics and robotics impose requirements on network 
responsiveness and determinism. The increasing international 
collaboration on scientific and Earth observation spacecraft 
requires standard network technology where a component 
developed by one nation will interoperate effectively with 
equipment developed by another nation. SpaceWire-RT is the 
newest onboard communication protocol standard, which aims 
to fulfill these demanding requirements with a flexible, robust, 
responsive, deterministic and durable standard network 
technology that is able to support both avionics and payload 
data-handling applications [1]. 

SpaceWire-RT aims to cover many on board 
communication applications from low to very high data-rate 
networks. This is a critical component technology for future 
spacecraft avionics and payloads.  

SpaceWire-RT will:  
 use virtual channel concepts to provide a variety of 

QoS; 
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Figure. 1. Overview of SpaceWire-RT layered architecture 

 provide broadcast and multicast capability;  
 increase performance;  
 provide low latency message delivery;  
 include extremely low latency time and out-of band 

signalling mechanisms;  
 incorporate novel fault detection, isolation and 

recovery methods;  
 make the network fully responsible for information 

transfer;  
 decouple application and data transfer;  
 implement appropriate communication mechanisms in 

relatively simple hardware.  
SpaceWire-RT standard is based on the SpaceFibre 

technology [1]. 
SpaceFibre is a very high-speed serial data-link, which is 

intended for use in data-handling networks for high data-rate 
payloads. SpaceFibre is able to operate over fibre optic and 
copper cable and support data rates of 2 Gbit/s in the near 
future and up to 20 Gbit/s long-term. SpaceFibre will provide a 
coherent quality of service mechanism able to support best 
effort, bandwidth reserved, scheduled and priority based 
qualities of service. It will substantially improve the fault 

detection, isolation and recovery (FDIR) capability of 
SpaceWire [11]. 

SpaceFibre provides robust, long distance communications 
for launcher applications and will support avionics applications 
with deterministic delivery constraints through the use of 
virtual channels. SpaceFibre enables a common onboard 
infrastructure to be used across many different mission 
applications resulting in cost reduction and design reusability. 
SpaceFibre can run over fibre optic or copper cables [11]. 

The CODEC design for SpaceFibre has many advantages in 
comparison with SpaceWire [5,11]:  

 It uses fewer wires reducing cable mass;  
 It operates at data rates of 2 Gbits/s and potentially 

higher; 
 It uses matched impedance connectors; 
 The size of all the characters are the same (32-bits); 
 Parity coverage is per character; 
 It uses a DC balanced encoding scheme; 
 It provides simple capacitive, magnetic, or optical 

galvanic isolation; 
 The initialisation protocol is base on a double 

handshake [1]. 
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An overview of the SpaceWire-RT architecture is provided 
in Fig. 1. 

Although the SpaceWire-RT is primarily based on the 
SpaceFibre, it has an additional functionality which is 
necessary for network operation. Therefore, the SpaceWire-RT 
comprises SpaceFibre protocol layers which are complemented 
by the Network Layer. The Network Layer is responsible for 
routing SpaceWire-RT packets over a SpaceWire-RT network, 
comprising SpaceWire-RT routing switches, SpaceWire-RT 
links, and SpaceWire-RT nodes. Moreover, it is also 
responsible for validating and broadcasting SpaceWire-RT 
broadcast messages over a SpaceWire-RT network.  

In turn SpaceFibre defines ten conceptual layers [11]:  
 Virtual Channel Layer which is responsible for quality 

of service and flow control over the SpaceFibre link.  
 Broadcast Layer which is responsible for sending short 

broadcast messages across a SpaceFibre link and for 
receiving those messages.  

 Framing Layer which is responsible for framing 
SpaceWire-RT packet data, broadcast messages and 
FCTs to be sent over the SpaceFibre link. It is also 
responsible for scrambling SpaceWire-RT packet data 
for EMC mitigation purposes.  

 Retry Layer which is responsible for recovering from 
transient errors on the SpaceFibre link, and for 
reporting errors and link failure. It also detects missing 
and out of sequence frames.  

 Lane Control Layer which is responsible for managing 
the operation of several SpaceFibre lanes in parallel to 
provide a higher data throughput and to provide 
redundancy with graceful degradation.  

 Lane Layer which is responsible for initialising the 
lane, detecting lane errors and re-initialising the lane 
after an error has been detected.  

 Encoding Layer which is responsible for encoding the 
data and control words into a suitable form for sending 
over the SpaceWire-RT link and decoding received 
data and control words. Uses 8B/10B encoding.  

 Serialisation Layer which is responsible for serialising 
and de-serialising encoded data and control words for 
sending and receiving over the serial interfaces.  

 Physical Layer which is responsible for sending the 
SpaceWire-RT information over the physical media 
used in SpaceWire-RT: fibre optic, Current Mode 
Logic (CML) and Low Voltage Differential Signalling 
(LVDS).  

 Management Layer which is responsible for 
configuring, controlling and monitoring the status of 
the various layers of the SpaceWire-RT protocol stack. 
This can be done by a local or remote network 
management application [1]. 

From the textual specification a formalised SDL model of 
the SpaceWire-RT was developed, which is itself a test of the 
specification for completeness and unambiguousness. In turn, 
the SystemC simulation language was used to develop 
reconfigurable SpaceWire-RT networks model with multiple 

nodes and routing switches. The following sections give the 
description of SDL and SystemC models and provide with the 
results of the simulation. 

III. SPACEWIRE-RT P2P MODEL IN SDL 

 
Figure 2. General structure of the SpaceWire-RT node 

SDL (Specification and Description Language) is a 
language for unambiguous specification and description of the 
telecommunication systems behavior. The SDL model covers 
the following five main aspects: structure, communication, 
behavior, data and inheritance. SDL language is intended for 
description of structure and operation of the distributed real-
time systems. Writing an SDL model on the basis of the 
specification is itself a test of the specification for 
completeness and unambiguousness. As a result the consistent 
readable textual description and formalised specification in 
SDL are produced [7]. 

SDL language was used for SpaceWire-RT specification 
and simulation on a per layer basis as the most reasonable 
solution. The SDL model formally describes all mechanisms, 
interactions and functionality which are stated in the 
SpaceWire-RT specification [7]. 

The SDL model implements all layers of the SpaceWire-
RT protocol stack (excepting Serialisation Layer). Figure 2 
shows the general structure of the SpaceWire-RT node in SDL. 

According to the figure above the SDL model describes the 
internal mechanisms and functionality of the layers starting 
from the Encoding Layer and up to the Virtual Channel Layer. 
Each pair of adjacent layers communicates via a special 
interface between them, which is called a Service Access Point 
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Figure 3. General structure of the SpaceWire-RT SDL/SystemC tester 

(SAP). All SAPs are defined as sets of service primitives which 
are specific for each layer.  

Simulation and investigation was done in two steps. First of 
all we performed verification of the SpaceWire-RT protocol 
stack by simulation in IBM Rational SDL Suite. The test 
system was represented by the two SpaceWire-RT nodes 
communicating through the Serialisation Layer channel. 
Configuration and generation of test sequences was performed 
by a special Test Engine. This simulation gave an ability to 
check all internal mechanisms of investigated layers and verify 
them. 

The second step was validation of the SpaceWire-RT 
protocol stack by load testing by means of simulation within an 
SDL/SystemC tester. The SDL/SystemC tester provides a 
possibility for simulation of a point-to-point interconnection 
between two nodes, implemented in SDL and communicating 
via a channel. The tester is a flexible tool for setting different 
configurations, generating various test sequences and gathering 
statistics. 

The general structure of the SpaceWire-RT SDL/SystemC 
tester is given in Fig. 3. 

The SystemC Test Engine provides facilities for creation of 
different complicated test sequences with different 
configurations and efficient logging of the events in the model. 

In order to implement interconnection between the 
SpaceWire-RT SDL model and the test environment an 
SDL/SystemC co-modeling approach was used [6]. This 
approach assumes that special wrappers (SDL/SystemC up 

wrapper and SDL/SystemC low wrapper) should be 
implemented for conversion of data from the SDL 
representation to the SystemC representation and vice-versa. 
The wrapper receives SystemC data, converts it into the SDL 
signals and sends to the SDL model via the correspondent 
SAP. Thus, the up wrapper is responsible for communication 
of test engine and SDL model and the low wrapper is 
responsible for communication of the SDL model and the 
channel. 

The target SDL model of the whole SpaceWire-RT 
protocol stack can be used for checking, how all mechanisms 
operate in common in one node by means of simulation in the 
IBM Rational Tool and by means of simulation within the 
SDL/SystemC tester. This way, the SDL layered SpaceWire-
RT model can be used for validation of consistency of the 
specification and checking of functional requirements, defined 
for the standard. The main advantage of this model is that it is 
implemented in a formal high-level language. This model can 
be used for further investigation of SpaceWire-RT technology 
because any changes in new versions of the standard could be 
applied to the SDL specification without any changes in the 
test environment. 

IV. SPACEWIRE-RT NETWORK MODEL IN SYSTEMC 

The SystemC modeling is one of the most efficient and 
widely used methods for studying, analysis and constructing 
multi-component systems, such as stacks of protocols, 
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embedded networks of a large number of nodes, systems-on-
chip, networks-on-chip, etc.  

SystemC is a set of C++ classes and macros that provide an 
event-driven simulation engine. It is specifically designed for 
modeling parallel systems. This library allows describing 
multi-component systems and program components, and 
modeling their operation. By using the internal mechanism of 
events it allows to model operations distributed in time of the 
modeled system [3]. 

The aim of the network SpaceWire-RT model development 
is to simulate communication of devices (switches and nodes) 
via the SpaceWire-RT links. In the SystemC network model 
some interactions of components and processes inside the 
device (e.g. between levels of a stack) could be not considered, 
because the model is primarily focused on the mechanism of 
devices’ communications, such as transfer of packets, routing 
and performance characteristics of the network [7]. 

The SpaceWire-RT network model consists of the 
following SystemC modules: 

 SpaceWire-RT stack model, which provides main 
functions of SpaceWire-RT; 

 SpaceWire-RT node model; 
 SpaceWire-RT switch model. 
The SpaceWire-RT stack model is a part of the node and 

the switch models. For these models it is possible to set 
different parameters like: a data transmission speed (Gbps), a 
number of nodes and switches, size and amount of packets, a 
destination address for a particular packet, a time delay and a 
routing table for the switch, a number of ports in the switch, 
etc. 

The SpaceWire-RT network model contains a number of 
nodes and switches. It could contain no switches so the model 
would be point-to-point. It gave an ability to simulate operation 
of the various number of devices in a network with different 
topologies: point-to-point, tree and circular. 

Using a point-to-point configuration we had an ability to 
check correctness and consistency of the SpaceWire-RT stack 
specification. An example of the point-to-point configuration is 
shown in Fig. 4. 

