

SpaceWire-2013

Proceedings of the 5th

International SpaceWire Conference

Gothenburg 2013

Editors: Steve Parkes and Carole Carrie

Space

Technology

Centre

University of Dundee

SpaceWire-2013

Proceedings of International SpaceWire Conference

Gothenburg 2013

ISBN: 978-0-9557196-4-6

© Space Technology Centre

 University of Dundee

 Dundee

 2013

All rights reserved. No part of this publication may be reproduced

or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written

permission of the publisher.

Space

Techology

Centre

University of Dundee

3

Preface

These proceedings contain the papers presented at the 2013 International SpaceWire

Conference, held in the Radisson Blu Scandinavia Hotel, Gothenburg, Sweden, between 10 and 13

June, 2013. The International SpaceWire Conference aims to bring together SpaceWire product

designers, hardware engineers, software engineers, system developers and mission specialists

interested in and working with SpaceWire to share the latest ideas and developments related to

SpaceWire technology. SpaceWire technology is now being used or designed into over one hundred

spacecraft, covering science, exploration Earth observation and commercial applications. High profile

missions like James Webb Space Telescope, Astro-H, GAIA, ExoMars, Bepicolombo, Sentinels 1, 2,

3 and 5 precursor, and GOES-R are using SpaceWire extensively. SpaceWire is being used in Europe,

Japan, USA, Russia, China, India, and other countries of the World.

The conference covers many different aspects of SpaceWire technology and includes both

academic and industrial presentations. Sessions address recent developments of the SpaceWire set of

standards, space missions and other applications using SpaceWire, new components, sensors and

cables which support the SpaceWire standard; products supporting SpaceWire including onboard

equipment, instruments and related onboard software; methods and equipment to aid the test and

verification of SpaceWire components, units and systems; and SpaceWire networks, their

architecture, configuration, and discovery, as well as “plug and play” concepts, other higher level

protocols and related hardware and software design issues. A technical seminar on SpaceWire at the

conference was presented by several world leading experts on SpaceWire providing hints and tips on

using SpaceWire based on many years’ experience.

The community of engineers working on SpaceWire meet regularly at the SpaceWire

Working Group meetings to help with the further development of SpaceWire and related standards

and technologies. This group includes engineers from many parts of the World with substantial

contributions from Europe, Japan, Russia and the USA. The SpaceWire Conference complements

these Working Group meetings with more formal presentations from a wider range of contributors.

There is growing interest in the SpaceFibre which aims to provide multi-gigabit/s network

technology for future space flight application like high-resolution multi-spectral imaging and

synthetic aperture radar. A second seminar introduced and demonstrated SpaceFibre technology

which can operate over both electrical and fibre-optic media. A growing number of papers in the

conference addressed SpaceFibre.

The conference committee would like to acknowledge the support and hard work of the many

individuals who made International SpaceWire Conference 2013 a reality. First, we thank the authors

and the keynote speakers for their high-quality contributions. We express our gratitude to the

Technical Committee for their assistance in the review process. We thank all people supporting us at

Aeroflex, the Space Technology Centre at the University of Dundee and the European Space Agency.

The Conference Chairpersons,

Martin Suess, European Space Agency, The Netherland

Steve Parkes, Space Technology Centre, University of Dundee, UK

Sand Habinc, Aeroflex Gaisler, Sweden

Teresa Farris, Aeroflex, USA

4

Technical Committee

Allison Bertrand - South West Research Institute, USA

Yohann Bricard - Atmel

Omar Emam - Astrium, UK

Wahida Gasti - ESA, The Netherlands

Viacheslav Grishin – Submicron

Sandi Habinc – Aeroflex Gaisler

Omar Haddad – Dell, USA

Hiroki Hihara – NEC, Japan

Christophe Honvault - ESA

Torbjörn Hult - RUAG Space, Sweden

Jørgen Ilstad - ESA, The Netherlands

Paul Jaffe - Naval Research Laboratory, USA

David Jameux- ESA, The Netherlands

Gerald Kempf - RUAG Space, Austria

Clifford Kimmery – Honeywell Inc.

Alexander Kisin - MEI, USA

Robert Klar - South West Research Institute, USA

Jerome Lachaize – Astrium, France

Jennifer Larsen - Aeroflex

Jim Lux - NASA JPL, USA

Peter Mendham - Scisys Ltd., UK

Masaharu Nomachi – University of Osaka, Japan

Olivier Notebaert - Astrium SAS, France

Steve Parkes - University of Dundee, Scotland, UK

Manuel Prieto - Alcala University, Spain

Paul Rastetter - Astrium GmbH, Germany

Josep Rosello - ESA

Derek Schierlmann - Naval Research Laboratory, USA

5

Alan Senior - SEA, UK

Yuriy Sheynin - St. Petersburg State University of Aerospace Instrumentation, Russia

Tatiana Solokhina - ELVEES, Russia

Martin Suess - ESA, The Netherlands

Tadayuki Takahashi - JAXA

Antonis Tavoularis - Teletel

Raffaele Vitulli - ESA, The Netherlands

Takahiro Yamada - JAXA/ISAS, Japan

Takayuki Yuasa – JAXA, Japan

6

Programme Overview

Monday 10 June

15:30 – 19:00 Registration

16:00 – 18:00 Tutorials of SpaceWire and SpaceFibre

Tuesday 11 June

09:00 – 10:00 Conference Opening / Keynote Presentations (60 min)

10:00 – 10:50 Standardisation 1 (50 min)

11:10 – 12:25 Standardisation 2 (75 min)

13:45 – 15:25 Test & Verification 1 (100 min)

15:45 – 17:00 Onboard Equipment & Software (75 min)

Wednesday 12 June

09:00 – 10:55 Components 1 (115 min)

11:15 – 12:05 Components 2 (50 min)

12:05 – 12:35 Onboard Equipment & Software (30min)

13:55 – 15:10 Networks & Protocols (75 min)

15:10 – 16:40 Poster Session (90 min)

Thursday 13 June

09:00 – 09:45 Standardisation (45 min)

09:45 – 10:45 Test & Verification (60 min)

11:05 – 12:35 Missions & Applications (90 min)

13:55 – 15:10 Components (75 min)

15:30 – 17:10 Networks & Protocols (100 min)

Programme is subject to change

Tuesday 11 June

9

Standardisation 1 (Long)

10

SpaceFibre: Multiple Gbit/s Network Technology

with QoS, FDIR and SpaceWire Packet Transfer

Capabilities
SpaceWire Standardisation, Long Paper

Steve Parkes, Chris McClements,

Space Technology Centre, University of Dundee,

Dundee, DD1 4EE, UK

sparkes@computing.dundee.ac.uk

 Albert Ferrer, Alberto Gonzalez,

STAR-Dundee

STAR House, 166 Nethergate, Dundee, DD1 4EE, UK

Abstract— SpaceFibre is a very high-speed serial link

designed specifically for use onboard spacecraft. It carries

SpaceWire packets over virtual channels and provides a

broadcast capability similar to SpaceWire time-codes but

offering much more capability. SpaceFibre operates at 10

times the data-rate of SpaceWire, can run over fibre optic

or electrical media, provides galvanic isolation, includes

coherence Quality of Service (QoS) and Fault Detection

Isolation and Recovery (FDIR) support, and provides low-

latency signalling. SpaceFibre can run over distances of 5m

with copper cable and 100 m or more with fibre optic cable.

SpaceFibre is compatible with the packet level of the

SpaceWire standard (ECSS-E-ST-50-12) and is therefore

able to run the SpaceWire protocols defined in ECSS-E-

ST-50-51C, 52C and 53C. This means that applications

developed for SpaceWire can be readily transferred to

SpaceFibre.

The aim of SpaceFibre is to provide point-to-point and

networked interconnections for very high data-rate

instruments, mass-memory units, processors and other

equipment, on board a spacecraft.

This paper introduces SpaceFibre, describes the

SpaceFibre QoS, FDIR and network level operation of

SpaceFibre.

Index Terms—SpaceWire, SpaceFibre, networks, spacecraft

onboard processing

I. INTRODUCTION

SpaceFibre [1] [2] [3] [4] is a very high-speed serial data-

link being developed by the University of Dundee for ESA

which is intended for use in data-handling networks for high

data-rate payloads. SpaceFibre is able to operate over fibre-

optic and electrical cable and support data rates of 2 Gbit/s in

the near future and up to 5 Gbit/s long-term. It aims to

complement the capabilities of the widely used SpaceWire

onboard networking standard [5]: improving the data rate by a

factor of 10, reducing the cable mass by a factor of four and

providing galvanic isolation. Multi-laning improves the data-

rate further to well over 20 Gbits/s.

SpaceFibre provides a coherent quality of service

mechanism able to support best effort, bandwidth reserved,

scheduled and priority based qualities of service. It

substantially improves the fault detection, isolation and

recovery (FDIR) capability compared to SpaceWire.

SpaceFibre aims to support high data-rate payloads, for

example synthetic aperture radar and hyper-spectral optical

instruments. It provides robust, long distance communications

for launcher applications and supports avionics applications

with deterministic delivery constraints through the use of

virtual channels. SpaceFibre enables a common onboard

network technology to be used across many different mission

applications resulting in cost reduction and design reusability.

SpaceFibre uses a packet format which is the same as

SpaceWire enabling simple connection between existing

SpaceWire equipment and high-speed SpaceFibre links and

networks.

The SpaceFibre interface is designed to be implemented

efficiently, requiring substantially fewer logic gates than a

RapidIO interface. It is currently being prototyped in a range of

onboard processing, mass memories and other spacecraft

applications. Interoperability tests between independent

Japanese and European implementations were carried out

successfully in December 2012 and April 2013.

II. SPACEFIBRE PROTOCOL STACK

The SpaceFibre protocol stack is illustrated in Figure 1.

11

QoS and FDIR

Lane Layer

VC Interface

Multi-Lane Layer

Physical Layer

BC Interface

Physical Interface

Network Layer

Packet Interface
M

an
ag

em
en

t
La

ye
r

Management
Interface

Broadcast Message Interface

Figure 1 SpaceFibre Protocol Stack

The network layer protocol is responsible for the transfer of

application information over a SpaceFibre network. It provides

two services: Packet Transfer Service and Broadcast Message

Service. The Packet Transfer Service transfers SpaceFibre

packets over the SpaceFibre network, using the same packet

format and routing concepts as SpaceWire uses. SpaceFibre

supports both path and logical addressing. The broadcast

message service is responsible for broadcasting short messages

(8 bytes) to all nodes on the network. These messages can carry

time and synchronisation signals and be used to signal the

occurrence of various events on the network.

The management layer is responsible for configuring,

controlling and monitoring the status of all the layers in the

SpaceFibre protocol stack. For example it can configure the

QoS settings of the virtual channels in the QoS and FDIR

layer.

The QoS and FDIR layer is responsible for providing

quality of service and managing the flow of information over a

SpaceFibre link. It frames the information to be sent over the

link to support QoS and scrambles the packet data to reduce

electromagnetic emissions. The QoS and FDIR layer also

provides a retry capability, detecting any frames or control

codes that go missing or arrive containing errors and resending

them. With this inbuilt retry mechanism SpaceFibre is very

resilient to transient errors.

The Multi-Lane layer is responsible for operating several

SpaceFibre lanes in parallel to provide higher data throughput.

In the event of a lane failing the Multi-Lane layer provides

support for graceful degradation, automatically spreading the

traffic over the remaining working links.

The Lane layer is responsible for lane initialisation and

error detection. In the event of an error the lane is

automatically re-initialised. The Lane layer encodes data into

symbols for transmission using 8B/10B encoding and decodes

these symbols in the receiver. 8B/10B codes are DC balanced

supporting AC coupling of SpaceFibre interfaces.

The Physical layer is responsible for serialising the 8B/10B

symbols and for sending them over the physical medium. In the

receiver the Physical layer recovers the clock and data from the

serial bit stream, determines the symbol boundaries and

recovers the 8B/10B symbols. Both electrical cables and fibre-

optic cables are supported by SpaceFibre.