 
Figure 4. Point-to-point network configuration 

For testing of network mechanisms we used the mixed 
configuration, which is a combination of tree and circular 
topologies. Mixed configuration gave an opportunity to check 
the following network parameters: latency for different packet 
sizes, reliability of data transfer with specific BER (Bit Error 
Rate), various QoS (Quality of Service), fault packet detection 
and identification, failure and fault tolerance of a network 
(deadlock and babbling idiot), broadcast and multi-cast, path 
and logical addressing. An example of the used mixed network 
configuration is given in Fig. 5. 

 
Figure 5. An example of a mixed network configuration 

V. SIMULATION RESULTS 

Beforementioned SDL and SystemC models were used for 
the scientific studies and research. SpaceWire-RT standard was 
checked on conformance to the Russian and European industry 
requirements and also on existence of inconsistencies and 
ambiguities. Some of the most important results of our research 
are given below.  

A. SpaceWire-RT packet length 

The SDL model was used for testing and proving a 
possibility of transmission of a 32 Mbytes packet over a single 
link (as the SDL model provides only point-to-point 
simulation). Simulation proved that a 32 Mbytes packet can be 
successfully transmitted over a link. Transmission took 160 ms 
at a data rate 2 Gbit/s. The SystemC network model also 
proved the possibility of a 32 Mbytes packet transmission. 
Moreover, SystemC simulation provided the results for the 
packet lengths of 32 Mbytes to 8 bytes.  

For such kind of test we used the network configuration 
shown in Figure 5. During simulation we measured latencies 
for packet delivery between Node 2 and Node 8. 

The latency results for each packet length are given in 
Table 1. 

TABLE I.  LATENCY RESULTS 

Packet length Latency 
32 Mbytes 247,84 ms 
16 Mbytes 123,92 ms 
8 Mbytes 61,95 ms 

512 Kbytes 3,86 ms 
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Packet length Latency 
64 Kbytes 474,2 μs 
32 Kbytes 239,9 μs 
16 Kbytes 124,9 μs 
8 Kbytes 67,9 μs 
512 bytes 14,8 μs 
256 bytes 13,5 μs 

8 byte 665,352 ns 

B. Broadcast data transfer 

SpaceWire-RT standard supports broadcast data transfer 
mechanism which is described in SpaceFibre. The broadcast 
mechanisms were tested on three different topologies: tree 
configuration, circular configuration and mixed configuration. 
The broadcast messages were successfully generated, sent and 
delivered to all destination Nodes in the SpaceWire-RT 
network. However, the latency for the broadcast messages does 
not fit the requirement of 100 ns even if we have only one 
switch between the nodes. So the requirement is too strict for 
the current technology. 

Moreover, the network simulation shown that the current 
version of the SpaceWire-RT standard does not provide the 
mechanism for the broadcast messages to be discarded in 
Switches during the repeated transmission over a network with 
a circular structure. 

C. Reliability 

SDL and SystemC simulation shown that SpaceWire-RT, 
based on SpaceFibre, provides a capability for reliable data 
delivery. It provides a mechanism of automatic 
acknowledgements (ACK) and negative acknowledgements 
(NACK), which are used for indication about the validity of the 
received data in the Retry Layer. To check this mechanism in 
SDL a channel with a capability of errors insertion was used. 
For the purpose of acceleration of getting testing results we 
increased BER for the channel and assumed it equal 10-6. 
Simulation shown, that all transmitted data was delivered 
correctly. The increased BER (e.g. 10-5) leads to a corruption of 
a large amount of data, so that the connection cannot be 
established or re-established in some cases. 

The same test was used for the SystemC point-to-point 
topology. The ACK/NACK mechanism works and the remote 
Node successfully got the data.   

D. Determinism 

The determinism requirement was checked on SystemC 
model. For proving this requirement the scheduling QoS was 
tested on the network model. The topology used for testing this 
requirement is shown in Figure 5. Testing was done using 2 
different schedules. Both of them used three virtual channels 
for the transmission of data packets.  

The SystemC SpaceWire-RT network successfully 
operated using both test schedules. So SpaceWire-RT provides 
deterministic data delivery using scheduling mechanism. 

E. Automatic acknowledgement  

SpaceFibre is the basis for the SpaceWire-RT and one of its 
main features is reliable data delivery. This is achieved by the 
automatic acknowledgements on the Retry Layer of 

SpaceFibre. This mechanism was tested by the simulation of 
SDL model of the Retry Layer. During the simulation, data 
was transmitted via a channel. This channel corrupted 
transmitted data with the BER = 10-6. All transmitted data was 
delivered correctly. 

Simulation shown that SpaceWire-RT, based on 
SpaceFibre, provides automatic acknowledgement mechanism 
at the Retry Layer which is not configurable. However, this 
requirement relates to the end to end acknowledgement and not 
to a link level function like the SpaceFibre retry. So an 
automatic acknowledgement should be implemented above the 
network layer. 

F. Failure and fault tolerance 

The failure and fault tolerance of network had been 
checked on the SystemC network model. The Network Layer 
of the SpaceWire-RT provides mechanisms for failure and 
fault tolerance of a network. These mechanisms were checked 
by testing the following situations: 

 Deadlock. Some kind of deadlock situation was 
modeled by a special configuration of Switches and 
Channels. The Channel between a Switch and a Node 
was made full so the data transmission for the 
particular VC stopped. All the other data transmissions 
for this VC to this Node also stopped. The model 
started to work slower, but the transmission of the data 
to the Node via the other virtual channels did not stop. 
This test shown that even in a deadlock situation for 
one virtual channel, the other virtual channels will 
continue to send data. 

 Babbling idiot. The traffic generator of a Node 
continuously generated 8 bytes packets to all the 
network addresses using all available virtual channels. 
The most part of the packets were discarded during the 
transmission through Switches but some packets were 
transmitted to Nodes. This made the transmission of 
the data in the whole network much slower. But 
anyway the other data traffic from other Nodes was 
successfully delivered to the destinations. 

VI. SPACEWIRE-RT MODELS FUTURE USE 

Currently, the SpaceFibre standard, which is the basis for 
the SpaceWire-RT standard, is in process of development. 
Consequently, any changes in SpaceFibre will result in changes 
of the SpaceWire-RT specification. New mechanisms and 
updated old ones can be successfully simulated on the 
SpaceWire-RT SDL and SystemC models by changing 
necessary parts of the models. Although the specification of the 
standard is updated, the test environment will remain the same. 

Any changes in the new releases of the specification can be 
applied to the SpaceWire-RT SDL model. This would not 
cause any difficulties, as local changes in one layer will not 
affect the other layers. Therefore, the SDL model can be used 
for verification of the new mechanisms in a stack. Moreover, 
the SDL/SystemC tester gives opportunities for creation of 
complicated test sequences and for non-nominal testing. 
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In its turn, the SystemC model can be effectively used for 
obtaining network performance characteristics such as 
latencies, QoS mechanisms operation, etc. Since the 
SpaceWire-RT Network Layer is currently under development 
the SystemC model can be applied for its further validation. 
Moreover, SpaceWire-RT SystemC network model can give an 
opportunity for investigation of Transport Layer protocols 
operation over the SpaceWire-RT network (e.g. RMAP, STP, 
etc.). 

Finally, SDL and SystemC models can be used for 
development of applications and drivers for future SpaceWire-
RT devices. 

VII. CONCLUSION 

The paper describes the new SpaceWire-RT technology. 
SpaceWire-RT standard was validated by means of SDL and 
SystemC models and was checked on conformance to the 
Russian and European industry requirements. A number of 
inconsistencies in the specification were found during the 
simulation and some solutions and additional mechanisms were 
proposed to solve them. The new version of the SpaceWire-RT 
standard is produced and it is based on the simulation impact. 
The latest news and results of the project are available on our 
website http://www.spacewire-rt.org. 
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Abstract—Co-Simulation is a method for integrating external 

hardware and/or software with a simulation model, commonly 

referred to as “in-the-loop” simulation.  We describe a co-

simulation investigation that combines the Space Plug-and-Play 

Architecture (SPA) Services Manager (SSM) software with a 

newly developed OPNET Modeler SpaceWire model.  The 

advantage of this approach is that spacecraft designers can 

rapidly and accurately verify behavior for a variety of topologies 

and use cases.  To simplify tool use, we are building a library of 

spacecraft components with common traffic generation 

characteristics. This paper describes the co-simulation 

implementation, the OPNET SpaceWire model, our spacecraft 

component library, and a set of simulation studies. 

Index Terms—SpaceWire simulation, OPNET Modeler, 

SpaceWire model, SPA, SSM, Space Plug-and-Play Architecture. 

I. INTRODUCTION  

Simulation is a well-established practice used in the design 

of network infrastructure.  SpaceWire (SpW) networks are no 

exception and simulation network designers benefit from the 

ability to experiment with various hardware configurations and 

topologies before committing to a specific design.   

OPNET Modeler is a commercial, dynamic discrete event 

simulator widely used for analyzing and designing 

communication networks, devices, protocols, and applications. 

Its co-simulation interface allows the simulation model to be 

integrated with external hardware and software systems.  This 

“in-the-loop” approach enables a simulation to measure the 

network contention and delays incurred by actual components 

under various scenarios.   

This paper describes a co-simulation approach that 

combines an OPNET Modeler SpaceWire model with a 

software implementation of the Space Plug-and-Play 

Architecture (SPA-S) middleware, the SPA Services Manager 

(SSM).  The SSM is a software layer between the application 

and the SpaceWire interface that provides network discovery 

and message delivery services.  In our approach, one or more 

external hosts run the SSM and application processes that 

model spacecraft components, such as imagers, StarTrackers, 

or data recorders.   These external host processes generate 

traffic that is passed through the OPNET model.  Inside the 

simulated network, the system measures congestion on links 

and at router ports that result from a combination of network 

topology and traffic load. Congestion delays may cause 

messages to miss deadlines or cause retransmissions that 

further increase congestion. Moreover, port blocking can delay 

high priority messages, potentially causing serious faults.  Our 

simulation tool reports statistics on delays, missed deadlines, 

and other quality of service (QoS) metrics, in addition to 

logging data that can be used to understand behavior. 

We describe the process of building and operating the co-

simulation, the implementation of the SSM, and the results of a 

series of simulation studies. Finally, we analyze the results to 

expose factors that influence performing a simulation in this 

way and look at benefits/disadvantages and possible limitations 

of co-simulation with external software. 

II. BACKGROUND 

The Air Force Research Laboratory (AFRL) is pursuing the 

goals of standardizing the Space Plug-and-Play Architecture 

(SPA) standards along with supporting the development of 

various tools to aid network designers and developers in the 

successful application of the standards. 

To achieve the first goal, AFRL has been working to have 

the SPA standards adopted and published by American 

Institute of Aeronautics and Astronautics (AIAA).  Although 

the SPA has been recently renamed the Modular Open 

Network Architecture (MONARCH), we have used SPA 

throughout this paper. 

The Space Dynamics Lab (SDL), under AFRL contract, has 

been working on the development the SPA software 

middleware known as SPA Services Manager (SSM).  The 

SSM implements the functionality described in the SPA 

standards. 