III. SPACEFIBRE QUALITY OF SERVICE

A SpaceFibre interface includes a number of virtual

channels. Each provides a FIFO type interface like a

SpaceWire link. When data from a SpaceWire packet is placed

in a SpaceFibre virtual channel it is transferred over the

SpaceFibre link and placed in the same numbered virtual

channel at the other end of the link. Data from the several

virtual channels are interleaved over the physical SpaceFibre

connection. To support the interleaving, data is sent in short

frames of up to 256 SpaceWire N-chars each. A virtual channel

can be assigned a quality of service which determines the

precedence with which that virtual channel will compete with

other virtual channels for sending data over the SpaceFibre

link. Priority, bandwidth reservation, and scheduled qualities of

service can be supported all operating together using a simple

precedence mechanism.

In this section the SpaceFibre quality of service mechanism

is described.

A. Frames and Virtual Channels

To provide quality of service, it is necessary to be able to

interleave different data flows over a data link or network. If a

large packet is being sent with low priority and a higher

priority one requests to be sent, it must be possible to suspend

sending the low priority one and start sending the higher

priority packet. To facilitate this SpaceWire packets are

chopped up into smaller data units called frames. When the

high priority packet requests to be sent, the current frame of the

low priority packet is allowed to complete transmission, and

then the frames of the high priority packet are sent. When all

the frames of the high priority packet have been sent, the

remaining frames of the low priority packet can be sent.

Each frame has to be identified as belonging to a particular

data flow so that the stream of packets can be reconstructed at

the other end of the link. Low priority packets belong to one

data stream and high priority packets belong to another data

stream.

Each independent data stream allowed to flow over a data

link is referred to as a virtual channel (VC). Virtual channels

are unidirectional and have a QoS attribute, e.g. priority. At

each end of a virtual channel is a virtual channel buffer (VCB),

which buffers the data from and to the application. An output

VCB takes data from the application and buffers it prior to

sending it across the data link. An input VCB receives data

from the data link and buffers it prior to passing it to the

receiving application.

There can be several output virtual channels connected to a

single data link, which compete for sending information over

the link. A medium access controller determines which output

virtual channel is allowed to send the next data frame. When an

output VCB has a frame of data ready to send and the

corresponding input VCB at the other end of the link has room

12

for a full data frame, the output VCB requests the medium

access controller to send a frame. The medium access

controller arbitrates between all the output VCBs requesting to

send a frame. It uses the QoS attribute of each of the requesting

VCBs to determine which one will be allowed to send the next

data frame.

Priority is one example of a QoS attribute. Other types of

QoS are considered in the subsequent sections.

B. Precedence

For the medium access controller to be able to compare

QoS attributes from different output VCBs, it is essential that

they are all using a common measure that can be compared.

The name given to this measure is precedence. The competing

output VCB with the highest precedence will be allowed to

send the next frame.

C. Bandwidth Reservation

When connecting an instrument via a network to a mass

memory, what the systems engineer needs to know is “how

much bandwidth do I have to transfer data from the instrument

to the mass memory?” Once the network bandwidth allocated

to a particular instrument has been specified, it should not be

possible for another instrument to impose on the bandwidth

allocated to that instrument. A priority mechanism is not

suitable for this application. If an instrument with high priority

has data to send it will hog the network until all its data has

been sent. What is needed is a mechanism that allows

bandwidth to be reserved for a particular instrument.

Bandwidth reservation calculates the bandwidth used by a

particular virtual channel, and compares this to the bandwidth

reserved for that virtual channel to calculate the precedence for

that virtual channel. If the virtual channel has not used much

reserved bandwidth recently, it will have a high precedence.

When a data frame is sent by this virtual channel, its

precedence will drop. Its precedence will increase again over a

period of time. If a virtual channel has used more than its

reserved bandwidth recently, it will have a low precedence.

A virtual channel specifies a portion of overall Link

Bandwidth that it wishes to reserve and expects to use, i.e. its

Expected Bandwidth.

When a frame of data is send by any virtual channel, each

virtual channel computes the amount of bandwidth that it

would have been permitted to send in the time interval that the

last frame was sent. This is known as the Bandwidth

Allocation. Bandwidth Allowance is calculated as follows:
andwidthLastFrameBExpectedllowanceBandwidthA

Where Expected or Expected Bandwidth Percentage is the

portion of overall link bandwidth that a virtual channel wishes

to use, and Last Frame Bandwidth is the amount of data sent in

the last data frame.

Each virtual channel can use this to determine its

Bandwidth Credit, which is effectively the amount of data it

can send and still remain within its Expected Bandwidth.

Bandwidth Credit is the Bandwidth Allowance less the

Bandwidth Used accumulated over time.

Bandwidth Credit is calculated for each virtual channel as

follows:

Frames Expected

dthUsedBandwillowanceBandwidthA
reditBandwidthC

Where Used Bandwidth is the amount of data sent by a

particular virtual channel in the last data frame, which is zero

except for all virtual channels except for the one that sent the

last frame.

The Bandwidth Credit is updated every time a data frame

for any virtual channel has been sent. A Bandwidth Credit

value close to zero indicates nominal use of bandwidth by the

virtual channel. A negative value indicates that the virtual

channel is using more than its expected amount of link

bandwidth. A positive value indicates that the virtual channel is

using less than its expected amount of link bandwidth.

To simplify the hardware required to calculate the

Bandwidth Credit it is allowed to saturate at plus or minus a

Bandwidth Credit Limit, i.e. if the Bandwidth Credit reaches a

Bandwidth Credit Limit it is set to the value of the Bandwidth

Credit Limit.

When the Bandwidth Credit for a virtual channel reaches

the negative Bandwidth Credit Limit it indicates that the virtual

channel is using more bandwidth than expected. This may be

recorded in a status register and used to indicate a possible

error condition. A network management application is able to

use this information to check correct utilisation of link

bandwidth by its various virtual channels.

For a virtual channel supporting bandwidth reserved QoS,

the value of the bandwidth counter provides the precedence

value for that virtual channel.

The operation of a bandwidth credit counter is illustrated in

Figure 2.

time

1
2

3 4

5

Precedence

Figure 2 Bandwidth Credit Counter

The bandwidth credit for a particular VC increments

gradually. At point (1) a frame is sent from by this VC,

resulting in a sudden drop in credit. The size of the drop is

amount of data sent in the frame divided by the percentage

bandwidth reserved for the VC. This means that the smaller the

percentage bandwidth the larger the drop, and hence the longer

it takes to regain bandwidth credit.

After the drop at point (1) the bandwidth credit gradually

increments until point (2) when another frame is sent by the

VC. Further frames are sent at points (3), (4), (5) etc. If the

frames sent are full frames then the drop in bandwidth credit

every time a frame is sent, will be the same size.

13

The bandwidth credit counter for another VC is illustrated

in Figure 3. This VC has about half the bandwidth of the VC in

Figure 2 allocated to it. This means that the drops in bandwidth

credit when frames are sent by this VC are about twice the size,

as can be seen Figure 3 at points (1), (2) and (3).

time

1

2

3

Precedence

Figure 3 Bandwidth Credit Counter with Smaller

Reserved Bandwidth

The bandwidth credit counter of another VC is shown in

Figure 4. In this case the bandwidth credit slowly increments

and although some frames are sent at points (1), (2) and (3), the

bandwidth credit eventually saturates, reaching its maximum

permitted value at point (4). Although more bandwidth should

be accumulated after point (4) this is effectively ignored since

the maximum possible bandwidth credit has been reached. At

point (5) a frame is sent once more, resulting in a drop from the

maximum bandwidth credit value.

time

1
2

3

4 5

Precedence

Figure 4 Bandwidth Credit Counter Reaching Saturation

All three VCs are shown together in Figure 5. When a VC

has a data frame ready to send and room for a full data frame at

the other end of the link, it competes with any other VCs in a

similar state, the one with the highest bandwidth credit being

allowed to send the next data frame. At points (1), (2) and (3)

the red VC has data to send and sends frames. At points (4), (5)

and (6) the green VC has data to send and sends a data frame.

At point (7) both the blue and the red VCs have data to send.

The blue VC wins since it has the highest bandwidth credit

count. After this the red VC is allowed to send a further data

frame at point (8).

time

1
2

3

4

5

6

7

8

Precedence

Figure 5 Bandwidth Credit of Competing VCs

If the bandwidth credit counter reaches the minimum

possible bandwidth credit value, it indicates that it is using

more bandwidth than expected and a possible error may be

flagged. This condition may be used to stop the VC sending

any more data until it recovers some bandwidth credit, to help

with “babbling idiot” protection.

Similarly if the bandwidth credit counter stays at the

maximum possible bandwidth credit value for a relatively long

period of time, the VC is using less bandwidth than expected

and this condition can be flagged to indicate a possible error.

The bandwidth credit value is the precedence used by the

medium access controller to determine which VC is permitted

to send the next data frame.

D. Priority

The second type of QoS provided by VCs is priority. Each

VC is assigned a priority value and the VC with the highest

priority (lowest priority number) is allowed to send the next

data frame as soon as it is ready. Figure 6 shows three priority

levels. SpaceFibre has 16 priority levels.

time

Priority 1

Priority 2

Priority 3

Figure 6 Multi-Layered Precedence Priority QoS

Within any level there can be any number of VCs which

compete amongst themselves based on their bandwidth credit.

A higher priority VC will always have precedence over a lower

priority VC unless its Bandwidth Credit has reached the

14

minimum credit limit in which case it is no longer allowed to

send any more data frames. This prevents a high priority VC

from consuming all the link bandwidth if it fails and starts

babbling. More than one VC can be set to the same priority

level in which case those VC’s will compete for medium

access using bandwidth reservation.

6.5 Scheduled

To provide fully deterministic data delivery it is necessary

for the QoS mechanism to ensure that data from specific virtual

channels can be sent (and delivered) at particular times. This

can be done by chopping time into a series of time-slots, during

which a particular VC is permitted to send data frames. This is

illustrated in Figure 7.

Time-slot 1 2 3 4 5 6 7 8
VC 1
VC 2
VC 3
VC 4
VC 5
VC 6
VC 7
VC 8

Figure 7 Scheduled Quality of Service

Each VC is allocated one or more time-slots in which it is

permitted to send data frames. VC1 is scheduled to send in

time-slot 1 and VC2 is scheduled to send in time-slots 2 and 3.

The time-slot duration is a system level parameter, typically

100 μs, and there are 256 time-slots.

During a time-slot, if the VC is scheduled to send in that

time-slot, it will compete with other VCs also scheduled to

send in that time-slot based on precedence (priority and

bandwidth credit). A fully deterministic system would have

one VC allowed to send in a time-slot.

The schedule is always operating. If a user does not want to

use scheduling the schedule table is simply filled completely,

allowing any VC to send in any time-slot, competing with

precedence.

Scheduling can waste bandwidth if only one VC is allowed

to send in a time-slot and that VC is not ready. To avoid this

situation, the critical VC can be allocated a time-slot and given

high priority. Another VC can be allocated the same time-slot

with lower priority. In this way when that time-slot arrives the

high priority VC will be allowed to send its data, but if it is not

ready the VC with lower priority can send some data. This

configuration is illustrated in Figure 7 time-slot 3 and VCs 6

and 8.

Time-slots can be defined using broadcast messages to send

start of time-slot signals or to send time information and

having a local time counter which determines the start and end

of each time-slot. The SpaceFibre broadcast message

mechanism support both synchronisation and time distribution.

The SpaceFibre QoS mechanism is simple and efficient to

implement and it provides bandwidth reservation, priority and

scheduling integrated together, not as separate options.

Furthermore SpaceFibre QoS provides a means for detecting

“babbling idiots” and for detecting nodes that have ceased

sending data when they are expected to be sending

information.

IV. SPACEFIBRE FAULT DETECTION, ISOLATION AND

RECOVERY

SpaceFibre provides automatic fault detection, isolation and

recovery. When a fault occurs on a SpaceFibre link, it is

detected and the erroneous or missing information resent.

SpaceFibre recovers from intermittent faults very rapidly,

detecting faults, recovering and resending data faster than

SpaceWire disconnects and reconnects a link. The retry

mechanism does not depend on time-outs, naturally adapting to

different cable delays.

Fault detection is provided by checking each 8B/10B

symbol for disparity errors and invalid 8B/10B codes.

SpaceFibre has selected the 8B/10B K-codes it uses to have

enhanced Hamming distance from data-codes. This means that

a single bit error occurring in a data-code cannot result in a

valid K-code used by SpaceFibre. In addition each data frame,

broadcast frame, FCT, ACK and NACK are protected by a

CRC.

Fault isolation is provided at various levels in SpaceFibre.