AFRL’s second thrust has been in the area of SpW network 

simulation.  AFRL has contracted with OPNET Technologies, 

Inc. to produce a low-level network simulation module for 

OPNET Modeler.  This simulation captures SpW interactions 

between nodes and routers at the character level and includes 

flow control characteristics such as the credit counts and flow 

control tokens that are part of the SpW standard.   

In addition to the OPNET Modeler SpW module, 

simulation of the SPA is desired.  The SPA behavior is 

complex, and direct integration into OPNET Modeler is not 

351



2 

practical.  Although OPNET Modeler includes a mechanism to 

create custom behaviors for network components including 

nodes, the multi-process implementation of the SPA is not 

conducive to direct integration into OPNET Modeler.  Also, 

SPA complexity is such that rewriting the behavior directly in 

OPNET Modeler would be excessively time consuming and 

costly. 

  Thus, an alternative approach was developed that takes 

advantage of SSM, which implements SPA.  This approach 

uses the “co-simulation” capability of OPNET modeler to link 

externally running SSM processes (i.e., producers and 

consumers) into the OPNET Modeler SpW simulation in order 

to give a high fidelity result that incorporates the complex 

behavior of the SPA middleware into a network simulation. 

The OPNET Modeler co-simulation facility provides an 

Application Program Interface (API) that allows an external 

program to interact with and control the OPNET simulation.  

This external program provides the interface that links the 

simulation to independent devices and applications.  This 

interface forwards data between nodes in the simulation model 

and the physical nodes they represent.  For example, the 

interface can receive SpaceWire packets from a physical 

producer node and forward them to the corresponding producer 

node in the simulation.  This approach allows for the full 

fidelity of the external programs to be included in the 

simulation model. 

Co-simulation raises a unique problem in synchronizing 

simulation time to the wall clock time on the physical devices.  

In some cases, the physical hosts must use simulation time.  

For example, a node that sends a network discovery probe 

should use simulation time for the timeout for the reply.  

However, there are other cases when the physical host should 

use its local clock time.  An example is the timeout for 

acquiring a mutex or semaphore.  In this case, the events are 

local to the physical host and should use wall clock time rather 

than simulation time.   

If the simulations ran faster than real time, the time could 

easily be synchronized by slowing the simulation.   However, 

the OPNET SpW simulation, like most simulations, runs 

slower than real time.  Time synchronization therefore requires 

adjusting event times on the physical systems.    The balance of 

this paper describes details of the simulation approach with a 

focus on describing how this issue of time synchronization was 

accomplished. 

III. DESIGN OF SPA CO-SIMULATOR 

A. Co-simulator System Design 

The OPNET/SSM Co-Simulation system is composed of 

external hosts which generate and consume traffic used as 

input and outputs of an OPNET simulation, creating a “system-

in-the-loop” environment (see Figure I).  The system can be 

broken down into the following three pieces: 

1. External hosts running SSM on Linux PC’s 

2. OPNET/SSM Co-Simulation Controller 

3. OPNET simulation with custom SpaceWire models 

 

OPNET

OPNET/SSM Co-Simulation 

Controller

Socket Server

OPNET Controller

OPNET

Local Network

Monitor

Producer Consumer

SpaceWire
Router

Producer Consumer

Monitor

 

Fig. 1.  OPNET/SSM Co-Simulation System Overview 

In an SSM system, several processes execute on each node, 

coordinating via shared memory that is protected by 

semaphores.  Table I contains a list of the SSM components 

and a description for each.   

TABLE I.  SSM COMPONENTS 

Service Description 

Producer Application The Producer Application publishes a notification 
message and accepts a command which alters the 

data being published. 

Consumer Application The Consumer Application queries for and 
subscribes to data provided by the Producer 

Application. 

SPA Local Manager The SPA Local Manager allows SPA components 

to interoperate on a local processing node. 

SPA SpW Manager The SPA SpW Manager is responsible for 

performing discovery for a particular subnet. It 
maps incoming packets to the correct SPA 

endpoint on the subnet, encapsulating the SPA 

packet with the correct protocol header. In the 

reverse direction, it removes the protocol header 

and possibly adds a new header conforming to the 
subnet the packet is about to enter. It is also 

responsible for topology discovery and reporting 

within the subnet. The SPA SpW implements the 
interface that transmits and receives SPA messages 

over a network.  

Central Addressing 

Service 

The Central Addressing Service (CAS) is 

responsible for providing logical address blocks to 

be assigned to each hardware or software 
component. The CAS stores the logical address 

block and logical address for each SPA Manager in 

the SPA Network. 

SPA Lookup Service The SPA Lookup Service is responsible for 

accepting component registration and providing 
data source route information for components 

requesting a particular type of service. 
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For the studies presented in this paper, three external SSM 

hosts were used: a Producer, a Consumer, and a Monitor, as 

seen in Figure 1.  The Producer generates data that is 

transmitted over the network to the Consumer.  The Consumer 

receives and logs the data.  The Monitor contains the Central 

Addressing and Lookup services, which the Producer and 

Consumer discover by sending network probes.  In addition, 

each node runs the SPA Local Manager and SpW Manager 

processes.  Table II summarizes the SSM services running on 

each of the external hosts. 

TABLE II.  SERVICES ON EXTERNAL HOSTS 

Producer Consumer Monitor 

Producer Application 
SPA Local Manager 

SPA Spw Manager 

Consumer Application 
SPA Local Manager 

SPA Spw Manager 

SPA Local Manager 
SPA SpW Manager 

Central Addressing Service 

SPA Lookup Service 

 

In order to integrate the external hosts with the OPNET 

simulation, an additional interface was added to the SPA SpW 

Manager service.   Typically, the service is intended to use 

interfaces to physical devices such as SpW or Universal Serial 

Bus (USB).  In our co-simulation, we replace the SpW 

interface with a SpW-Sim interface.   Rather than connecting to 

a physical SpW network, the SpW-Sim connects to the OPNET 

simulation model.  It does this by wrapping the SpW message 

in a Transmission Control Protocol/Internet Protocol (TCP/IP) 

packet and sending that packet over an Ethernet network to the 

OPNET computer.  This TCP/IP connection is part of the co-

simulation controller and is transparent to both the SSM 

processes and to the simulation model.   

The OPNET/SSM Co-Simulation Controller bridges the 

external hosts to the OPNET simulation.  Its external interface 

is a TCP/IP Socket Server that connects to the SpW-Sim 

interfaces on external hosts (see Figure 2).   When a TCP/IP 

message is received, the server extracts the SpW message and 

stores it in a buffer, where it waits to be forwarded to the 

appropriate node within the OPNET simulation. 

 

OPNET/Co-Simulation Computer

Co-simulation Program

Interface to OPNET Simulation

TCP/IP Socket Server

SPA Message

SPA Message

OPNET’s External Simulation 
Access API Package

SPA Spw Manager 1

TCP/IP Socket 

Client

SPA Spw Manager 2

TCP/IP Socket 

Client

SPA Spw Manager 3

TCP/IP Socket 

Client

SPA Spw Manager X

TCP/IP Socket 

Client

SPA Message SPA Message SPA Message SPA Message

...

OPNET Simulation

 

Fig. 2.  OPNET TCP/IP Socket Interface 

The Controller is also responsible for driving the OPNET 

simulation forward.  Using the OPNET External Simulation 

Access (ESA) API package, the Controller specifies a 

simulation time and hands over the thread of execution to the 

OPNET simulation.  At this time, the buffered messages 

received by the Socket Server are forwarded to their 

corresponding simulation nodes where they become traffic 

generators for the simulation.  As seen in Figure 3, the thread 

of execution is not returned back to the Controller until the 

simulation has advanced to the specified simulation time. 

 

Single Thread Execution Path

Advance Simulation /
Send Messages to 

External Hosts

Receive Incoming 
Messages from 
External Hosts

TCP/IP Socket 
Server

OPNET
Simulation

Receive Incoming 
Messages from 
External Hosts Advance Simulation /

Send Messages to 
External HostsReceive Incoming 

Messages from 
External Hosts

Forward Messages

Forward Messages

Wall Clock Time
 

Fig. 3.   Co-Simulation Controller Execution Path 

Data flow in the opposite direction is achieved by a 

callback function implemented in the Controller program.  The 

callback function is registered using the ESA APIs when the 

Controller program is initialized.  As SPA messages traverse 

the simulated OPNET network, eventually they reach the 

destination node.  When a simulation node receives a message, 

a callback function is triggered.  There, the message is 

forwarded to the corresponding external host using the 

established TCP/IP socket connection. 

 

 

Fig. 4.  OPNET Simulated Network Topology 

The OPNET simulated network topology, as seen in Figure 

4, was configured to have the same number of simulated nodes 

as the number of external hosts in order to have one-to-one 

correspondence.  The nodes are interconnected using a 

simulated SpW router.  Two models were created for the 

OPNET simulation: a SpW Node model and a SpW Router 

model.  The models were developed as means to feed traffic 
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generated from external SSM hosts into the OPNET 

simulation.  The SpW Node model uses OPNET’s External 

System (Esys) package to establish a link to the Co-Simulation 

Controller.  The Esys package is similar to the ESA API 

described earlier in that they both allow communication 

between an OPNET simulation and an external program.  

However, the Esys package is used in OPNET models within 

the simulation while the ESA package is used in external 

programs.  Together, the Esys and ESA packages allow the 

SpW Node model to establish a bidirectional link with an 

external SSM host through the Co-Simulation Controller.  The 

model receives SpW messages from an external host and 

forwards the messages into the simulated network.  When 

messages are received from within the simulation, the model 

forwards them to the external hosts.  The SpaceWire Router 

model simply uses SpW path addressing to forward messages 

out the appropriate port. 

B. SSM Time Implementation Description 

The SSM uses two classes to implement time-related calls: 

SpaTimers and SpaTimingUtils.  The SpaTimers class is based 

on an operating system timer.  For Linux, these are Portable 

Operating System Interface (POSIX) timer calls.  When the 

operating system (OS) timer expires, the SpaTimers class uses 

a dispatcher method to invoke a specified handler function. As 

such, the SpaTimers class allows a given handler function to 

run at a specified frequency, and, therefore, implements a 

periodic callback functionality.  In this way, the SSM 

periodically publishes messages to subscribers on the network. 

The SpaTimingUtils class manages a high resolution time 

known as SPA Time that can be synchronized with an external 

time source such as the global positioning system (GPS). Upon 

receiving an update, the time is stored in shared memory. 

Between updates, the elapsed time since the last update is 

added to the stored time to create a SPA Time with up to one 

nanosecond resolution (see Figure 5). 
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Fig. 5.  SPA Time Synchronization and Calculation 

C. Solution to Time Synchronization Problem 

The Co-simulation Controller program is responsible for 

advancing the OPNET simulation, and the interface between it 

and the OPNET process is provided by the OPNET ESA API 

library.  The co-simulation controller calls the ESA function 

Esa_Execute_Until() with an absolute simulation time.  This 

causes the co-simulation process to block and the OPNET 

simulation process to execute until certain conditions are met 

(see OPNET ESA library documentation for details).  At that 

point, the OPNET simulation pauses and hands control back to 

the Co-Simulation Controller process. 