AC coupling is used in the physical layer to prevent damage

from faults that cause DC voltages exceeding the maximum

permitted to appear on the transmitter outputs or receiver

inputs. This feature also enables galvanic isolation to be

implemented readily. At the Quality level SpaceFibre provides

time containment, containing errors in the data frame in which

they occur, and bandwidth containment, containing errors to

the virtual channel in which they occur; an error in one VC

does not affect data flowing in another VC. Babbling idiots are

contained using the QoS mechanism described above.

Fault recovery is provided at the link level using a retry

mechanism that resends data frames, broadcast frames and

FCTs. The retry is very fast, uses a minimum amount of buffer

memory, and adapts automatically to different link lengths. In

addition to the retry mechanism the multi-lane functionality

includes graceful degradation on lane failure. If a lane fails

permanently, so that a retry or re-initialisation does not recover

lane operation, a multi-lane system will continue using the

remaining lanes available. This reduces the bandwidth

available but does not stop the link operating. For critical

operations an extra lane can be included and the graceful

degradation will then provide automatic replacement of a faulty

lane. The bit error rate (BER) of a lane is monitored and a lane

reported as faulty if the (BER) is above a level which results in

the effective link bandwidth being unusable. This feature

allows lanes that can re-initialise successfully but which will

not run for very long before having to re-initialise again, to be

detected, isolated and replace by a fully functional lane.

V. SPACEFIBRE NETWORKS

A SpaceFibre network uses similar packet formats, packet

addressing and routing concepts to SpaceWire. The main

difference is that SpaceFibre includes virtual channels.

15

A SpaceFibre router is illustrated in Figure 8.

Routing
Switch
Matrix

SpaceFibre
Interface

VC

VC

VC

VC

VC

SpaceFibre
Interface

VC

VC

VC

VC

VC

SpaceFibre
Interface

VC

VC

VC

VC

VC

SpaceFibre
Interface

VC

VC

VC

VC

VC

Configuration
Port

Port 2 Port 3

Port 1 Port 4

SpaceFibre
Port 2

SpaceFibre
Port 1

SpaceFibre
Port 3

SpaceFibre
Port 4

Figure 8 SpaceFibre Router

The SpaceFibre router comprises a number of SpaceFibre

interfaces and a routing switch matrix. Each SpaceFibre

interface has several virtual channels. The VC number for each

virtual channel can be configured, except for VC0 which is a

virtual channel used for configuration, control and monitoring

of the SpaceFibre network. When a packet arrives on a

SpaceFibre interface it is placed in the appropriate virtual

channel, i.e. the one with the same VC number as it was

transmitted on. The leading data character of the packet

determines which port of the routing switch the packet is to be

forwarded through using either path or logical addressing. The

port that it is to be switched to must have a VC configured with

the same number as the VC that the packet arrived on. The

packet is then passed through the routing switch matrix and

placed frame by frame in the VC of the output port. The packet

is then transferred across the SpaceFibre link, competing with

other VCs in that port for access to the link medium according

to their precedence.

If a packet arrives and the output port that the packet is to

be switched to does not have a VC with the same number as

that on which it arrived, the packet is spilt and an error

recorded.

Virtual channels can be used to construct virtual networks

where a single VC number is used for connecting to all or

several of the nodes attached to the network. This is illustrated

in Figure 9 where VC6 (blue) is used to connect all the nodes

on the network. Using VC6 the Control Processor can send

commands to Instrument 1 or 2 or the Mass Memory unit,

setting their operating mode or reading housekeeping

information, etc. This virtual network acts like a SpaceWire

network.

SpaceFibre
Routing
Switch

VC

VC 6

VC

VC

VC

VC 6

VC 4

VC 2

VC

VC

VC 6

VC 4

VC

VC

VC

VC 2

VC

VC

VC 6

VC

SpFi
Port 3

SpFi
Port 4

SpFi
Port 2

SpFi
Port 1

VC 6

VC

VC

SpFi
I/F

Control
Processor

VC 2

VC 6

VC 4

SpFi
I/F

Mass
Memory

Unit

VC 2

VC 6

VC

SpFi
I/F

Instrument 2

VC 4

VC 6

VC

SpFi
I/F

Instrument 1

Figure 9 A Simple SpaceFibre Network

Virtual channels can also be used to construct virtual point

to point links from one node to another. VC2 and VC4, in

Figure 9, are providing virtual point to point links. VC2

provides a virtual point to point link between Instrument 2 and

the Mass Memory Unit and VC4 between Instrument 1 and the

Mass Memory. These virtual channels can be each allocated

the bandwidth they need to send their data to the Mass Memory

Unit. Once this bandwidth is allocated other virtual channels or

virtual networks will not interfere with their operation.

Figure 10 shows a more realistic onboard network using

SpaceFibre which includes a SpaceWire to SpaceFibre Bridge.

Two high data-rate instruments (Instruments 1 and 2) have

SpaceFibre connections. Four less demanding instruments have

SpaceWire connections to the SpaceWire to SpaceFibre

Bridge. Each instrument has a virtual point to point connection

to the Mass Memory Unit and there is a virtual point to point

connection between the Mass Memory and the Downlink

Telemetry Unit. The Control Processor has a virtual network

for configuring and controlling all devices on the network.

SpaceWire - SpaceFibre Bridge

VC 7

VC 1

VC 2

VC 3

VC 4

SpFi
I/F

VC 5

VC 6

VC 8

SpaceFibre
Routing
Switch

VC

VC 7

VC

VC

VC

VC 7

VC 1

VC 2

VC 3

VC 4

VC 7

VC 1

VC

VC

VC

VC 2

VC

VC

VC 7

VC

SpFi
Port

3

SpFi
Port

4

SpFi
Port

2

SpFi
Port

1

VC 7

VC

VC

SpFi
I/F

Control
Processor

Mass
Memory

Unit

VC 2

VC 7

VC

SpFi
I/F

Instrument
2

VC 1

VC 7

VC

SpFi
I/F

Instrument
1

VC 7

VC

VC

VC 8

VC

VC 3

VC 4

VC 5

VC 6

VC 7

SpFi
Port

4

SpFi
Port

1

VC 8

VC 7

VC

SpFi
I/F

Downlink
Telemetry

VC 4

VC 7

VC 5

SpFi
I/F

SpaceWire
Router

I 3

I 4

I 5

I 6

VC 6

VC 3

VC 5

VC 6

VC 8

Instruments

Figure 10 Realistic SpaceFibre Network

Figure 10 is solving a complex communication task with

many separate, isolated virtual channels providing point to

point links, and a virtual network being used to control the

entire system. Figure 11 shows this same network with the

virtual channels removed, revealing the simplicity of

implementation of a complex communication task when using

SpaceFibre.

SpaceFibre
Routing
Switch

Control
Processor

Mass
Memory

Unit

Instrument 2

Instrument 1

Downlink
Telemetry

SpaceWire
SpaceFibre

Bridge

I 3

I 4

I 5

I 6

Instruments

Figure 11 Simple System Architecture with SpaceFibre

16

VI. SPACEFIBRE IMPLEMENTATIONS

The SpaceFibre specification has been written by the

University of Dundee for ESA, and has been widely reviewed

by the international spacecraft engineering community. It has

also been simulated and implemented in several forms. While

work remains to be done on the specification the existing draft

specification is close to maturity. In this section the current

state of SpaceFibre is explored.

A SpaceFibre interface has been designed by University of

Dundee and STAR-Dundee for ESA. This VHDL IP core has

been used at all stages of the draft specification to validate and

prove the concepts being explored. As a consequence the

VHDL IP core has gone through as many iterations as the

SpaceFibre specification. At present the VHDL IP core

implements all layers of the SpaceFibre specification with the

exception of the Multi-Lane layer.

To support the testing of SpaceFibre a suitable test platform

was required, so STAR-Dundee developed the STAR Fire unit,

which has two SpaceFibre interfaces and includes a link

diagnostic capability for analysing traffic on a SpaceFibre link.

Two STAR Fire units are being used in Figure 12 to help with

the testing of radiation tolerant Fibre Optic transceivers for

SpaceFibre operating over 100 m of Fibre Optic cable.

Figure 12 STAR Fire Testing 100m Fibre Optic Cable

A radiation tolerant SpaceFibre interface device (VHiSSI)

is being developed by University of Dundee and several

partners within a European Union (EU) Framework 7 project

[6].

NEC and Melco are both developing SpaceFibre interface

devices to the specification produced by the University of

Dundee. This work is providing valuable feedback on the

specification and implementation of SpaceFibre.

Interoperability testing in December 2013 and April 2013 has

been successful with various levels of the SpaceFibre protocol

stack being implemented and tested.

Research carried out during the SpaceWire-RT EU

Framework 7 project resulted in the Quality layer for

SpaceFibre being developed by University of Dundee. Within

this same project St. Petersburg University of Aerospace

Instrumentation (SUAI) modelled and simulated the various

layers of SpaceFibre and ELVEES assessed the feasibility of

ASIC implementation using a custom designed SerDes.

Several ESA projects are using the Dundee SpaceFibre IP

core under a Beta evaluation programme including:

 High Performance COTS Based Computer, Astrium

and CGS.

 Leon with Fast Fourier Transform Co-processor,

SSBV.

 FPGA Based Generic Module and Dynamic

Reconfigurator, Bielefeld University.

 Next Generation Mass Memory, Astrium, IDA and

University of Dundee.

 1 x High Processing Power DSP, Astrium and STAR-

Dundee.

Work on the formal European Cooperation for Space

Standardization (ECSS) standard for SpaceFibre is schedule to

start in early 2014, once the technical specification is complete.

VII. CONCLUSIONS

SpaceFibre is a multi-gigabit/s networking technology

designed specifically for spaceflight applications. It

incorporates a comprehensive quality of service capability

providing integrated bandwidth reservation, priority and

scheduling. Efficient, effective and rapid fault detection,

isolation and recovery mechanisms are included in the

SpaceFibre interface, enabling rapid detection and recovery

from link level errors.

SpaceFibre is designed to support very high data-rate

missions like multi-spectral imagers and synthetic aperture

radar. It reduces development time and costs, because of its

integrated QoS and FDIR capabilities and because it simplifies

previously complex onboard data-handling architectures.

SpaceFibre is designed to use the same packet format as

SpaceWire enabling straightforward upgrading of spacecraft

networks to include the improved QoS, FDIR and bandwidth

of SpaceFibre while being able to operate with existing

SpaceWire equipment. SpaceWire units can be readily

integrated with SpaceFibre using a SpaceWire to SpaceFibre

Bridge.

ACKNOWLEDGMENT

The research leading to these results has received funding

the European Space Agency under ESA contract numbers

4000102641 and from the European Union Seventh

Framework Programme (FP7/2007-2013) under grant

agreement n° 263148 and 284389. We would also like to thank

Martin Suess the ESA project manager for the SpaceFibre

related activities for his help, advice and guidance.

REFERENCES

[1] S. Parkes, A. Ferrer, A. Gonzalez, & C. McClements,

“SpaceFibre Standard Draft E1”, University of Dundee, 28th

September 2012.

[2] S. Parkes, A. Ferrer, A. Gonzalez, & C. McClements,

“SpaceFibre: Multiple Gbits/s Network Technology with QoS,

FDIR and SpaceWire Packet Transfer Capabilities”,

International SpaceWire Conference, Gothenburg, June 2013.

[3] S. Parkes, “Never Mind the Quality, Feel the Bandwidth:

Quality of Service Drivers for Future Onboard Communication

Networks”, paper no. IAC-10.B2.6.6, 61st International

Astronautical Congress, Prague 2010.

17

[4] S. Parkes, C. McClements and M. Suess, “SpaceFibre”,

International SpaceWire Conference, St Petersburg, Russia,

2010, ISBN 978-0-9557196-2-2, pp 41-45.

[5] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,

Nodes, Routers and Networks”, Issue 1, European Cooperation

for Space Data Standardization, July 2008.

[6] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements, R. Ginosar,

T Liran, G Sokolov, G Burdo, N Blatt, P Rastetter, M Krstic, A

Crescenzio, “A Radiation Tolerant SpaceFibre Interface

Device”, International SpaceWire Conference, Gothenburg,

2013.

18

SpaceFibre Quality of Service and Network Routing
SpaceWire Standardisation, Long Paper

Clifford Kimmery and Stephen Belvin

Honeywell International

Space Electronic Systems

Clearwater, FL, USA

clifford.kimmery@honeywell.com, stephen.belvin@honeywell.com

Abstract— The available SpaceFibre literature views each

SpaceFibre virtual channel as logically equivalent to a SpaceWire

physical link. This view can be interpreted as allowing

SpaceWire packet traversal of the SpaceFibre network through

any appropriate virtual channel. Because SpaceWire packets do

not have associated Quality of Service (QoS) attributes, the

SpaceFibre Standard Draft [1] associates QoS attributes with

virtual channels. As a result, SpaceFibre routers must make

routing decisions using a combination of SpaceWire packet

header and virtual channel QoS attributes to provide a consistent

QoS from source to destination. Parkes and Suess [2] introduce

the concept of a SpaceFibre virtual network composed of virtual

channels with identical Virtual Channel Identifier (VCID) and

QoS attributes such that packet routing can be performed using

the SpaceWire packet header and the VCID.

 While the virtual network concept is beneficial for providing

routes with the same QoS attributes through the SpaceFibre

network, the mechanisms used should have the flexibility to

address the majority of application use cases. In particular, the

solution must address the likelihood that some SpaceFibre

endpoint implementations will support a small number of virtual

channels (for example, one or two). Mapping the resulting

collection of virtual networks onto the SpaceFibre network is

likely to be a significant problem for larger networks.

We consider the limitations imposed on SpaceFibre network

routing by the coupling of VCIDs with virtual networks. We also

review possible methods for addressing the limitations identified.

Index Terms—SpaceFibre, SpaceWire, network, routing,

quality of service, virtual channel, virtual network.

I. INTRODUCTION

The introduction of Virtual Channels and Quality of

Service (QoS) in SpaceFibre is a significant advancement for

the SpaceWire community. The new capabilities also increase

the complexity of networks based on SpaceFibre protocols.

The concept of establishing virtual networks to provide

customized performance capabilities for each network traffic

type introduces an abstraction that makes SpaceFibre network

routing easier to contemplate and accomplish. By associating a

QoS type (we define a QoS type as a specific set of QoS

attributes) with each virtual network (VN), network users can

view the physical SpaceFibre network as a collection of virtual

SpaceWire networks. Each virtual SpaceWire network offers

specific network performance characteristics established by the

associated QoS type.

II. OVERVIEW OF SPACEFIBRE VIRTUAL CHANNELS AND

QUALITY OF SERVICE

Virtual channels are fundamental to the SpaceFibre

architecture and form the basis for any concept of SpaceFibre

networks. A virtual channel is a unidirectional logical link

through a physical SpaceFibre link between two nodes.

Multiple virtual channels can share a single SpaceFibre

physical link. Each virtual channel has independent flow

control and behaves like a traditional SpaceWire physical link.

Because of the unidirectional nature of SpaceFibre virtual

channels, the number of virtual channels operating in one

direction can be different than the number operating in the

other direction. This capability offers significant flexibility to

SpaceFibre network designers.

Each SpaceFibre Encoder/Decoder (CODEC)

implementation must provide no less than one virtual channel

(up to a maximum of 256). A SpaceFibre CODEC must

include a Virtual Channel Buffer (VCB) for each Virtual

Channel (VC) supported. The SpaceFibre link provides flow

control and other link management support by associating a

Virtual Channel Identifier (VCID) with each virtual channel.

SpaceFibre frames transmitted by the link encoder are

associated with the virtual channel by including the VCID in

the frame header. A SpaceFibre data frame is shown in Fig. 1

with the header consisting of COMMA, Start of Data Frame

(SDF) and VC characters. The frame trailer consists of an End

of Data Frame (EDF), Frame Sequence (FR_SEQ#) and CRC.

19

Fig. 1. SpaceFibre Data Frame Format.

One of the key benefits of SpaceFibre is support for Quality

of Service behaviors. Each QoS behavior defines a mechanism

for ensuring that a defined set of network performance

characteristics are met. Because SpaceWire packets do not

have associated Quality of Service attributes, the SpaceFibre

Standard Draft associates QoS attributes with virtual channels.

SpaceWire packets traversing a SpaceFibre link are prioritized

based on the QoS attributes of the virtual channel. The QoS

behavior is established for each virtual channel at the

SpaceFibre link transmitter while the link receiver treats all

virtual channels equally.

The SpaceFibre Standard Draft defines four QoS behaviors:

best effort, priority, bandwidth reservation and scheduled. The

Medium Access Controller (MAC) in the SpaceFibre CODEC

uses the precedence of each virtual channel to prioritize data

transmission. The best effort QoS behavior is assigned the

lowest precedence and is dependent on the availability of

unallocated link bandwidth to allow packets to traverse the

network. The priority QoS behavior defines 16 levels of

priority and the SpaceFibre Standard Draft assigns a specific

precedence to each level. The best effort QoS is equivalent to

lowest precedence level of the priority QoS.

The bandwidth reservation and scheduled QoS behaviors

are more complex than the best effort and priority behaviors.

In order to determine the precedence of a virtual channel with

the bandwidth reserved QoS behavior, the MAC must consider

the expected bandwidth utilization of the virtual channel, along

with its recently utilized bandwidth and the available link

bandwidth. The scheduled QoS behavior is based on fixed time

periods or slots, where a virtual channel may be configured to

transmit frames in one or more time slots. Priority may be

combined with bandwidth reservation or scheduled QoS to

provide more control over precedence for a virtual channel.

III. SPACEFIBRE NETWORK CONCEPTS

Much of the existing SpaceFibre literature envisions using

SpaceFibre links in point-to-point applications. The focus on

single-link applications is appropriate since the SpaceFibre

Standard Draft does not address network-level aspects. While

some work [2] [3] [4] has considered the application of

SpaceFibre to general networks, many aspects remain

unresolved.

Earlier work on QoS in SpaceFibre networks [4] has shown

the difficulties derived from a lack of QoS attributes associated

with SpaceWire packets. Two alternatives for associating QoS

attributes with SpaceWire packets traversing SpaceFibre

networks were discussed. The first, association of QoS with

each virtual channel, is the basis of the method used by the

SpaceFibre Standard Draft. The second, including QoS

information in the SpaceFibre frame header, offers greater

flexibility in network routing at a significant cost in

implementation complexity.

The primary disadvantage of associating QoS with the

virtual channel is that the number of available VCIDs

establishes the upper bound on the number of independent QoS

types that can be used in any SpaceFibre link. Recent

SpaceFibre work [3] exacerbates this disadvantage by also

using the VCID in the SpaceFibre network routing mechanism.

Including QoS attributes within the SpaceFibre frame

header has the disadvantage that each SpaceWire packet

traversing the virtual channel can dynamically change the QoS

attributes of the virtual channel. For the simple QoS types

(priority and best effort), this behavior does not have much

effect, but for the complex QoS types (bandwidth reservation

and scheduled) that are dependent on historical traffic patterns

or out-of-band events, such perturbations would be difficult to

address.

More recent work [2] [3] defines virtual networks as

collections of virtual channels with identical QoS attributes

(QoS type). All SpaceWire packet traffic utilizing the virtual

network has the same precedence through the physical

SpaceFibre network.

In its simplest form, this concept uses virtual SpaceWire

networks with topology identical to the physical topology of

the host SpaceFibre network. Each virtual network is

associated with the QoS attributes needed by one class of

SpaceWire traffic used in the system application. For

simplicity, each virtual network is allocated a virtual channel in

both directions of each SpaceFibre link. In cases where the

packet traffic flows in a single direction through the virtual

network, the reverse virtual channel is unused.

The concept can be extended by recognizing that the

system application is unlikely to use all of the links of the

SpaceFibre physical topology in each of the virtual SpaceWire

networks. The unused virtual channels do not need to be

allocated physical SpaceFibre link resources, freeing those

resources for use by other virtual channels.

There are a number of factors that should be considered to

make the virtual SpaceWire network design effort sufficiently

flexible and convenient. Initial SpaceFibre network

implementations are likely to utilize relatively simple

topologies containing few links. These initial versions will be

composed from newly developed devices designed for the

specific applications. The SpaceFibre community should

expect to face the issues that have arisen in the SpaceWire

community as more capable devices become available and

must be integrated into complex networks with older, less-

COMMA SDF VC RESERVED

DATA 1 LS DATA 1 DATA 1 DATA 1 MS

DATA 2 LS DATA 2 DATA 2 DATA 2 MS

●●● ●●●

●●●

●●●

DATA N LS DATA N DATA N DATA N MS

EDF FR_SEQ# CRC_LS CRC_MS

0 7 8 15 16 23 24 31

20

capable devices. The SpaceFibre Standard Draft should be

developed with the expectation that long-term use will result in

similar experiences as technology and applications evolve.

IV. SPACEFIBRE NETWORK CONSIDERATIONS

The SpaceFibre Standard Draft [1] does not address

network-level topics relevant to SpaceWire packet routing,

raising a number of concerns. The recent suggested methods

[3] [4] for routing in SpaceFibre networks address some, but

not all, of these concerns. We review each concern in this

section.

A. Practical Implementation Constraints

When developing SpaceFibre networks composed of

elements with differing levels of VC support, SpaceFibre

network designers must assess the many possible mappings of

QoS to virtual networks to reach an optimum configuration. In

relatively complex cases, achieving a satisfactory result may be

dependent on the VC capacity of some network elements.

As an example, a network designer can begin by

identifying all of the QoS classes needed for the various data

flows through the SpaceFibre network. The designer can then

define a virtual network for each QoS class by assuming that

every network endpoint and router is capable of supporting all

of the virtual networks. Figure 2 shows an example on-board

data processing system with five SpaceWire VNs identified.

The Configuration Network and the Data Network are bi-

directional, while the two Instrument Networks and the Uplink

Network are unidirectional.

A complete definition of each virtual SpaceWire network

requires a detailed inventory of the virtual channels available

for each SpaceFibre link. As the number of virtual networks is

increased, the ability to optimally provision each VN as desired

becomes more difficult. Solutions to such SpaceFibre network

optimization problems require the ability to assign virtual

channels to an arbitrary virtual network map.

Fig. 2. Virtual Network Identification

21

B. Interoperability of Resource-Constrained Devices

Practical SpaceFibre endpoint and router implementations

are likely to minimize the number of distinct virtual channels

supported in order to limit complexity and power dissipation

characteristics. Such resource-constrained implementations

must be allowed to participate in SpaceFibre networks equally

with more capable implementations. The SpaceFibre Standard

Draft should not impose requirements that unnecessarily favor

one class of device implementation over another.

A SpaceFibre endpoint must provide a virtual channel that

supports each QoS type used by the application. Since each

application utilizing SpaceFibre endpoints will have unique

QoS needs, the number of virtual channels and QoS types

supported by any specific SpaceFibre endpoint device will be

correspondingly unique. Because of the industry tendency to

develop products tailored for a specific application, a wide

variety of SpaceFibre endpoint devices with a correspondingly

wide mix of capabilities are likely to be developed over time.

C. SpaceFibre Network Configuration

The need to associate identical QoS attributes with a virtual

channel of each network link traversed by a SpaceWire packet

increases the configuration overhead of SpaceFibre networks

significantly compared to SpaceWire networks. Each

SpaceFibre router and endpoint must be configured with the

QoS characteristics of each virtual network it supports. The

time needed to configure a SpaceFibre network will scale

linearly with the number of network entities to be configured

and, separately, with the number of virtual networks to be

utilized.

A SpaceFibre link clearly must support at least one virtual

channel in one direction to be useful (at least one virtual

channel in each direction is the likely minimum

implementation). Support for additional virtual channels is an

implementation decision that will balance application needs

against complexity and power dissipation constraints.

The SpaceFibre Standard Draft is ambiguous regarding

VCID configuration. The likely interpretation is that the VCID

can be written only once after the CODEC exits the cold-reset

state. SpaceWire Working Group presentations [3] are

consistent with that interpretation. The ambiguity is

exacerbated by the fact that each VCB configuration defaults to

a VCID of zero. There doesn’t appear to be any mechanism to

guarantee virtual channel uniqueness (avoid multiple virtual

channels with the same VCID, etc.).

The SpaceFibre Standard Draft does not establish

mechanisms for negotiating virtual channel use between the

ends of a SpaceFibre link. The standard draft apparently

presumes that such negotiations are performed using a higher

level of the protocol stack. It also does not address the

methodology to be followed by compliant implementations

when initializing virtual channels. Some concepts [3] assume

that VC 0 is always assigned to a Configuration Virtual

Network, presumably automatically configured following cold-

reset to provide full-duplex best-effort access to SpaceFibre

network devices.