Esa_Execute_Until() returns the current simulation time to 

the Controller.  The Controller then sends a User Datagram 

Protocol (UDP) multicast broadcast with the current simulation 

time.  This functionality in the Co-Simulation Controller is 

known as the SimTime Server.  Figure 6 illustrates the 

interface between the OPNET simulation process and the 

SimTime Server in the Co-Simulation Controller.  Table III 

describes fields and format for the SimTime multicast message. 

 

OPNET/Co-Simulation Windows XP PC

Co-simulation Controller Program

Interface to OPNET Simulation

SimTimeServer

(UDP Multicast of Simulation Time)

SimTime

Esa_Execute_Until()

SimTime

OPNET’s ESA API Package

SimTime Subscriber 1

UDP Listener

SimTime Subscriber 2

UDP Listener

SimTime Subscriber 3

UDP Listener

SimTime Subscriber X

UDP Listener

SimTime SimTime SimTime SimTime

...
 

Fig. 6.  Simulation Time Distribution Interface 

TABLE III.  SIM TIME MESSAGE FIELDS AND FORMAT 

Offset 0 1 2 3 4 5 6 7 

0x0000 Sequence Number 
unsigned short – 2 octets 0x0008 

0x0010 Reserved 
N/A – 2 octets 0x0018 

0x0020 

Sim Time Seconds 
unsigned int – 4 octets 

0x0028 

0x0030 

0x0038 

0x0040 

Sim Time Microseconds 
unsigned int – 4 octets 

0x0048 

0x0050 

0x0058 

 

Our initial approach to the time synchronization problem 

was to treat simulation time as the external time source, using 

the existing SSM “SPA Time” utility.  This would solve the 

problem for cases where the external host uses simulation time, 

such as timeouts for network discovery.  However, SPA time is 
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also used for local events where simulation time is not 

appropriate, such as timeouts on acquiring a mutex for local 

shared memory.  Consider that a mutex is used to protect the 

SPA time in shared memory – it makes little sense to use the 

shared memory time as the timeout for acquiring that shared 

memory. 

We were faced with two choices; either modify the timers 

in the OS kernel to use simulation time, or implement our own 

versions of these timers.  Because the SSM is designed to 

execute on Windows, Linux, and VMWorks, modifying the 

kernel is not practical.  We therefore decided to implement 

simulation time replacements for the OS timers.  The 

remainder of this section describes our implementation. 

In the existing SSM code for Linux, SPA timers are 

implemented using POSIX timers based on the wall clock.   

When a timer expires, the OS kernel runs the SpaTimer 

dispatch function, which in turn invokes the callback function 

for that timer ID.  This callback function executes on a newly 

created thread.  Since POSIX timers cannot be converted to 

simulation time without modifying the OS kernel, an 

application-level timer mechanism was implemented instead.  

This mechanism consists of three components, as shown in 

Figure 7. 

 

Fig. 7.  Simulation Time SSM Design 

 Shared Memory 

The Shared Memory contains the local simulation 

time variable and a table of timers.  This memory is 

shared by the SimTime Subscriber thread and SSM 

thread within a single process.  The fields included in 

the timer table are shown in Table IV.  

TABLE IV.  SIM TIMER TABLE FIELDS 

Field Description 

State 

Possible states include: 
            EMPTY 
            STOPPED 
            RUNNING 

Expiration Time Timer expiration time (timespec) 

Interval Time Timer interval time (timespec) 

Timer Args 
Timer arguments which include a pointer to 
the callback handler function. 

 

 SimTime Subscriber 

The subscriber runs as a thread within each SSM 

process.  It is created when the process starts and is 

deleted when the process exits.  The subscriber 

blocks waiting for a SimTime multicast.  When a 

message arrives, the subscriber updates the local 

simulation time, checks the timer table, and invokes 

callback functions for expired timers.  The dispatch 

functionality of the SpaTimer class is moved to this 

thread. 

 Extensions to the SpaTimer Class 

The SpaTimer class contains methods for managing 

timers, including create, start, stop, and destroy. For 

system (wall clock) timers, these methods use the 

corresponding POSIX timer functions.  For 

simulation timers, these methods modify the timer 

table in shared memory as shown in Table V. 

TABLE V.  SPATIMER MODIFIED METHODS 

Method Description 

timer_create ( ) 

Adds a new timer to the timer table.  The function 
returns a value of -1 if the table is full.  Otherwise, it 
returns 0, sets the state to STOPPED, and stores the 
callback function pointer.  The timer is stored in the 
first empty slot in the table, which is found by a linear 
search from index 0 to last_entry.  If no empty slot is 
found in this range, last_entry is incremented and the 
timer is stored at this location.  An empty slot is 
denoted by state = EMPTY. 

timer_start ( ) 
Sets timer state to RUNNING and updates the timer 
table entry expiration and interval times. 

timer_stop ( ) Sets the timer state to STOPPED. 

timer_stop ( ) Sets the timer state to EMPTY, effectively removing it 
from the table. 

 

In the SpaTimingUtils class, the SPA Time functionality 

was modified to use simulation time.  Instead of adding elapsed 

wall clock time to SPA Time, the elapsed simulation time 

acquired by the SimTime Subscriber is used. 

IV. RESULTS 

Upon analyzing the experimental results for our studies, we 

were able to perform the following verifications. 
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The OPNET Co-Simulation with SSM was intentionally 

slowed down to run at speeds well below real-time.  This was 

done to verify the SSM interface to the OPNET simulation, 

along with the changes to utilize simulation time.  The co-

simulation ran successfully with the described Producer, 

Consumer, and Monitor setup.  Each of the external hosts was 

able to perform network discovery through the OPNET 

simulation and establish connections among each other.  The 

Consumer was able to successfully acquire messages and 

utilize the data sent by the Producer.  The overall functionality 

of the SSM with the OPNET Co-Simulation was validated 

against the same SSM setup over a physical SpW interface 

which included three SpW cards and a SpW router.  With the 

exception of the slowed time, the two systems displayed nearly 

identical characteristics. 

Secondly, we wanted to verify that the simulation time 

increased in a sequential manner as traffic flowed through the 

co-simulation system.  Messages were logged as they went 

through every step in the system along with the simulation time 

at the time of arrival/departure.  Figure 8 shows an example of 

the flow of traffic and the points in the co-simulation at which 

messages were logged.  

 
SSM Nodes Controller Program OPNET Simulation

SSM Node 1
Sends Message

@ Simulation Time T1

TCP/IP Socket OPNET APIs

OPNET APIsTCP/IP Socket

Message Routing Address

SpaceWire Router

SSM Node 1

SSM Node 2 SSM Node 3

Message Arrives at 
Controller

@ Simulation Time T2

Message Arrives at 
OPNET SSM Node 1

@ Simulation Time T3

Message Arrives at 
OPNET SSM Router

@ Simulation Time T4

Message Leaves 
OPNET SSM Router

@ Simulation Time T5

Message Arrives at 
SSM Node 2

@ Simulation Time T6

Message Arrives at 
Controller

@ Simulation Time T7

SSM Node 2
Sends Message

@ Simulation Time T8

 

Fig. 8.  Expected Simulation Time and SPA Message Flow 

We were able to verify that simulation time increased as 

SPA messages traversed the SSM Co-Simulation.  Table VI 

shows the sequential simulation time at time of arrival for 

different points in the co-simulation for one SPA message.  No 

simulation time discrepancies were found in the experimental 

results. 

TABLE VI.  SINGLE MESSAGE SIMULATION TIME LOG 

Message Location SimTime (s) Delta SimTime (s) 

Monitor Sent 2066.715  - 
Controller Received 2066.715 0 
OPNET Monitor Received 2066.715 0 
OPNET SpW Router Received 2066.715001 0.000001 
OPNET SpW Router Sent 2066.72 0.004999 
OPNET Consumer Received 2066.720002 0.000002 
Controller Sent 2066.720002 0 
Consumer Received 2066.720002 0 

 

V. CONCLUSIONS AND FUTURE WORK 

A hybrid simulation that integrates a traditional discrete 

event simulation with a software in the loop simulation for 

SpW networks and the SSM SPA middleware has been 

successfully demonstrated.  The work has shown that through 

small modificatiosn to the SSM, time synchronization to the 

simulation time can be achieved.  Simulations can be achieved 

that are suitable to investigate networks of typical complexity 

for SpW networks. 

Several areas remain to be investigated.  First, the Co-

Simulation must be integrated with the SpW modules created 

by OPNET Technologies, Inc. to ensure high fidelity of SpW 

within the OPNET simulation.  As described earlier, the 

OPNET models created for this experiment were developed as 

a means to demonstrate a proof-of-concept for the OPNET Co-

Simulation with SSM but do not accurately represent the SpW 

standard.  Second, a validation of the simulation against a 

physical network implementation is needed to confirm fidelity 

of the simulation with reality.  SwRI and AFRL plan to work 

together to build a configuration AFRL can realize in the 

laboratory to demonstrate strong coherence between the 

simulation and a real world implementation.  Third, several 

network topologies representing realistic potential spacecraft 

SpW networks need to be generated to demonstrate that the 

process can be scaled.  Last, real networks experience data 

loss, and the OPNET Modeler SpW module includes facilities 

to generate a variety of faults in the communication process.  

Experimenting with fault injection in the network simulation 

can be used to verify acceptable SPA behavior, identify 

weaknesses, and test modifications that increase SPA 

robustness. 
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Abstract—SpaceWire Time-Codes are intended to be used for 

time synchronization on board of spacecraft. So far not many 
reports are available on the synchronization accuracy that can be 
actually achieved with this mechanism. This paper describes a 
series of Time-Code latency measurements that have been made 
using a SpaceWire network built up from SpW-10X routers 
(AT7910E). During these measurements not only the link speed 
but also the length of the path through the network and data 
traffic load is varied. The obtained time delay data are 
statistically analyzed in terms of mean Time-Code latency and 
jitter. A simple linear model is fitted to the data to allow the 
prediction of the mean latency for data rates and network sizes 
which have been not directly covered by the measurements. The 
size of the observed Time-Code jitter is reported as well. 

Index Terms—SpaceWire, network, time-code, jitter, latency, 
measurement, distributed interrupt, SpW-10X, AT7910E. 

INTRODUCTION 

Space systems frequently have the need to synchronize 
time within the distributed avionics system or between the 
spacecraft platform and the instruments. Today a separate time 
distribution network is normally used for distributing a pulse 
per second time synchronization signal. For platform 
applications the required time synchronization precision is 
typically ranges from 10µsec to 1msec. Within some specific 
instruments the required time synchronization precision can be 
significantly higher from several 10nsec to several 100nsec [1]. 
With the time-codes the SpaceWire standard offers a time 
synchronization mechanism which could be used as an 
alternative. This would allow to remove the need for the 
separated dedicated time synchronization network. 