We can infer that a Flow Control Token (FCT) issued by

the link receiver for a specific VCID indicates that the receiver

supports that virtual channel. Whether the link transmitter has

any obligation to allocate resources to the virtual channel is

unclear. Previous negotiation of support for the virtual channel

at each end of the link would clearly be beneficial.

The mechanism for initializing virtual channels other than

VCID 0 is likely intended to be implemented using a

SpaceWire configuration protocol (SpaceWire PnP or similar).

While not addressed by the standard, the SpaceFibre CODEC

must provide the configuration protocol with a method for

determining the available virtual channel capacity.

Additionally, the SpaceFibre CODEC at each end of the link

must expose the virtual channel configuration fields and

provide a mechanism for enabling the virtual channel after

configuration is complete.

V. VIRTUAL NETWORKS USING IDENTICAL VIRTUAL

CHANNELS

The VCID-based virtual network abstraction [2] [3] offers a

conceptually simple method for routing SpaceWire packets

over SpaceFibre networks by using the VCID as a substitute

for QoS type when making routing decisions. Figure 3

illustrates the concept by showing the use of VCIDs to route

SpaceWire traffic through the virtual networks identified in

Fig. 2. A virtual channel in every SpaceFibre link used by the

virtual network must be assigned the identical VCID regardless

of the number of virtual channels supported by the specific

SpaceFibre link. Note that routing of SpaceWire packets

through the virtual network is performed similarly to traditional

SpaceWire routing.

22

Fig. 3. Packet Routing Based on Virtual Channel Identifier

In the example shown in Fig. 3, the application creating

SpaceWire traffic in Instrument 1 sends data to the Mass

Memory Unit over the VCID2 virtual network. During network

initialization, all of the network endpoints and routers must be

configured with identical QoS attributes assigned to every

virtual channel with a VCID of 2. Any violation of this rule

causes inconsistent QoS behavior within the virtual network. If

the application in Instrument 2 were to use the VCID2 virtual

network to send packets to the Mass Memory Unit, the router

must arbitrate between the two packet streams for access to

VC2 of Port 2. When Instrument 2 uses the VCID3 virtual

network as shown in Fig. 3, the router simply forwards the

packets over the respective virtual channels of Port 2.

A. Limits on the Number of Virtual Networks

As mentioned in previous work [4], using the VCID as a

QoS type identifier limits the number of QoS types that can be

mapped onto the physical SpaceFibre link. By extension, using

the VCID as a virtual network identifier limits the number of

virtual SpaceWire networks that can be mapped onto the

physical SpaceFibre network. While not a concern for the

SpaceFibre networks considered in currently proposed

applications, future SpaceFibre applications are likely to

impose much more complex scenarios.

The number of virtual networks mapped to a physical

network can be increased beyond the limit of 256 VCIDs in

cases where a VCID can be used to identify multiple virtual

networks. Such cases only arise if certain virtual networks have

non-overlapping footprints within the overall physical network.

The definition of non-overlapping virtual networks is

dependent on the ability to establish isolation boundaries

within the physical SpaceFibre fabric. An isolation boundary

prevents SpaceWire packets on one virtual network from

bleeding into a different virtual network when both virtual

networks have the same VCID.

B. Virtual Channel Initialization

The SpaceFibre Standard Draft requires that SpaceFibre

CODECs establish the VCID associated with each VCB after

cold reset. The QoS parameters associated with a VCID are

configurable using the CODEC link management interface.

The VCID-based virtual network abstraction requires that

assignment of the VCID be accomplished during network

configuration.

C. Initial Virtual Channel Identifier Assignment

If simple SpaceFibre CODEC implementations statically

assign the VCID of each virtual channel supported (sequential

integers starting at zero, for example), the ability to design

complex SpaceFibre networks with more than a few virtual

networks is significantly limited. To support the VCID-based

virtual network abstraction, any individual SpaceFibre

endpoint might need to connect to multiple non-contiguous

virtual networks within the VCID state space.

23

D. Virtual Channel Identifier Reassignment

Since a physical SpaceFibre network can be composed of

many virtual SpaceWire networks, an endpoint containing a

small number of virtual channels would benefit from the ability

to dynamically connect and disconnect to any arbitrary virtual

SpaceWire network desired. To support the VCID-based

virtual network abstraction, such a capability would require

reconfiguring a virtual channel to match the QoS attributes and

VCID of the desired network. Since the virtual channel

reconfiguration must be performed at both ends of the

SpaceFibre link, the most appropriate method involves taking

the virtual channel offline, reconfiguring each end of the link

and bringing the virtual channel back online.

As currently specified in the SpaceFibre Standard Draft, the

flow control counters associated with a virtual channel can

only be initialized by reset or remote flush (link initialization).

These events apparently affect the flow control counters of all

virtual channels, making it very difficult to dynamically

reassign a single virtual channel to a different virtual network

(VCID) without taking the entire SpaceFibre link offline. This

limitation is particularly acute for SpaceFibre endpoints with

few virtual channels that need to support more QoS classes

than the number of virtual channels available.

VI. VIRTUAL NETWORKS USING ARBITRARY VIRTUAL

CHANNELS

Many of the issues raised regarding virtual networks

composed of virtual channels with identical VCIDs can be

eliminated by allowing a virtual network to use any virtual

channel that has been initialized with the appropriate QoS

attributes. Creating virtual networks from arbitrary collections

of virtual channels with identical QoS attributes allows much

greater network design flexibility.

As previously mentioned, a virtual network is composed of

virtual channels with identical QoS attributes. Every virtual

channel in the virtual network must be initialized to have the

same QoS attributes. The use of virtual channels is greatly

simplified by introducing the concept of a Virtual Network

Identifier (VNID) that identifies a specific QoS type

(combination of QoS attributes).

A. Limits on the Number of Virtual Networks

The VNID concept allows practically unlimited scaling of

the number of virtual SpaceWire networks that a SpaceFibre

network can support. The limit on the number of virtual

networks that can simultaneously use a single SpaceFibre link

remains, but has little affect on the number of virtual networks

that can be globally defined. An additional benefit is the low

complexity associated with virtual channel initialization and

VCID assignment.

A specific set of QoS attributes is associated with each

virtual channel using the corresponding VNID. While a virtual

channel must be associated with one VNID, an individual

VNID can be associated with more than one VCID on the same

link. Note that the number of VNIDs supported by an endpoint

device can exceed the number of VCBs available since the

QoS attributes of a virtual channel are allowed to change

without reinitializing the virtual channel.

Figure 4 illustrates the concept by showing the SpaceWire

traffic routed through virtual networks identified by the VNID.

Any virtual channel in a SpaceFibre link can be associated with

the virtual network since the VCID is not used for network

routing. The SpaceFibre router contains the mapping between

the VNID and the associated VCID(s) of each router port.

SpaceWire packets entering the router through a virtual

channel are sent to the virtual SpaceWire network associated

with that virtual channel. The virtual network routes the

SpaceWire packets to the output port using traditional

SpaceWire routing methods. The packets are transmitted over

the output virtual channel associated with the virtual network.

In the example shown in Fig. 4, the application creating

SpaceWire traffic in Instrument 1 sends data to the Mass

Memory Unit over the VNID2 virtual network. During network

initialization, all of the network endpoints and routers must be

configured with identical QoS attributes assigned to every

virtual channel associated with virtual network VNID2. Any

violation of this rule causes inconsistent QoS behavior within

the virtual SpaceWire network. When the application in

Instrument 2 sends packets to the Mass Memory Unit over the

VNID3 virtual network, the router sends the packet that entered

over Port 5, VCID 1, out over Port 2, VCID 2. In the same

vein, packets traversing the VNID1 (Configuration) virtual

network are routed over links using a variety of VCIDs as

shown in Fig. 4.

B. Initial Virtual Channel Identifier Assignment

Eliminating the use of the VCID as a virtual network

identifier returns the VCID to its primary purpose as a link-

level bandwidth allocation mechanism. As such, the VCID

associated with a virtual channel has no relevance beyond the

CODECs at each end of the SpaceFibre link.

24

Fig. 4. Packet Routing Based on Virtual Network Identifier.

C. Virtual Channel Identifier Reassignment

Similarly, the need for reassigning VCID values is

eliminated when the VCID is no longer used for network

routing. An application can easily associate a different VNID

with any available virtual channel to join another virtual

SpaceWire network at will (the VNID reassignment must be

applied to both ends of the SpaceFibre link).

D. Virtual Network Routing

Using VNIDs for routing decisions in SpaceFibre networks

allows SpaceWire packets to traverse any virtual channel of the

outbound port with the matching VNID. The complexity of

routing decisions is not significantly greater than using VCIDs

since the one-to-one mapping of incoming VCID to VNID can

be viewed as a form of indirect addressing.

A characteristic of VNID-based routing is that VNID

values do not need to be identical throughout the SpaceFibre

network. The VNID value assignments in each router are

independent of the assignments in any other router. As with

VCID-based routing, however, the QoS attributes of an

individual virtual SpaceWire network must be configured

identically in every router. Note that there are practical benefits

to treating the VNID values as virtual network identifiers and

assigning them consistently throughout the SpaceFibre

network.

VII. SPACEFIBRE STANDARD IMPROVEMENTS

We have identified an ambiguity in the SpaceFibre

Standard Draft with regard to assignment of the initial VCID

value to each virtual channel. In addition, the default VCID

value of zero raises concern about the possibility of multiple

virtual channels with the same VCID value. There is also a lack

of clarity regarding the acceptable methods for negotiating

virtual channel utilization between opposite ends of the

SpaceFibre link.

A. Improvements for Virtual Networks Using Virtual Channel

Identifiers

As discussed above, using VCIDs as virtual network

identifiers restricts the use of resource-constrained endpoint

devices and complicates the virtual network design task for

system implementers. In the event that the SpaceFibre

community chooses this method for SpaceFibre routing, a

number of improvements to the SpaceFibre Standard Draft are

appropriate.

1) Virtual Channel Initialization

Clarification of the virtual channel initialization method is

important regardless of the SpaceFibre routing mechanism

used. It is critical when the virtual channels must be mapped to

an arbitrary VCID in order to be associated with a virtual

SpaceWire network identified by that VCID.

The SpaceFibre Standard Draft must provide a detailed

description of the CODEC features that make virtual channel

initialization possible. It should also describe a process for

negotiating virtual channel use between the ends of a

SpaceFibre link.

2) Virtual Channel Identifier Configuration

Allowing dynamic VCID assignment improves the

usability of resource-constrained endpoint devices in complex

VCID-based SpaceFibre networks. An application needing to

25

connect to more virtual SpaceWire networks than the attached

SpaceFibre link can support should be able to reassign virtual

channels to achieve the desired communication flexibility.

To achieve this capability, the SpaceFibre Standard Draft

must provide a mechanism for independent reconfiguration of

individual virtual channels. This mechanism should include the

ability to clear the FCT counters associated with the virtual

channel without affecting the operation of other virtual

channels.

B. Using Virtual Network Identifiers for Virtual Network

Routing

The improvements discussed above are generally

unnecessary if a level of indirection is added to the virtual

network routing mechanism. By identifying virtual SpaceWire

networks using the VNID instead of the VCID, any virtual

channel (regardless of the assigned VCID) associated with the

VNID is a member of the virtual network. There is no longer a

need to assign specific VCIDs to virtual channels, so

SpaceFibre CODECs can hardwire the VCID of each

supported virtual channel.

Because VNID-based virtual SpaceWire networks don’t

care about the VCID values used, the virtual channel

initialization concerns raised above are less serious. The

negotiation of virtual channel utilization between opposite ends

of the SpaceFibre link can be significantly simplified.

VIII. SUMMARY

We believe that virtual SpaceWire networks based on

VNID routing mechanisms is the simplest and most flexible

solution for implementing SpaceFibre routers. The simple

indirection method described makes the design of complex

SpaceFibre networks much simpler than alternatives. In

addition, the number of virtual SpaceWire networks that can be

defined is not unnecessarily limited by the maximum number

of virtual channels possible in any single SpaceFibre link.

REFERENCES

[1] S. Parkes, A. Ferrer, A. Gonzalez, and C. McClements,

“SpaceFibre Standard draft E1,” ECSS-E-ST-50-XXX, 28th

September 2012

[2] S. Parkes and M. Suess, “Mixed SpaceWire - SpaceFibre

networks,” Proceedings of the 4th International SpaceWire

Conference, November 2011, San Antonio, Texas, p. 144.