The time-codes are specified and the mechanism is 
described in the SpaceWire standard [2] but there is not much 
information available about which time synchronization 
performance can be reached in practice. The expected 
performance is not only dependent on the actual 
implementation of the SpaceWire routing switches but also on 
a number of other parameters like the link speed and the 
network topology, i.e. how many routing switches have to be 
passed by the Time-Code on its way from the source to the 
destination. The same is the case for the mean time-code 
latency. While the latency may not be so important for clock 
synchronization as it results only in a fixed time off-set its 

knowledge is very important for the safe operation of the 
distributed interrupt mechanism which is going to be 
introduced in the next revision of the SpaceWire standard. 

MEASUREMENT TEST SETUP 

In order to better assess the real achievable time 
synchronization performance of SpaceWire Time-Codes and 
its dependence on various system parameters a series of 
measurements have been conducted in a network based on the 
SpW-10X SpaceWire router (AT7910E). For the time 
measurements a high precision Time Interval Counter SR620 
from Stanford Research Systems was used with a relative time 
measurement error that is specified to be less than 100psec. 

 

 

Fig. 1: Time-Code latency measurement setup with 5 SpW-10X routers 

A block diagram of this measurement set-up is depicted in 
Fig. 1. The SpaceWire network consists of a chain of 5 SpW-
10X routers, one packet generator from 4Links is used for the 
injection of Time-Codes and a SpW-10X USB Router with 
deactivated Time-Code forwarding is used for the generation 
of auxiliary traffic in the network. The SR620 Time Interval 
Counter measures with high accuracy the time interval between 
the start and the stop pulses at its two trigger inputs. The start 
pulse is taken from the TICK_OUT pin of time-code interface 
of first router in the chain. The stop pulse is taken from the 
TICK_OUT pin of one of the later routers in the chain 
dependent on how many hops in the network shall be taken 
into account for the measurement. Each of the SpW-10X 



routers is supplied with its own, independent 30 MHz system 
clock. The routers in the chain are interconnected with 0.5m 
long SpaceWire cables. This arrangement has been chosen to 
measure the Time-Code latency due to the routers and the 
connecting links and to avoid any latency variation due to the 
Time-Code injection or generation. 

A picture of the actual Time-Code latency measurement 
setup is shown in Fig. 2. It was used to measure the following 
combination of parametric test cases: 
- The number links between the routers in the chain is 

varied between 1 to 4, 
- The data rate of all links is set to one of the following 

2.73, 3, 30, 60, 120 and 200 Mbps, 
- The influence of data traffic on the links is evaluated by 

injecting no traffic or 100% in the direction of the time 
code propagation and 100% traffic in the opposite 
direction. 

In each of these 72 combinations of conditions the latency 
between the TICK_OUT signal from the first router to the 
TICK_OUT signal of the last router in the chain was measured 
15000 times in order to get a good statistical basis. 

 

 
Fig. 2: Picture of actual measurement set-up 

CAUSES FOR TIME CODE JITTER  

There are two fundamental mechanisms that are the cause 
for Time-Code jitter. The Time-Code jitter is defined here as 
the maximum time difference observed between the 15000 
individual Time-Code latencies. 
a)  The first cause of jitter is described in NOTE 2 of clause 

8.12.2 p. in [2]. Before the a Time-Code can be transmitted 
on a link interface the transmitter has to finish the current 
data character, control character or control code. If no other 
traffic is on the network NULL characters with a length of 
8 bits are sent over the link. In this case the jitter at the link 
interface is in between 0 and 8 transmit bit periods. 

b)  The second origin of jitter is the fact that the Time-Code 
signal has to cross the boundaries of incoherent clock 
domains inside the router. The signal arriving at the receive 
port of the router contains the clock from the transmitting 
side which is recovered from the data/strobe encoding used 
to sample the signal and to decode the Time-Code. The 
Time-Code arrival needs then to be synchronised into the 
system clock domain of the router as it is also the case for 

an external TICK_IN signal. Similar the Time-Code signal 
needs to be synchronised when crossing from the system to 
the transmit clock domain. In the presented measurement 
setup the transmit clock is derived from the same oscillator 
as the system clock. The presence of synchronisation jitter 
depends therefor on the ratio between the transmit and the 
system clock. 
For low link data rates the overall jitter is dominated by the 

first cause while for high data rates the second cause for jitter 
can reach a similar order of magnitude as the first one. The 
methods to improve the Time-Code jitter published in [1] and 
[3] mainly aim to reduce the jitter contribution described in a). 

The clock domain transitions on the path of the of the 
Time-Code signal in the SpW-10X for the situation of idle 
links is shown in Fig. 3. 

 

 
Fig. 3: Clock domain transitions on the path of the Time-Code signal in the 
SpW-10X router 

LATENCY AND JITTER MEASUREMENTS 

The first set of measurements shown in Fig. 4 has been 
acquired with a link data rate of 3 Mbps and no additional 
traffic being injected in the network. The plots a) to d) show 
the histograms of the measured Time-Code latency for 1 to 4 
links respectively. As each histogram contains 15000 
statistically independent latency measurements it can be 
interpreted as approximation for the random distribution of the 
Time-Code latency. 

For this test case the mean latency is 11.07µsec per link and 
the worst case jitter increases by 2.665µsec per link. This worst 
case jitter corresponds very well to the 8 transmit bit periods of 
jitter introduced by the link transmit interface at a data rate of 
3Mbps as described in 0 a). As expected this case results in a 
uniform random distribution of the Time-Code latency as 
shown in Fig. 4a). 

All the random  distributions shown appear to be very well 
symmetric and the mean and the median value agree with a 
remaining difference of less than 0.05%. 

The development of the Time-Codes latency random 
distribution when passing over several links can serve as a 
demonstration of the Central Limit Theorem [4] as known in 
statistics. The jitter introduced when a Time-Code passes over 
a single link results in a uniformly distributed Time-Code 
latency as shown in Fig. 4a). When passing over a second link 
which adds a second statistically independent uniformly 



distributed jitter causes the Time-Code latency random 
distribution to become triangular as shown in Fig. 4b). 
According to the Central Limit Theorem sum of a sufficiently 
large number of independent random variables of similar shape 
will result in a normal (or Gaussian) random distribution which 
is nicely visible in Fig. 4c) and d). 

 

 

 
Fig. 4: Histograms of the measured Time-Code latency for 1 to 4 links at a 
data rate of 3Mbps with no additional traffic on the network. 

 

 
Fig. 5: Histograms of the measured Time-Code latency for 1 to 4 links at a 
data rate of 200Mbps with no additional traffic on the network 

The second set of measurements shown in Fig. 5 has been 
acquired with a link data rate of 200 Mbps and no additional 
traffic being injected in the network.  

For this test case the mean latency is 0.385 µsec per link 
and the worst case jitter increases by 70.2 nsec per link. As 
expected the significant increase of the link data rate has 
drastically reduced the Time-Code latency and the jitter. The 
worst case jitter introduced per link corresponds to about 14 
transmit bit periods which shows that there must be an 
additional significant cause of jitter. As described in 0 b) this 
additional jitter is due to the clock domain crossings of the 
Time-Code signal on its path within the router. This additional 
statistically independent random variable makes the latency 
distribution to look somewhat triangular already for a single 
link case as shown in Fig. 5a). When passing through 
additional routers and over additional links the Time-Code 
latency random distribution becomes a more and more 
Gaussian shape as visible in Fig. 5b) to d). 

MODEL FOR THE MEAN TIME-CODE LATENCY 

The mean Time-Code latency as measured for the different 
link speeds over a distance of 1 to 4 links is shown in Fig. 6. It 
shows nicely a linear increase of the mean Time-Code latency 
with link distance. 

 
Fig. 6: Mean Time-Code Latency for different link speeds and no traffic 

Based on these data a generalised parametric model for the 
mean Time-Code latency as a function of link speed and the 
number of links is derived in the following. 

 

 
Fig. 7 Time-Code latency measurement setup with 5 SpW-10X routers 

As a first step all the elements contributing to the measured 
Time-Code latency are analysed with the help of Fig. 7. 
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TRouter

TTick

TICK_OUT

TLink+ TCable



The boxes marked with RX and TX belong to receiver and 
the transmitter clock domain while the rest of the router 
belongs to the system clock domain. 

The time delay Tm measured with the time counter is the 
time between the TICK_OUT signal of the first and the Nth 
router in the path of the Time-Code. There is a time delay TTick 
between the reception of the Time-Code in one of the ports of 
the router and the raising of the TICK_OUT signal. The time 
delay inside the router TRouter between the reception of the 
Time-Code in one of its ports and its retransmission through 
the other ports which can be expressed in terms of system 
clock periods Tsys. The time delay TLink over the link between 
the transmission of the Time-Code at one router and its 
reception at the next router is assumed to be proportional to the 
link bit period Tbit = 1/Link_Rate. In addition to this there is the 
cable delay TCable which is proportional to the cable length and 
assumed to be 1/(0.59·c) or 5.6 nsec/m for twisted pair cables 
[5]. For the 0.5m long cables used in between the routers the 
parameter TCable is set to 2.8 nsec. In the mean all the time 
delays listed above are assumed to be the same for all routers 
and all links. 

The measured time delay can be therefore modeled as 
follows. 

 
Tm (N, Tbit) = TICK_OUTN - TICK_OUT1  Eq. 1 

 = N·TRouter+ N·TLink+ N·TCable+TTick-TTick  
 = N·A·TSys+ N·B·Tbit+ N·TCable 

 
The resulting equation which is a function of the number of 

links N and the transmit bit period has two unknowns A and B. 
Only two independent measurements with different link rates 
could be sufficient to determine the unknowns. In order to be 
able to take benefit of all 24 measurements available the over 
determined system of equation is written in matrix form. The 
Moore Penrose pseudo inverse of the matrix M can be 
calculated and used to solve the equation. The use of the Moore 
Penrose pseudo inverse minimizes the global error between the 
model and the measured data in the least square sense. 
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The time delay inside the router TRouter results to 260.2 nsec 

or A=7.806 system clock periods. The mean delay introduced 
by a link is calculated to be B=32.42 transmit bit periods. By 
inserting the derived values for A and B in Eq. 1 the expected 
mean time delay can be calculated for any N number of links 
and any link data rate 1/TLink. This very simple linear model fits 
well to the measurements in particular for low data rates and 
has still less than 10% error at the maximum data rate. 

INFLUENCE OF DATA TRAFFIC ON TIME-CODE LATENCY 

The measurements presented so far have all been obtained 
with no auxiliary data traffic in the network. If no other data 
traffic is waiting for transmission SpaceWire inserts NULL 
control codes (ESC + FCT) of 8 bits length to keep the link 
active. Data is transmitted with data characters of 10 bits length 
and one FCT (flow control token) of 4 bits length is transmitted 
for every 4 data characters received. These two kind of 
characters together with the NULL control code are normally 
the most frequent characters present in a SpaceWire network. 
Due to their different length they are expected according to 0 a) 
to have an influence on the mean Time-Code latency and the 
jitter introduced by each SpaceWire link. In order to quantify 
this influence the Time-Code latency has been measured with 
two additional traffic load cases where in the first case the 
Time-Code transmitting side is sending data at maximum rate 
and in the second it is receiving data at maximum rate. 

The changes in latency and jitter are nicely visible in the 
measured data. In the first case where the Time-Code 
transmitting side is sending at 3 Mbps data characters of 10 bit 
length the mean latency increases by 338.5 nsec which 
corresponds to an increase by 1.015 transmit bit periods. For 
the same data rate the maximum observed jitter over a single 
link increase by 666.9 nsec corresponding to 2.001 transmit bit 
periods. The same increase of jitter is also found for the other 
data rates which were measured. 

In the second case the Time-Code transmitting side is 
transmitting an FCT control code for every four data characters 
received. This means at maximum data rate 9 NULL and 2 
FCT control codes are transmitted for every 8 data characters 
received. Considering the length of the two characters the 
probability that the transmission of a Time-Code has to wait for 
the completion of a FCT instead of a NULL control code is 
only 1/9. If the received data rate is lower than 100% this 
probability reduces proportionally. Accordingly the changes in 
latency and jitter are much less pronounced. At a data rate of 
3 Mbps the mean latency decreases by 35.85 nsec 
corresponding to a reduction by 0.1076 transmit bit periods. 
For the same data rate the maximum jitter over a single link 
remains the same within the measurement accuracy.  

Also for the two test cases with auxiliary data traffic on the 
network the linear model for the mean Time-Code latency 
given in Eq. 1 can be calculated. 

In the first case where the Time-Code transmitting side is 
also sending data at maximum data rate the modeled time delay 
inside the router TRouter results to 262.6 nsec or A=7.879 system 
clock periods. The mean delay introduced by a link is 
calculated to be B=33.04 transmit bit periods. This is the worst 
case traffic load situation which causes the maximum mean 
Time-Code latency. 

In the second case where the Time-Code transmitting side 
is receiving data at maximum data rate the modeled time delay 
inside the router TRouter results to 261.7 nsec or A=7.852 system 
clock periods. The mean delay introduced by a link is 
calculated to be B=32.33 transmit bit periods. 



STANDARD DEVIATION OF THE TIME-CODE JITTER 

The following maximum Time-Code jitter has been measured 
for a single link at different data rates when no auxiliary data 
traffic is present. 

MAXIMUM TIME-CODE JITTER WITH NO TRAFFIC 

Link data rate  Maximum jitter in nsec Maximum jitter in 
transmit bit periods 

3 Mbps 2665 7.996 
30 Mbps 266.7 8.002 
60 Mbps 133.5 8.015 

120 Mbps 83.41 10.01 
200 Mbps 70.24 14.05 
 
For the link data rates 3, 30 and 60 Mbps the maximum 

jitter corresponds nicely to the 8 transmit bit periods expected 
from the length of the NULL characters present on the link. For 
the link data rates 120 and 200 Mbps this jitter is increased 
through an additional jitter source internal to the router. 

MAXIMUM TIME-CODE JITTER WHEN TRANSMITTING DATA AT MAXIMUM 
DATA RATE 

Link data rate  Maximum jitter in nsec Maximum jitter in 
transmit bit periods 

3 Mbps 3332 9.997 
30 Mbps 333.3 10.00 
60 Mbps 166.9 10.02 

120 Mbps 100.1 12.01 
200 Mbps 80.16 16.03 
 
The maximum jitter in the maximum transmit data rate case 

is consistent with the jitter values provided in 0but extended by 
two transmit bit periods as expected from the two bit longer 
data characters now being present on the network. This worst 
case jitter data apply also when the data is transmitted at lower 
than maximum data rate. 

MAXIMUM TIME-CODE JITTER WHEN RECEIVING DATA AT MAXIMUM DATA 
RATE 

Link data rate  Maximum jitter in nsec Maximum jitter in 
transmit bit periods 

3 Mbps 2666 7.999 
30 Mbps 266.8 8.005 
60 Mbps 133.5 8.012 

120 Mbps 83.73 10.05 
200 Mbps 69.98 14.00 
 
The maximum jitter in the case where auxiliary data is 

received at maximum rate matches very well the data obtained 
for the no traffic case. This is not surprising as the presence of 
the shorter FCT characters does not influence the worst case 
situation. 

In order to calculate of the worst case Time-Code jitter in 
the network these values provided in TABLE I to III have to be 
multiplied with the number of links to the destination. 

For some applications it is not the worst case but the 
standard deviation of the jitter is needed to assess the impact. 
For this case the standard deviation of the time code latency is 

provide in Fig. 8 for the no traffic case and in Fig. 9 for the 
maximum transmit data rate case for a network distance of 1 to 
4 links. 

 

 
Fig. 8: Standard Deviation of Time-Code Latency for different link speeds in 
the no traffic case 

 
Fig. 9: Standard Deviation of Time-Code Latency for different link speeds in 
the maximum transmit data rate case 

CONCLUSIONS 

In this paper a series of Time-Code latency measurements 
for a set of different network parameter settings has been 
reported. The statistical behaviour of the measurements has 
been analysed in terms of mean value and jitter. This gives 
an indication on the synchronisation accuracy that can be 
reached with the SpaceWire time code mechanism. A simple 
linear model for the mean Time-Code latency dependent on 
the number of links and the data rate has been fitted to be 
able to predict the mean latency also for cases not directly 
covered by the measurements. This information may give a 
first indication about the guard times and time-out values to 
be used for the safe operation of the distributed interrupt 
mechanism which is going to be introduced in the next 
revision of the SpaceWire standard. 
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Abstract— Aeroflex Gaisler has developed, under European 

Space Agency (ESA) contract 4000104519, a draft ECSS protocol 

for the transmission and synchronization of CCSDS 

Unsegmented Code (CUC) time in SpaceWire networks. The 

working name of the protocol is "Time Distribution Protocol“.  

Index Terms—SpaceWire, Networking 

I. INTRODUCTION 

The objective of the referenced “High Accuracy Time 

Synchronization over SpaceWire Networks” ESA activity is to: 

• Establish a time message distribution mechanism over 

SpaceWire 

• Establish an offset correction mechanism between 

local times which is correcting for the time distribution latency 

in SpaceWire networks 

• Establish a method for clock synchronization by 

correcting the drift between clocks as well as the jitter 

experienced in SpaceWire networks  

 

The first point above is fully covered in the Time 

Distribution Protocol, support is provided in the draft protocol. 

The implementation of the second point and the third point is 

actually outside of the draft protocol since it does not affect the 

protocol itself (see discussion further down).  

The target is for example SpaceWire networks for critical 

on-board control applications where current on-board buses 

such as Mil-Std-1553 and CAN 2.0B can be replaced. For this 

type of applications the time accuracy is important to allow 

implementation of isochronous communication over the 

inherently asynchronous SpaceWire network.  

Also SpaceWire networks for science payloads where time 

synchronization is an important factor are targeted. An 

example could be multiple distributed sensors in an antenna 

that communicate via SpaceWire and need be synchronized for 

coherent measurements, or when two instruments exchange 

data to correlate their results. 

 

II. DRAFT PROTOCOL 

The Time Distribution Protocol provides the capability to 

transfer CCSDS Time Codes (i.e. time message) between 

onboard users of a SpaceWire network. The CCSDS Time 

Codes may be of variable length or fixed size at the discretion 

of the user and may be submitted for transmission at variable 

time intervals, providing a communication service. 

The Time Distribution Protocol provides the capability to 

synchronize nodes in a SpaceWire network by using 

SpaceWire time control codes (Time-Codes), providing a 

timing service. 

An Initiator is a SpaceWire node distributing CCSDS Time 

Codes and SpaceWire time-control codes (Time-Code). An 

Initiator is also an RMAP initiator, capable of transmitting 

RMAP commands and receiving RMAP replies. There is only 

one active Initiator in a SpaceWire network during a mission 

phase. 

A Target is a SpaceWire node receiving CCSDS Time 

Codes and SpaceWire time-control codes (Time-Codes). A 

Target is also an RMAP target, capable of receiving RMAP 

commands and transmitting RMAP replies. There can be one 

or more Targets in a SpaceWire network. 

The protocol also provides means for time-stamping of 

incoming and outgoing Distributed Interrupts in the Target and 

makes this information accessible to an Initiator by means of 

RMAP accesses. Note that Distributed Interrupts are currently 

being defined in ECSS‐E‐ST‐50‐12C Rev.1 [3].  

The protocol also provides means for transferring latency 

correction information (which can be calculated from the above 

time-stamp information) from an Initiator to a Target by means 

of RMAP accesses. 

 

III. LATENCY MEASUREMENT AND CORRECTION 

Due to the natural latency of transferring time control codes 

(Time-Codes) in a SpaceWire network, the clock state 

correction accuracy discussed in [2] will be limited by an offset 

difference between the initiator and the target (or between 

targets).  

The proposed protocol utilizes the new Distributed 

Interrupts defined in [3] which are distributed using similar 

methods as time-control codes and can therefore be used a 

means for measuring the propagation delay of the latter. Each 

Target can be configured by the Initiator to perform a time-

stamp whenever a Distributed Interrupt with a specified value 

has been sent or received. The time-stamping is done with the 

time that is maintained by the Target.  
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The Initiator performs similar time-stamping at its end and 

then uses the time-stamps in both ends to calculate the latency 

or (propagation delay) in either direction. The calculated 

latency can be written by the initiator to a specific Target 

register which can be used for correcting the time maintained 

in the Target.  

The proposed protocol thus provides a means for measuring 

latency between an Initiator and a Target, and provides means 

for communicating the result to the Target. The methods for 

how to send and receive Distributed Interrupts, to perform 

measurements, and to realize the correction in the Target are 

left to the implementers.  

 

IV. JITTER AND DRIFT MITIGATION 

Statistical methods and regulation techniques can be used 

to mitigate the jitter seen on time control codes (Time-Codes) 

in a SpaceWire network, as discussed in [1]. Jitter and drift 

mitigation discussed hereafter could be combined. 

Drift mitigation by means of clock rate correction [2] can 

be performed based on periodically received time control code 

(Time-Code) by a Target. The mean interval between received 

time control codes (Time-Codes) could be measured with the 

local time maintained by the Target as reference, and any long 

term variation could be fed back to the generation of this local 

time. 

The proposed protocol does not provide any means for jitter 

and drift mitigation, since this does not affect the Time 

Distribution Protocol itself, being a problem to be solved 

locally in the Target. The draft ECSS standard could however 

be extended with implementation guidelines as part of an 

informative annex. 

 

 

 

 
 

Fig. 1.  Problem formulation of jitter and drift problem in a SpaceWire network. The Elapsed Time in the Initiator and the Target(s) are to be synchronized by 

means of SpaceWire Time-Codes, over SpaceWire links that introduce latency and jitter, and oscillators that introduce drift. 

 

 

V. DISCUSSION 

The proposed protocol is based on distribution of time 

control codes (Time-Codes) throughout a SpaceWire network, 

as a means for synchronizing the local time in targets with the 

local time of the initiator in a system, i.e. providing the timing 

service. As discussed above, continuous and periodic reception 

of time control codes (Time-Codes) can also be used for 

mitigating jitter and drift in the Target. 