[3] S. Parkes, C. McClements, M. Dunstan, A. Ferrer, and A.

Gonzalez, “SpaceFibre,” SpaceWire Working Group Meeting

19 Session 1 - Revised SpaceFibre specification, October 2012.

[4] C. Kimmery, “SpaceFibre virtual channels and flow-control,”

Proceedings of the 2nd International SpaceWire Conference,

November 2008, Nara, Japan, pp. 37-38.

26

Standardisation 2 (Long)

27

GigaSpaceWire – Gigabit Links for SpaceWire
Networks

Standardisation, Long Paper

Evgeny Yablokov, Yuriy Sheynin, Elena Suvorova,
Alexander Stepanov

Institute of High-Performance Computer and Network
Technologies

St. Petersburg State University of Aerospace
Instrumentation

St. Petersburg, Russian Federation
Evgeny.Yablokov@guap.ru, Sheynin@aanet.ru,

Suvorova@aanet.ru, Alexander.Stepanov@guap.ru

Tatiana Solokhina, Yaroslav Petrichcovitch, Alexander
Glushkov, Ilia Alekseev

R&D Center ELVEES Company,
Moscow, Russia

elcore@elvees.com

Abstract—SpaceWire network technology is intended to be
used for spacecraft on-board communication. Providing low
implementation and overhead costs as well as hard real-time
communication services, currently SpaceWire fails to meet the
latest communication system requirements in the fields of data
transmission rate, galvanic isolation, cable length and cable mass
raised by world-wide space industry. This paper discusses the
new physical layer for SpaceWire called GigaSpaceWire which is
aimed to make SpaceWire networks satisfying the requirements.

Index Terms—GigaSpaceWire, gigabit links, galvanic isolation,
standardisation.

I. INTRODUCTION

SpaceWire technology becomes a general interconnection
technology in national and international missions. As its
applications become more and more diverse, the constraints of
SpaceWire limit its usage in next generation demanding
missions. In accordance with analyses made by representatives
from the Russian and European [1] and US space industries
[2], the main SpaceWire problems are: 1) lack of galvanic
isolation; 2) cable length is limited to 10 m distance; 3) limited
data rates, while gigabit rates are demanded for new missions;
4) lack of QoS that is required for real-time control. New
developments to overcome these problems are on the way (e.g.
SpaceFibre, SpaceWire-RT). However they are in the course of
development (and would be for a couple of years, at least,
before would be finally fixed) and their great features would be
not free. Overheads for them would be reasonable where they
are actually needed and would be a burden where not.

Analysis shows that the first three of four main constraints
of SpaceWire could be solved just now without considerable
problems and overheads.

In order to enhance link characteristics for SpaceWire
networks this paper describes the GigaSpaceWire technology
that has been developed by St. Petersburg State University of
Aerospace Instrumentation and ELVEES Company.

GigaSpaceWire provides gigabit link technology with longer
distances and galvanic isolation capability for SpaceWire
networks. The GigaSpaceWire standard has been previously
introduced in paper [3] and its specification has been
developed [4] and is considered now as a part of the Russian
national SpaceWire-based standard draft.

The core principle of GigaSpaceWire technology is to
substitute DS encoding scheme with 8b10b encoding which is
currently used in a wide number of communication standards,
e.g in such as Fibre Channel [5] and Serial RapidIO [6].
Consequently, galvanic isolation can be implemented, the
maximum transmission rate can be raised up to 2.5 Gbit/s (5
Gbit/s in future), the maximum cable length can be increased to
100 m with cable mass significantly reduced.

II. GIGASPACEWIRE PROTOCOL STACK

The GigaSpaceWire protocol stack is shown in Fig. 1. It
contains new character, encoding and PHY layers, the
modified SpaceWire exchange level and the conventional
SpaceWire packet and network levels.

The PHY layer principal task is to transmit and receive a
raw bit sequence over a physical link. In order to perform it,
the PHY layer receiver establishes bit synchronization before
starting the reception of data from the link. When bit
synchronization is achieved, at the receiving side the PHY
layer accepts bit stream from the physical link, performs de-
serialization and symbol alignment and transmits 10-bit code
sequences to the encoding layer. The transmitting side of the
PHY layer accepts 10b code sequences from the encoding
layer, serializes them and sends bit-wide stream to the physical
link.

28

mailto:Evgeny.Yablokov@guap.ru
mailto:Sheynin@aanet.ru
mailto:Suvorova@aanet.ru
mailto:Alexander.Stepanov@guap.ru
mailto:elcore@elvees.com

Fig. 1. The GigaSpaceWire protocol stack

The encoding layer performs the 8b10b encoding. At the
transmitting side the encoding layer accepts 8b symbols from
the character layer and substitutes them with correspondent 10b
code sequences. Accordingly, at the receiving side the
encoding layer accepts 10b code sequences from the PHY layer
and transforms them into 8b symbols.

The exchange layer manages the point-to-point connection
over the link. After reset the exchange layer tries to establish
bi-directional connection with the exchange layer entity of the
remote side. If the connection is acquired, the upper layers are
allowed to send SpaceWire packets, Time-codes and
Distributed Interrupt codes over the link and the exchange
layer performs flow control, data rate adjustment and
connection maintenance functions. The data stream through the
GigaSpaceWire protocol stack is depicted in Fig. 2.

The SpaceWire packet and network levels are not changed.
It provides easy GigaSpaceWire links integration into regular
SpaceWire networks.

The purpose of the GigaSpaceWire technology is to
substitute DS encoding, which is used in the SpaceWire
standard, with 8b10b encoding. In turn, it brings to SpaceWire
networks such features as possibility for galvanic isolation and
long distance data transmission at the rate of several gigabits.
However, introduction of the 8b10b encoding into a SpaceWire
link causes considerable changes in such basic elements of
SpaceWire technology as the exchange level state machine, the
silence exchange procedure, the flow control mechanism and
the encoding of SpaceWire characters and codes as well as the
complete substitution of the signaling and physical levels with
the new GigaSpaceWire PHY layer. However, beyond these
unavoidable changes the GigaSpaceWire technology does not
attempt to introduce new services that are irrelevant to
SpaceWire. The principle SpaceWire features that are not

affected by GigaSpaceWire are data and control interfaces that
link interface offers to the upper layers.

In the following sections the key principles that have been
changed in the GigaSpaceWire technology are discussed in
detail.

III. EXCHANGE LAYER STATE MACHINE

The state machine which is deployed in the GigaSpaceWire
exchange layer is given in Fig. 3. The state machine has the
same set of states as the SpaceWire exchange level state
machine but changes both the rules managing the transmission
among the states and operations of transmitter and receiver in
particular states.

The most significant difference between the state machines
of GigaSpaceWire and SpaceWire consists in the actions that
are performed in the ErrorReset, ErrorWait and Ready states.
While the PHY layer technology which is incorporated in
GigaSpaceWire can require considerable time to make the
PHY layer transmitter and receiver ready for communication,
the GigaSpaceWire state machine may not disable them each
time when the ErrorReset state is entered. Therefore, in order
to maintain the bit synchronization and symbol alignment
established at the PHY layer, the exchange layer state machine
enables the transmitter in all the states. However, in the
ErrorReset, ErrorWait and Ready states the transmitter is
permitted to send only filler symbols, which are called as IDLE
symbols. Simultaneously, the exchange layer receiver is
disabled in the ErrorReset state while the PHY layer receiver
still operates.

GigaSpaceWire decreases both the 6.4 us and 12.8 us
timeouts which manage the transitions from the ErrorReset to
the ErrorWait and from the ErrorWait to the Ready states
respectively. As in GigaSpaceWire the silence exchange
procedure(described below) takes considerably less time and
the transmitter and receiver of the PHY layer are never
disabled upon entering the ErrorReset state, the durations of
both the timeouts are shorted to 5.12 us.

Fig. 2. The GigaSpaceWire data flow

29

– Disconnect error OR Decoder error
– Elastic buffer error

Send IDLEs
Disable RX

Send IDLEs

Send IDLEs

Send Commas/IDLEs

Send FCT/Commas/

IDLEs

RX_Error OR
EB_Error OR
Got_Char OR

Got_ControlCode OR
Got_FCT

Reset

Lane_Enabled

RX_Error OR
EB_Error OR
Got_Char OR

Got_ControlCode OR
Got_FCT OR

Got_Comma AND
Sent_Comma

Got_FCT AND
Sent_FCT

RX_Error OR
EB_Error OR

Credit_Error OR
Lane_Disabled

Send N-Chars/L-
Chars

RX_Error OR
EB_Error OR
Got_Char OR

Got_ControlCode

RX_Error OR
EB_Error OR
Got_Char OR

Got_ControlCode OR
Got_FCT

Fig. 3. The GigaSpaceWire exchange layer state machine

Duration of the timeout in the Started state is increased

significantly from 12.8 us to 25.6 us. It is assumed (but not
required) that the PHY layer and the exchange layer state
machine are enabled simultaneously. Therefore, while
powering on the 25.6 us timeout in the Started state is
dedicated to provide enough time for both ends of the link to
lock PLLs and establish bit synchronization. After the
connection at the PHY layer is established, the 25.6 us timeout
is not expected to be used.

While IDLE characters, which are used in GigaSpaceWire
as NULL codes in SpaceWire, must be sent in any state, the
Got_IDLE condition becomes meaningless. Consequently, in
GigaSpaceWire Comma characters are deployed at the
connection establishment procedure instead of NULL codes
that are used in SpaceWire. In the ErrorWait, Ready or Started
state the reception of the first Comma permits error detection.
In the Ready state the reception of the first Comma enables the
transition to the Started state if the Autostart mode is set. Also,
the transmission from the Started to the Connecting state is
conditional on the got first Comma condition and the sent first
Comma condition. After the exchange of the initial Comma
characters is done and the state machines at the both sides of
the link are entered the Connecting state, Comma symbols
must be sent periodically to maintain the connection.

The SpaceWire exchange level state machine uses the
gotNULL and gotFCT conditions while transitioning from the
Started to the Connecting and from the Connecting to the Run
state accordingly. However, in the both cases these got

conditions, which are not accompanied by the corresponded
sent conditions, are not enough for the reliable connection
establishment. Especially, this concerns the case of entering the
Run state from the Connecting state upon the reception of the
first FCT.

Consider a situation when the side A of the link has enough
space in the receive buffer to send an FCT but the side B does
not. Thus, the side B gets at least one FCT from the side A and,
consequently, enters the Run state. However, after entering the
Run state the side B must send SpaceWire packets or Time-
codes or Interrupt-codes if any requested. At the same time the
side A keeps to be in the Connecting state until the reception of
an FCT from the side B or the expiration of the 12.8 us
timeout. As a result, if the side B starts the transmission of user
data before sending at least one FCT, these data will be
definitely lost causing the side A to enter the ErrorReset state.

In order to overcome the potential problem in the
GigaSpaceWire exchange layer state machine the transitions
from the Started to the Connecting and from the Connecting to
the Run state must be performed only when the both
correspondent got and sent conditions are met. While this
keeps the link from the lost of user data as in the case discussed
above, the usage of both the Got_FCT and Sent_FCT
conditions in the Connecting state also eliminates the need of
the 12.8 us timeout. Consequently, if at least one side of a
GigaSpaceWire link does not have enough room to send one
FCT, the connection establishment will be suspended at the

30

Connection state until the both side have the necessary space in
the buffer or the connection will be closed.

IV. CONNECTION MAINTENANCE AND SILENCE EXCHANGE

GigaSpaceWire connection includes implicitly the PHY
layer connection and the exchange layer connection. The
exchange layer connection is managed by the correspondent
state machine that is discussed in the previous section. While
establishing the PHY layer connection the receivers at the both
sides of the link must acquire bit synchronization and then
symbol alignment before considering the incoming data to be
valid.

It is assumed that the establishment of both the exchange
layer connection and the PHY layer connection is started
simultaneously. However, until the receiver of the local PHY
acquires bit synchronization and symbol alignment the
exchange layer receiver does not get any valid data from the
link. Since the PHY layer connection is established, the
exchange layer can receive data sent by the remote side.