It has been argued that Distributed Interrupts should not 

only be used for latency measurements in a SpaceWire 

network, but also be used as the sole means for synchronization 

instead of time control codes (Time-Codes). This argument 

could be valid for low-end systems, but when high accuracy 

time synchronization over SpaceWire networks is required, one 

would anyway need to rely on the continuous and periodic 

distribution of such interrupts to allow jitter and drift 

mitigation. Time control codes (Time-Codes) are considered 
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more suitable for periodic distribution and have therefore been 

selected for the timing service in the proposed protocol. 

VI. STATUS AND CONCLUSION 

The SpaceWire Time Distribution Protocol is based on 

existing ECSS standards and CCSDS recommendations. It 

utilizes basic functionalities such as packet transport and Time-

Code distribution, but also takes advantage of newer functions 

such as Distributed Interrupts. The protocol is fully compatible 

with RMAP, but it is envisaged that the protocol will have its 

own protocol identifier in the future, or be part of the future 

SpaceWire Plug-and-Play protocol. The current draft 

specification of the protocol does not prevent either solution. 

Currently a VHDL IP core is being developed that 

implements the proposed standard. Additionally, the latency, 

jitter and drift mitigation methods are being prototyped, with 

the objective to include them in the aforementioned IP core. 

The goal is to include the new IP core in future RASTA 

prototyping systems and standard ASICs. The IP core will be 

made accessible through ESA or through Aeroflex Gaisler as 

part of their GRLIB VHDL IP core library. 

An excerpt from the first draft of the proposed standard text 

is provided as an annex to this article. The excerpt only 

includes the background and the principles of the protocol. For 

the detailed requirements the reader is invited to submit a 

request to the authors. 
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Annex to article: excerpt from proposed standard 

 

High Accuracy Time 

Synchronization over 

SpaceWire Networks 
Time Distribution Protocol 

 

SPWCUC-REP-0003,  

29 September 2012, Version 1.1 

 

Introduction 

This document represents a draft of an ECSS 

standard which is in development. The document 

has been written as far as possible according to 

ECSS drafting rules. The document should not be 

considered an ECSS standard. 

This version of the document encompasses basic 

time distribution and initialisation/ synchronization. 

It does not completely cover configuration, status 

and low level synchronization. 

 

Foreword 

This Standard is one of the series of ECSS 

Standards intended to be applied together for the 

management, engineering and product assurance in 

space projects and applications. ECSS is a 

cooperative effort of the European Space Agency, 

national space agencies and European industry 

associations for the purpose of developing and 

maintaining common standards. Requirements in 

this Standard are defined in terms of what shall be 

accomplished, rather than in terms of how to 

organize and perform the necessary work. This 

allows existing organizational structures and 

methods to be applied where they are effective, and 

for the structures and methods to evolve as 

necessary without rewriting the standards. 

This Standard has been prepared by the 

ECSS‐E‐ST‐50‐## Working Group, reviewed by 

the ECSS Executive Secretariat and approved by 

the ECSS Technical Authority. 

 

Disclaimer 

ECSS does not provide any warranty whatsoever, 

whether expressed, implied, or statutory, including, 

but not limited to, any warranty of merchantability 

or fitness for a particular purpose or any warranty 

that the contents of the item are error‐free. In no 

respect shall ECSS incur any liability for any 

damages, including, but not limited to, direct, 

indirect, special, or consequential damages arising 

out of, resulting from, or in any way connected to 

the use of this Standard, whether or not based upon 

warranty, contract, tort, or otherwise; whether or 

not injury was sustained by persons or property or 

otherwise; and whether or not loss was sustained 

from, or arose out of, the results of, the item, or any 

services that may be provided by ECSS. 

Scope 

There is a number of communication protocols that 

can be used in conjunction with the SpaceWire 

Standard (ECSS‐E‐ST‐50‐12), to provide a 

comprehensive set of services for onboard user 

applications. To distinguish between the various 

protocols a protocol identifier is used, as specified 

in ECSS‐E‐ST‐50‐51. 

  

This Standard specifies the Time Distribution 

Protocol, which is one of these protocols that work 

over SpaceWire. 

  

The aim of the Time Distribution Protocol is to 

synchronize time across a SpaceWire network. It 

does this by an initiator writing a CCSDS Time 

Code using an RMAP command placed in a 

SpaceWire packet, transferring it across the 

SpaceWire network and then extracting the CCSDS 

Time Code at the target, and by means of 

SpaceWire time control codes (Time-Codes) used 

to convey the time instant at which the CCSDS 

Time Code becomes valid. 

   

This standard may be tailored for the specific 

characteristic and constrains of a space project in 

conformance with ECSS‐S‐ST‐00. 

 

Normative references 

 

The following normative documents contain 

provisions which, through reference in this text, 

constitute provisions of this ECSS Standard. For 

undated references, the latest edition of the 

publication referred to applies. 

 ECSS-S-ST-00-01 - ECSS system – Glossary 

of terms 

 ECSS-E-ST-50-12C - Space Engineering - 

SpaceWire - Links, nodes, routers and 

networks 

 ECSS-E-ST-50-51C - Space Engineering - 

SpaceWire protocol identification 

 ECSS-E-ST-50-52C - Space Engineering - 

SpaceWire - Remote memory access protocol 

 CCSDS 301.0-B-4 - Time Code Formats, Blue 

Book 
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Principles 

Purpose 

The Time Distribution Protocol has been designed 

to allow time synchronization across a SpaceWire 

network, by means of SpaceWire packets and 

SpaceWire Time-Codes. 

Protocol features 

The Time Distribution Protocol provides the 

capability to transfer CCSDS Time Codes between 

onboard users of a SpaceWire network. The 

CCSDS Time Codes may be of variable length or 

fixed size at the discretion of the user and may be 

submitted for transmission at variable time 

intervals, providing a communication service. 

 

The Time Distribution Protocol provides the 

capability to synchronize nodes in a SpaceWire 

network by using SpaceWire time control codes 

(Time-Codes), providing a timing service. 

 

An Initiator is a SpaceWire node distributing 

CCSDS Time Codes and SpaceWire time-control 

codes (Time-Code). An Initiator is also an RMAP 

initiator, capable of transmitting RMAP commands 

and receiving RMAP replies. There is only one 

active Initiator in a SpaceWire network during a 

mission phase. 

 

A Target is a SpaceWire node receiving CCSDS 

Time Codes and SpaceWire time-control codes 

(Time-Codes). A Target is also an RMAP target, 

capable of receiving RMAP commands and 

transmitting RMAP replies. There can be one or 

more Targets in a SpaceWire network. 

 

The protocol also provides means for time-

stamping of incoming and outgoing SpaceWire 

time-control codes (Time-Code) in the Target, 

make this information accessible to an Initiator by 

means of RMAP accesses. 

 

Note: SpaceWire time-control codes (Time-Code) 

in this context should be interpreted as the 

Distributed Interrupts currently being defined for 

ECSS‐E‐ST‐50‐12C Rev.1. 

 

The protocol also provides means for transferring 

latency correction information from an Initiator to a 

Target by means of RMAP accesses. 

Operation 

The Initiator and the Target maintain their own 

time locally, for which the implementation is 

independent of this standard. The Time 

Distribution Protocol provides the means for 

transferring the time of the Initiator to the Targets, 

and for providing a synchronization point in time.  

 

The time is transferred by means of an RMAP 

write command carrying a CCSDS Time Code. The 

synchronization event is signalled by means of 

transferring a SpaceWire time control code (Time-

Code). The transfer of the SpaceWire Time-Code is 

synchronized with the time maintained by the 

Initiator.  

 

To distinguish which SpaceWire Time-Code is to 

be used for synchronization, the value of the 

SpaceWire Time-Code is transferred from the 

Initiator to the Target by means of an RMAP write 

command prior to the actual transmission of the 

SpaceWire Time-Code itself.  

 

When there is more than a one Target, the CCSDS 

Time Code need be transferred to each individual 

Target separately (unless SpaceWire packet 

broadcast or multicast can be used). Only one 

transmission of the SpaceWire Time-Code is 

however need, although one can imagine systems 

where different SpaceWire Time-Code values are 

used for different Targets.  

Services 

The Time Distribution Protocol provides users with 

communication services based on RMAP service 

primitives and parameters, transferring amongst 

others CCSDS Time Codes. 

 

The Time Distribution Protocol provides users with 

timing service based on SpaceWire time-control 

codes (Time-Codes). 

 

The followings services are defined in this 

Standard: 

 Configuration 

 Status 

 Command (CCSDS Time Code) 

 Datation  

 Timing (Initialisation/Synchronization) 

 Time-Stamp (of SpaceWire time-control codes 

(Time-Codes)) 

 Latency 
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Exhibitors 

 

4LINKS 

4Links test and simulation equipment for SpaceWire saves users time, delay, risk, and money. It does exactly 

what test equipment needs to do. It has proved to be interoperable with every design that it has connected to, 

while detecting faults including many not found by other methods. It provides information to resolve faults, 

including long-standing ones, and often without the need to reproduce the fault. And the same hardware can be 

re-used, for devices, subsystems and complete satellites, at all stages of a mission development. 

Even before the technology acquired the name SpaceWire, 4Links supplied SpaceWire in CPLDs for test 

equipment that passed all tests at the first attempt. 

Customer recognition of 4Links quality has led to requests for SpaceWire IP and chips, which we are now 

supplying, and to numerous accolades such as “4Links equipment is good value, very reliable and very 

accurate”. 

 

 

 

 

 

AEROFLEX 

Aeroflex Microelectronic Solution divisions supply integrated circuits such as standard products for HiRel 

applications including FPGAs, LEON 3FT Microprocessors, Logic, MIL-STD-1553 Databus/Transceivers, 

Clocks, Voltage Regulators and Supervisors,  MUXes, Diodes, MOSFETS, LVDS and Memory families and 

our SpaceWire products - Transceivers, Protocol IP, Routers. 

  

Our RadHard-by-Design Digital and Mixed-Signal ASICs handle design complexities up 

to 3,000,000 usable gates. We also offer Radiation Testing and Circuit Card Assembly Services. 

 

Aeroflex Gaisler, based in Goteborg, Sweden, is a provider of SoC solutions and IP-cores for exceptionally 

competitive markets such as Aerospace, Military and Commercial applications. The Aeroflex Gaisler's IPcores 

consist of user-customizable 32-bit SPARC V8 processor and floating-point-unit cores, SpaceWire cores, 

peripheral IP-cores and associated software and development tools. The new GR712 LEON Microprocessor is 

in production.  Aeroflex Gaisler solutions help companies develop application-specific SoCs that are highly 

competitive for customer specific applications. Gaisler Research's personnel have extended design experience, 

and have been involved in establishing standards for ASIC and FPGA development.  

  



 

ATMEL 

In Europe, ATMEL has 2 main Business Units:  

 MCU: MicroController Business Unit: 

This BU develops Standard products and Custom products based on AVR8, AVR32 and ARM core. 

ATMEL is becoming the first supplier of 8bit controllers thanks to its success with many applications 

and especially the MaxTouch family 

 Automotive, Memory and Aerospace Business Unit: 

This BU develops products for dedicated Markets and applications 

Aerospace developments within ATMEL are all located in Europe, mainly in France (Nantes and Rousset) but 

also with technical centers supporting ASIC and FPGA business locally (France, Italy, Germany, UK).  

There is no involvement of any USA Atmel employees and Aerospace products are guaranteed not restricted by 

ITAR and EAR rules.  

ATMEL Nantes site has been developing Integrated Circuit for space application since 1985. The development 

team installed now in Nantes and Rousset has a very large experience of radiation hardened circuits design and 

fabrication constraints.  

ATMEL circuits are available in rad-hard versions that meet the harsh environment (cumulated dose, latch-up 

and transient phenomena) of space applications. Design and manufacturing facilities reach international quality 

standards recognition and are QML-V certified and ESCC QML certified. 

High-reliability radiation-hardened products provided by Atmel mean : 

• Full military operating temperature range (-55 to + 125°C) 

• 100K - 300Krd range, Latch-Up, SEE, SEFI hardened 

Atmel proposes advanced technical and competitive solutions for space market for the following products range: 

• Processors (32-bit SPARC) 

• Memories (Up to 16Mb)  

• Communication ICs  

• SRAM-based Reprogrammable FPGAs  

• NVM 4Mb 

• ASICs (up to 30M gates) 

Atmel is committed for the long term to support the aerospace industry. Further developments will address 200 

MIPS+ SPARC-based microprocessors, >5M equivalent ASIC gates SRAM based re-programmable FPGA, 

high density EEPROMs and a new generation of rad-hard ASIC libraries with a complexity higher than the 30 

million gates. 

  

file://mc752/cederom/publish/atmel_aero/pdf/Quality%20Info/QML.pdf
file://mc752/cederom/publish/atmel_aero/pdf/MH1RT%20ESCC%20certificate.pdf
http://jaxa.jp/


 

AXON’ CABLE 

The Axon’ group designs and manufactures wire, cable, connectors and cable assemblies for advanced 

technology applications in the principal fields of space, aeronautics, medical electronics, automotive and 

scientific research.  Headquartered in France (100 Km east of Paris) the Group employs some 1700 staff in 14 

subsidiaries across Europe, America and Asia, with an annual turnover of €115 million euro. 

 

Axon’ Cable has been involved in many space projects, including the International Space Station, various LEO 

and GEO satellites and rocket launchers including Ariane 5, and can boast flight heritage dating back to 1997.  

The group offers various types of products for space applications:  

- ESCC approved wires, cables and connectors,  

- lightweight aluminium round cables and braids,  

- aluminium bus bars for satellite power distribution,  

- MIL-STD-1553 databus looms for digital transmission systems,  

- high data rate links for Voice-Data-Image transmission including SpaceWire, IEEE1394, Ethernet, Fibre  

  Channel,  

- solutions suitable for the forthcoming multi-gigabit protocol, SpaceFibre,  

- and custom-designed products for specific applications. 

  

 

ELVEES 

www.multicore.ru 

R&D Center “ELVEES”, OJSC is a leading Russian ASIC design house, number one developer of multicore 

digital signal processors and “systems on a chip (SOC)” with SpaceWire links: microprocessors, routers, 

adapters, controllers, ADC/DAC — the largest chipset in Russia for space and telecommunications, navigation 

and embedded systems. 

R&D Center “ELVEES”, OJSC  (www.multicore.ru) was founded in 1990 on the base of ELAS Space 

Corporation that in 1960–80 (USSR) had been involved in space equipment design and development, such as 

VLSI IC, onboard control and data processing systems, space computers being implemented in “Salyut” 

computers for the “MIR” orbital Space station. Nowadays ELVEES has its own innovative MULTICORE IC 

design platform which includes a great 250–40 nm silicon proven analog and digital IP-cores library (SpaceWire 

IP-cores also), based on the commercial CMOS RadHard/temperature stability libraries suitable for space. 

ELVEES provides chips,  IP-cores, RT-library’s, new generation IP-cameras, tools and software for image 

compression, adaptive signal processing, optical and radar monitoring, artificial vision, telecommunication and 

navigation applications. 

  



 
 
 
 
 

GLENAIR 

GLENAIR – MINIATURIZED CONNECTORS AND CABLES 

Glenair manufactures ultra-miniature interconnect solutions for high-performance applications such as missile 

systems, satellites, and fighter-jets. Our innovative contacts, connectors and cable assemblies are used in air and 

space platforms that require reliable performance as well as miniaturized packaging.  Glenair is the world’s 

largest manufacturer and supplier of both mil-qualified and commercial Micro-D and Nano miniature 

connectors in wired and unwired space-grade formats. We also offer turnkey flex circuitry assemblies as well as 

space-grade wire harnesses terminated to our high-availability connector products. 

GLENAIR – SPACEWIRE CONNECTORS AND CABLE ASSEMBLIES 

Reduced Cost of Ownership, Easy Integration, and High- Performance for Flight and Lab Grade Cable 

Assemblies.  The success of any space mission begins with reliable data transmission and Glenair SpaceWire 

cables, built to meet the strict standards set forth by ECSS-E-ST-50-12C make this a reality. Our SpaceWire 

cables offer bidirectional, high speed data transmission rates up to 400 Mbits/s while significantly reducing 

cross talk, skew, and signal attenuation. By incorporating a serial, point-to-point cable, with low voltage 

differential signalling (LVDS) reduced costs are realized through an easily integrated data transmission cable. 

These features allow SpaceWire cables to be incorporated across various satellite programs without the expense 

of costly design customization. SpaceWire: The Space Industry Data Transmission Standard 

Glenair Inc  

1211 Airway 

Glendale 

California 

91201-2497 

USA 

 

Glenair UK Ltd  

40 Lower Oakham Way  

Oakham Business Park 

Mansfield  

Nottinghamshire  

NG18 5BY 

UK  

 

www.glenair.com 

Contact details (Micro D SpaceWire connectors and cables). 

Deniz Armani, SNR Scientist – high speed interconnect solutions 

Phone: +1 818 247 6000 

darmani@glenair.com 

Ross Thomson, Business Development Manager – interconnect systems 

Phone: + 44 1623 638114 

Cell: +44 7711 029 715 

rthomson@glenair.com 

 

http://www.nec.com/en/global/solutions/space/


 

W.L. GORE 

Gore Products Meet the Challenges of Aerospace 

Gore’s commitment to innovation is based on a thorough understanding of materials and how they interact with 

their environment — with the result of reliable products for the aerospace industry. Smaller, lighter-weight 

cables and cable assemblies can reduce mass and simplify routing while delivering electrical and mechanical 

integrity in the most challenging applications.  

GORE® Space Cables and Assemblies: SpaceWire Cables 

Reduce Costs for High-Quality Flight and Ground Data Transfer 

Data transmission is essential to the success of every space mission. Meeting the stringent electrical and 

mechanical requirements of ECSS-E-ST-50-12C, GORE® SpaceWire Cables provide bidirectional, high-speed 

data transmission up to typically 400 Mbit/s with minimal crosstalk, signal attenuation, and low skew. 

The key to the outstanding performance of GORE® SpaceWire Cables is the proprietary material used in the 

cable insulation — expanded polytetrafluoroethylene (ePTFE). Using ePTFE, Gore supports LVDS, which 

allows data to pass through the cable without significant signal loss. By combining this LVDS technology with 

standard hardware protocols, GORE® SpaceWire Cable provides a simple alternative to he need for customized 

program designs. 

 

JAXA - Japan Aerospace Exploration Agency 

Web: http://jaxa.jp 

JAXA, the Japanese space agency, has been collaborating with SpaceWire Working Group since its beginning, 

and adopting SpaceWire in multiple spacecraft missions including BepiColombo/MMO, ASTRO-H, SPRINT-

A, and HAYABUSA-2. JAXA organizes Japan SpaceWire Users Group so that Japanese industries can share 

experiences and outcomes of SpaceWire R&D. 

 
NEC CORPORATION 

NEC Corporation is a leader in the integration of IT and network  technologies that benefit businesses and 

people around the world. 

By providing a combination of products and solutions that cross  utilize the company's experience and global 

resources, NEC's  advanced technologies meet the complex and ever-changing needs  of its customers. NEC 

brings more than 100 years of expertise  in technological innovation to empower people, businesses and  

society.  

For more information, visit NEC space system solutions at  http://www.nec.com/en/global/solutions/space/ 

http://www.glenair.com/
mailto:darmani@glenair.com
mailto:rthomson@glenair.com


 

SHIMAFUJI ELECTRIC 

Since 1990, Shimafuji Electric has been developing microcomputer boards including transmission, graphics and 

other complex peripheral functions and also producing small amount of products for some OEMs. We have 

more chances to develop evaluation boards for various RISCs and intelligent peripheral functions devices and T-

Engine boards/T-Engine appliance products these days. 

 

Shimafuji have joined the SpaceWire Working Group since early days. We developed the 4 port Space Wire to 

Gigabit Ether Unit and we are developing the 24-link SpaceWire Packet Recorder based on the 12-slots 

microTCA SpaceWire Backplane system. 

 

STAR-DUNDEE  

STAR-Dundee specialises in supporting users and developers of SpaceWire and SpaceFibre; data networking 

standards for on-board satellites and spacecraft.  

SpaceWire is established as one of the main data-handling networks used on many ESA, NASA and JAXA 

spacecraft and by research organisations and space industry across the world. SpaceWire's speed, simplicity, 

flexibility and interoperability have contributed to its continuing adoption and popularity. 

STAR-Dundee has a comprehensive product line of SpaceWire test and development equipment that can test 

across all levels of SpaceWire standard. The product portfolio encompasses equipment to enable the design, 

development, integration and testing of SpaceWire networks and devices, along with industry-leading flight IP 

cores, chip designs, design services, consultancy and training.  

SpaceFibre is an emerging ESA standard networking technology that provides a very high-speed serial data-link 

for high data-rate payloads. SpaceFibre aims to complement the capabilities of the widely used SpaceWire 

standard: achieving initial data rates of 2 Gbits/s improving to 5 Gbits/s long-term, capable of operating over 

fibre-optic and copper cable, reducing cable mass by a factor of four, adding integrated QoS including 

bandwidth reservation, priority and scheduling, enhancing robustness with FDIR features at all protocol levels, 

providing galvanic isolation, and multi-laning improves the data-rate further to well over 20 Gbits/s. 

SpaceFibre is being developed by the University of Dundee for ESA and STAR-Dundee can now provide 

SpaceFibre IP Cores and chip designs, SpaceFibre interfaces, SpaceWire to SpaceFibre Bridge, and SpaceFibre 

link analysis tools; everything needed for the early adoption of this new technology. 

The STAR-Dundee team has leading expertise in all areas of SpaceWire and SpaceFibre technology and is 

committed to helping our customers adopt these technologies, providing continued support through the full 

development life-cycle. 
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