The GigaSpaceWire error recovery procedure follows the
SpaceWire error recovery procedure. This means that in case of
any error, the side which has detected the error must indicate
this to the remote side and then both the sides must re-establish
the connection. To indicate an error to the remote side a
SpaceWire node disables its transceiver at least for 19.2 us that
causes a disconnect error at the remote side. However,
GigaSpaceWire cannot adopt this approach. While the
establishment of bit synchronization and symbol alignment at
the PHY layer can take considerably long time, the PHY layer
connection must not be broken each time when a link error
occurs. Therefore, as the transceiver of GigaSpaceWire link
interface must not be disabled upon error detection, the
GigaSpaceWire technology has to adopt another approach to
implement the silence exchange procedure.

In order to develop its silence exchange procedure in
another way GigaSpaceWire introduces new link characters
that are called as Comma characters. In the Started, Connecting
and Run states the transmitter must periodically insert a
Comma character into the outcoming data flow that allows the
other side of the link to monitor whether the connection is alive
or not.

A. GigaSpaceWire silence exchange

The GigaSpaceWire silence exchange procedure, which is
depicted in Fig. 4, is organized as following. When a receiver
of the side A of a GigaSpaceWire link detects an error, the
exchange layer state machine must leave its current state and
enter the ErrorReset state. However, as was discussed above,
the GigaSpaceWire transmitter does not cease its operation
upon the entrance to the ErrorReset state and continues to
transmit filler characters being in the ErrorReset, ErrorWait
and Ready states. On the other hand, so as to indicate the
detected error to the side B the GigaSpaceWire transmitter
terminates the insertion of Comma characters into the
outcoming data flow. Meanwhile, when the receiver at the side
B has not received a Comma for a predefined time interval
called as the disconnection time interval (TD), a disconnect

error must be detected and its exchange layer state machine
shall enter the ErrorReset state. As a result, the both sides of
the link have entered the ErrorReset state and start to re-
establish the connection.

To complete the silence exchange procedure the side A,
which has initiated the re-connection, must disable its receiver
at the exchange layer until the remote side B detects the
disconnect error and enters the ErrorReset state. Otherwise, if
the side A left the ErrorReset state when the side B has not
ceased sending Comma characters into the link yet, it could
received one of these last Comma characters as the first
Comma. Eventually, when the side B entered the ErrorReset
state, the side A in turn would detect a disconnect error and
enter the ErrorReset state again.

To avoid this situation the duration of the ErrorReset state
timeout has to be long enough to ensure that the “Comma
silence” has propagated over the link in both directions. To
define the Comma silence propagation time, consider the worst
case when the side A detects an error just after its transmitter
has introduced a Comma character into the outcoming data
flow. Consequently, the Comma silence propagation time has
to include the symbol propagation time (Tprop that is discussed
below) over the GigaSpaceWire link. Then, it means that for
the disconnect interval (TD) the side B will continue sending
Comma characters as it consider the connection to be valid.
Only upon the expiration of the TD timeout the side B will stop
sending Comma characters. Thus, the Comma silence
propagation time has to include the disconnect interval as well.
Finally, considering the worst case possibility that the last
Comma has been sent from the side B just before the TD
timeout expiration, the Comma silence propagation time must
be incremented by the symbol propagation time again.
Formally, this means that the ErrorReset timeout duration (TER)
must be not less than the doubled symbol propagation time
Tprop plus the disconnect interval TD:

 .
DopER TTT Pr2

In accordance with Eq. 1 the GigaSpaceWire standard sets
duration of the ErrorReset timeout to the value of 5.12 us.

B. GigaSpaceWire clock tolerance compensation

GigaSpaceWire also uses Comma characters so as to
compensate possible deviations between the transmit clocks at
both sides of the GigaSpaceWire link.

Accordingly to the specification the transmit clock
accuracy must not exceed +/- 300 parts per million (ppm).
Therefore, the worst case clock difference between the transmit
and receive clocks of a link occurs when the one side deviation
is at +300 ppm and the other side deviation is at -300 ppm,
resulting in a 600 ppm difference. A receiver elastic buffer is
intended to compensate in the receiver the difference between
the transmit and receive clocks.

31

Fig. 4. The GigaSpaceWire silence exchange procedure

Given that in the Started, Connecting and Run states the
transmitter periodically inserts Comma characters into the
outcoming data flow, the receiver must manages them to keep
its elastic buffer in the half-full / half-empty state. When a
Comma is received and the elastic buffer is more than half-
depth full then the Comma shall be ignored, i.e. not be written
into the elastic buffer. When a Comma is read from the elastic
buffer and the elastic buffer is empty than half-depth then the
Comma shall be read twice from the elastic buffer.

V. FLOW CONTROL

The application field of GigaSpaceWire link can be divided
into two broad categories: a connection between two usual
GigaSpaceWire nodes or a connection between two SpaceWire
nodes which need galvanic isolation or long distance cable
between them. In the last case each SpaceWire node is
connected through SpaceWire interface to a GigaSpaceWire-
SpaceWire bridge and these bridges are connected via
GigaSpaceWire link as it depicted in Fig. 5.

For these two different use cases GigaSpaceWire provides
two distinctive flow control modes: the new GigaSpaceWire
flow control mode and the traditional SpaceWire flow control
mode. The GigaSpaceWire flow control is dedicated primarily
for a direct connection of two GigaSpaceWire nodes and the
SpaceWire flow control is recommended to be deployed when
a GigaSpaceWire link connects two SpaceWire nodes by
means of GigaSpaceWire-SpaceWire bridges.

Fig. 5. Connection of two SpaceWire nodes via GigaSpaceWire link

The GigaSpaceWire flow control mode has the same
protocol as the flow control, which is defined by the
SpaceWire specification, but sets different values for the
parameters. In the GigaSpaceWire flow control one Flow
Control Token credits transmission of 32 symbols instead of 8
characters as in SpaceWire. Also, in the GigaSpaceWire flow
control the maximum permitted value of both the credit counter
in the transmitting side and the outstanding counter in the
receiving side is 512 when the SpaceWire flow control system
restricts the same parameters by the value of 56.

The chosen values were derived from the analysis of the
symbol propagation time over GigaSpaceWire link (Tprop).
Such symbol propagation time consists of the symbol
propagation time via the transmiter logics, the transmitter
SerDes, the cable, the receiver SerDes, the elastic buffer and,
finally, via the receiver logic:

CableSerDesElasticBufLogicop TTTTT Pr

,

where TLogic is the sum of the propagation times over the
transmitter and receiver logic, TSerDes is the sum of the
propagation times over the transmitter and receiver SerDes,
TElasticBuf is the elastic buffer delay and TCable is the propagation
time over the cable.

In turn, the propagation time over the cable depends on the
cable length (Lcable), the transmitter frequency (FTx), the signal
propagation delay over the medium (TS, measured in ns) and
the ration of the local frequency to the transmitter frequency
(kFr):

)(STxCableFrCable TFLkT .

The minimum number of credits (MNC) is the least value
of the credit and outstanding counters that allows utilization of
the whole capacity of the given link at the given local and
transmitter frequencies for the given implementation of
GigaSpaceWire link interface. As a portion of the link capacity
is utilized by the link control information (e.g. by Comma and
FCT characters) as well as by the SpaceWire Time codes and
Distributed Interrupt codes, only the link capacity, which is
available for packet data (CUser) should be taken into account:

))1(2(MNC Pr FCTTTTC TxFCTopUser
,

where TFCT is the FCT generation time, TTx is expected FCT
transmission delay caused by the transmission of other
GigaSpaceWire control codes and characters with higher
priority (i.e. Comma, Time-codes, etc) and FCT is the number
of normal characters which can be sent in response to one FCT.

Therefore, in order to utilize the whole capacity of
GigaSpaceWire link the maximum permitted value of the
credit and outstanding counters must be not less than the
minimum number of credits (MNC). To calculate the symbol
propagation time and the minimum number of credit values
close enough to the practical experience, the initial parameters
in Eq. 2, 3 and 4 should be not the worst case but a typical

32

case. In accordance with this principle and for the current
version of the electrical specification the minimum number of
credits is 273 given the FCT value of 32. However, taken into
account possible development of the GigaSpaceWire electrical
specification (e.g. an incrise in the data transmission rate up to
2.5 Gbit/s or more) the maximum permitted value of the credit
and outstanding couters is set to 512. For the implementations
intended to satisfy the current version of the GigaSpaceWire
standard the recommended depth of the receive buffer is 288
characters.

The GigaSpaceWire flow control system requires
considerably more buffer space than the SpaceWire flow
control. However, this is obvious that when a GigaSpaceWire
connection is used to connect two SpaceWire nodes, the whole
gigabit capacity of GigaSpaceWire link cannot be utilized
because the corresponded SpaceWire interface supplies the
data at the maximum rate of 400 Mbit/s. For this reason
GigaSpaceWire adopt the SpaceWire flow control as well. As
some devices can be trageted at only bridge functions, they can
implement only the SpaceWire flow control system. Therefore,
the SpaceWire flow control system is chosen to be obligatory
and the GigaSpaceWire flow control system is set to be
optional.

VI. CHARACTERS ENCODING

GigaSpaceWire deploys 8b10b encoding scheme instead of
Data-Strobe encoding, which is used in SpaceWire. While not
all SpaceWire characters correspond to the 8b symbol format,
the GigaSpaceWire character layer is responsible for the
representation of SpaceWire characters into proper 8b symbols.
This means that all characters that are transmitted over the
GigaSpaceWire link have the same length of 10 bit.

Each of the GigaSpaceWire link characters, which
comprise Comma, FCT and IDLE characters, as well as the
End of Packet and Error End of Packet markers are encoded by
single 8b10b K-codes. Each byte of the SpaceWire packet
destination address and packet cargo is encoded by a single D-
code.

Each SpaceWire Time-code, Interrupt-code or
Interrupt_Acknowledge-code is encoded by two consecutive
8b symbols. The first symbol is a dedicated K-code and the
second symbol is a D-code, which includes the control code
identifier as the two or three most significant bits and the value
of the control code as the other six or five bits respectively.
Transmission of the two symbols of a Time-code, Interrupt-
code or Interrupt_Acknowledge-code must not be preempted
by any other character.

VII. CONCLUSION

The presented GigaSpaceWire communication technology
is a practical modification of the low levels of the SpaceWire
protocol stack.

So as to improve the SpaceWire physical layer capabilities,
GigaSpaceWire technology acquires 8b10b encoding scheme.
The GigaSpaceWire protocol stack inherits the packet and
network levels of SpaceWire and defines new PHY, endocing,
character and exchange layers. The deployment of SpaceWire

upper layers guarantees that any application compatible with
SpaceWire technology can use GigaSpaceWire links as well.
GigaSpaceWire low layers implement 8b10b encoding and
ensure transparency of the physical layer technology for the
SpaceWire upper layers.

GigaSpaceWire changes only those SpaceWire features
which cannot be used in relation with 8b10b encoding.

Bit synchronization and the lock of PLLs, which are
performed by the GigaSpaceWire PHY layer, usually cannot be
acquired in a relatively short time. For this reason,
GigaSpaceWire rejects the SpaceWire error recovery scheme
that consists in disabling transmitter in case of an error so as to
indicate the error to the remote side. Instead of this,
GigaSpaceWire introduces special link control characters,
named as Comma characters. These characters are periodically
inserted by the transmitter into the outcoming data flow
covering the broad field of tasks. Especially, the absence of
Comma characters among the incoming data indicates to the
receiving side that the remote side of the link has entered the
ErrorReset state.

GigaSpaceWire offers two different flow control
approaches. The default approach is the SpaceWire flow
control and the optional one is a new GigaSpaceWire flow
control. The GigaSpaceWire flow control has the same
principles as the SpaceWire one, but increases the key
parameter values: one FCT credits transmission of 32 normal
characters and the maximum number of outstanding credits is
512. The GigaSpaceWire flow control is introduced to utilize
the whole transmission capacity of links with gigabit rates. On
the other hand, the SpaceWire flow control can be used as well,
especially when two SpaceWire nodes communicate via
GigaSpaceWire link bridges.

GigaSpaceWire makes changes in a link only and fits in the
general SpaceWire network architecture. It could be embedded
into a network controller, a routing switch or a simple link type
converter (e.g. a GigaSpaceWire-SpaceWire bridge).
Integration of GigaSpaceWire into a SpaceWire network is
relatively easy: change the links you need for higher
throughput, longer distances or galvanic isolation and use the
common SpaceWire network infrastructure elsewhere.

By the moment, the GigaSpaceWire technology has been
successfully prototyped in FPGA and already implemented in a
number of chips “Multiboard” produced by ELVEES. The
implementation of the GigaSpaceWire link controller is
protected by patents [7].

REFERENCES

[1] S. Parkes, “D2.1 SpaceWire-RT outline specification,”
SpaceWire-RT Consortium, September 2012.

[2] D.A. Gwaltney and J.M. Briscoe, “Comparison of
communication architectures for spacecraft modular avionics
systems”, Marshall Space Flight Center, Alabama, June 2006.

[3] E. Yablokov, Y. Sheynin, E. Suvorova, T. Slokhina,
A. Glushkov and I. Alekseev, “Gigabit links in SpaceWire
networks”, Questions on radio electronics, Scientific Research
Institute “Electronics”, vol. 1, pp. 24-36, April 2012.

33

[4] St. Petersburg State University of Aerospace Instrumentation
and R&D Center ELVEES Company, “GigaSpaceWire
Specification Ver. 2.1”, unpublished.

[5] Fibre Channel Framing and Signaling (FC-FS) Rev. 1.80,
INCITS working draft proposed American National Standard for
Information Technology, American National Standards Institute,
Inc., March 2003.

[6] RapidIO Interconnect Specification Part 6: LP-Serial Physical
Layer Specification Rev. 2.2., RapidIO Trade Association, June
2011.

[7] Patent RU 12616 U1, The Russian Federation, “Communication
interface for SpaceWire network”, Y. Sheynin, E. Yablokov, E.
Suvorova, S. Gorbachev, T. Solokhina, Y. Petrichcovitch,
A. Glushkov and I. Alekseev, March 2013.

34

Distributed Interrupt Signalling for SpaceWire
Networks

Standardisation, Long Paper

Sergey Gorbachev, Ludmila Koblyakova, Yuriy
Sheynin, Alexander Stepanov, Elena Suvorova

Institute of High-Performance Computer and Network
Technologies

St. Petersburg State University of Aerospace
Instrumentation

St. Petersburg, Russian Federation
sergvgor@yandex.ru, luda_o@rambler.ru,

sheynin@aanet.ru, alexander.stepanov@guap.ru,
suvorova@aanet.ru

Martin Suess
ESA / European Space Research and Technology Centre

Noordwijk, the Netherlands
martin.suess@esa.int

Abstract— SpaceWire is a standard for spacecraft on-board
communication systems for transmission of both payload and
control traffic. However, while SpaceWire mostly meets the
requirements imposed by data computing and data handling
applications, it fails to fully satisfy the requirements raised by on-
board control loops. In order to resolve the problem this paper
presents the final version of the Distributed Interrupt mechanism
aimed at covering the area of hard-real time signal distribution
in SpaceWire networks. The mechanism is dedicated primarily
for transmission of short and low-frequent alarm messages and
critical commands. The described Distributed Interrupt
mechanism is intended to be included in the Revision 1 of the
SpaceWire standard which is currently being drafted by ECSS.

Index Terms—hard real-time signalling, Distributed
Interrupts, Time-codes, standardisation.

I. INTRODUCTION

One of the main advantages of the SpaceWire technology
[1] is the ability to be an integrated communication
infrastructure for spacecraft on-board networking. SpaceWire-
based networks can accommodate different types of traffic that
in previous generation of on-board networking used to be
implemented by a set of separate interconnections that follow
different standards. SpaceWire networks can integrate data
stream traffic, packet traffic for distributed processing,
command traffic for control, time stamps etc.

It is reasonable to complement the already available
SpaceWire features with a hard real-time signal delivery
service so as to substitute dedicated signalling lines that are
used in onboard systems today and to integrate them in a
common networking infrastructure. Hard real-time signalling
imposes strict signal delivery constraints and requires high
reliability of signal delivery [2]. However, the ECSS-E-50-12C
standard SpaceWire services do not address these requirements
up to now. The SpaceWire packet transfer service cannot

ensure guaranteed low-latency massage delivery in an arbitrary
network topology due to the possibility of congestion with
other traffic. Though the SpaceWire Time-code service does
ensure low-latency delivery of time-stamps, it cannot be used
for transmission of a variety of hard-real time signals.

This paper describes the final version of the Distributed
Interrupt mechanism, which is already an established approach
for hard real-time signalling in SpaceWire networks [3, 4], and
its applications. The Distributed Interrupt mechanism key
features are ultra low signal delivery latency, simple
configuration and high reliability of delivery.

II. REQUIREMENTS FOR DISTRIBUTED INTERRUPT SIGNALLING

Since the Distributed Interrupt signalling mechanism is
dedicated to substitute side-band signal wiring in on-board
communication systems, it has the same aims and
requirements. The main purpose of the Distributed Interrupt
mechanism is transmission of system-critical urgent signals
and commands, e.g. alarm signals.

The major requirements to the side-band signalling that are
set by Russian and the European space industry cover latency,
message transmission rate and reliability [2]. Thus transmission
latency shall be less than 1 µs per link. In order to ensure high
reliability of the signal delivery, the mechanism shall provide
broadcast transmission, automatic acknowledgment of signal
delivery and fault detection, isolation and recovery policies.

III. KEY PRINCIPLES

The Distributed Interrupt mechanism uses broadcast
distribution of hard real-time signals providing ultra-low
delivery latency and high reliability.

The low transmission latency of Distributed Interrupt codes
is allowed by low control code size and a high priority level
compared to other SpaceWire codes and characters. A
Distributed Interrupt code consists of the 4-bit SpaceWire

35

Escape character followed by a 10-bit SpaceWire data
character; the total size of the distributed Interrupt code is 14
bits. Distributed Interrupt codes take priority over SpaceWire
FCT characters, data characters and NULL control codes.
Therefore, the transmission of Interrupt signals is not affected
by data packets flowing through the same links. Moreover, as
Distributed Interrupt signalling is not managed by the
SpaceWire flow control mechanism, Interrupt distribution can
be performed even over links that are blocked by data packets
e.g. in case of congestion. The only SpaceWire codes that have
the higher priority level than Distributed Interrupt codes are
Time-codes. However, transmission of Time-codes should not
have significant impact of the Interrupt signals distribution
because Time-codes are not expected to be sent often.

As a SpaceWire control code, each 14-bit Interrupt code
carries 8-bit data field which, in turn, contain 3-bit code
identifier and 5-bit Interrupt identifier. The 3-bit code identifier
is used to distinguish Interrupt codes from other SpaceWire
control codes (e.g. Time-codes) as well as to determine the
type of Interrupt code. There are two types of Distributed
Interrupt codes. Each Interrupt request has a particular 5-bit
Interrupt identifier that is used to distinguish this request from
other Interrupt requests in the network. Therefore, in a network
there may be up to 32 different Interrupt requests with
identifiers from 0 to 31. It is assumed that for any Interrupt
request in the network there is at least one node that is assigned
to receive and process the code. Such node is called an
Interrupt handler. When an Interrupt handler receives an
Interrupt request which this handler is assigned to process, it
may issue a confirmation code that is called an Interrupt
acknowledgment, which is another type of Interrupt code. Each
Interrupt acknowledgment has the same Interrupt identifier as
the correspondent Interrupt request.

Broadcast distribution of Interrupt codes allows simple
configuration of the network that does not require routing
tables in switches. In case of hardware redundancy in the
network, broadcast distribution leads to higher reliability of
Interrupt code delivery. However, broadcast distribution in
networks with circular connections may lead to repeated
propagation of Interrupt codes. So as to overcome the problem
each SpaceWire switch or node, which supports the Distributed
Interrupt mechanism, has a 32-bit Interrupt Source Register
(ISR). Each i-th ISR bit corresponds to the Interrupt identifier
with the same number. When a node issues an Interrupt request
or a node or a switch receives an Interrupt request, the
correspondent bit of the ISR must be checked. If the bit is
already set to ‘1’, it means that the incoming Interrupt request
is invalid and must not be forwarded or processed. Otherwise,
if the bit is ‘0’, it is switched to ‘1’ and the correspondent
Interrupt request is considered to be valid for processing in the
node and forwarding to all the output ports of the switch. On
the contrary, an incoming Interrupt acknowledgment code is
assumed to be valid if the correspondent ISR bit is ‘1’ and
invalid otherwise.

IV. OPERATION MODES

Distribution of an Interrupt codes with a particular Interrupt
identifier may be organized in one of two modes: either in the
Acknowledged Mode or in the Unacknowledged Mode. If an
Interrupt handler has accepted an Interrupt request for
processing which is distributed in the Acknowledged Mode,
this handler must generate and send the correspondent Interrupt
acknowledgment. If the Interrupt request is distributed in the
Unacknowledged Mode, the handler must not send the
Interrupt acknowledgment.

Both operation modes which can be used concurrently in a
network are discussed in the following subsections in more
details.

A. Acknowledged mode

The key advantages of the Acknowledged Mode is that an
Interrupt source gets a confirmation that the issued Interrupt
request has successfully propagated over the network and
reached at least one Interrupt handler which is assigned to
process such Interrupt requests. If either the Interrupt request or
the Interrupt acknowledgment has been lost, the Interrupt
source is informed about it by the error recovery mechanism.
Also, propagation of the Interrupt acknowledgment clears
correspondent ISRs’ bits in the network switches and nodes on
its rout allowing distribution of next Interrupt request with the
same Interrupt identifier.

The Acknowledged Mode imposes a set of constraints in
the Interrupt codes distribution procedure. An Interrupt source
must not send out next Interrupt request until the expiration of
a special time interval, Tg, that is started at the reception of the
Interrupt acknowledgment with the same Interrupt identifier.
Similarly, an Interrupt handler must not send an Interrupt
acknowledgment until the expiration of a time interval Th that
is started at the reception Interrupt request with the
correspondent Interrupt identifier. Both requirements are aimed
to ensure that the Interrupt request and Interrupt
acknowledgment with the same Interrupt identifier will not
collide in the network. Finally, in the Acknowledged mode in a
network there must be not more than one Interrupt source for
Interrupt requests with a particular identifier.

In the Acknowledged Mode distribution of Interrupt
acknowledgments is the primary way to clear the ISRs and
prepare the network for transmission of the next Interrupt
request. However, either an Interrupt request or the
correspondent Interrupt acknowledgment can be lost while
propagating over the network. To deal with the problem each
bit in the ISR is associated with a reset timer. The reset timer is
started when an Interrupt request is received in a switch (or
sent from a node) and the correspondent ISR bit is set to ‘1’,
and stopped when an Interrupt acknowledgment is received
and the correspondent bit is reset to ‘0’. If the correspondent
Interrupt acknowledgment has not been received and,
consequently, the ISR bit has not been reset to ‘0’, the
expiration of the reset timer causes reset of the ISR bit.
Therefore, the reset timer mechanism ensures network
recovery from either loss of Interrupt request or loss of
Interrupt acknowledgment.

36

As an example of the Acknowledged Mode utilisation
considers a use case of a satellite attitude control system
orienting to the Sun. Let the system consist of two subsystems:
an orientation module and a central computer. Normally, the
orientation module monitors whether the satellite orientation is
correct and transmits attitude information to the central
computer. The central computer accepts the information from
the module and commands to take a particular action in
response to a change in the attitude. However, in order to
ensure reliability, the orientation module can operate in an
automatic mode in case of emergency. When the module
detects that the attitude has changed into incorrect one, it sends
a correspondent Interrupt request to the central computer and
waits for the Interrupt acknowledgment. If the
acknowledgement has not been received, the module assumes
that the central computer does not operate now and enters the
automatic mode. In this mode the module is permitted to
perform the attitude recovery without the command from the
computer.

B. Unacknowledged mode

In the Unacknowledged Mode the reset timers are the only
way to clean the network ISRs after the propagation of an
Interrupt request. As in the Acknowledged Mode the reset
timer is started at the reception of the correspondent valid
Interrupt request. However, since in the Unacknowledged
Mode the correspondent Interrupt acknowledgment would not
be received, the reset timer always expires clearing the ISR bit.

The absence of Interrupt acknowledgments leads to the
subsequent differences between the modes. In the
Unacknowledged Mode an Interrupt source cannot get the
automatic confirmation that the issued Interrupt request has
reached an Interrupt handler. Since in the Unacknowledged
Mode Interrupt handlers does not send Interrupt
acknowledgments, the Th time interval is not used. Also, in
Interrupt sources the next Interrupt request may be sent
immediately after the expiration of the correspondent ISR reset
timer without the Tg delay.

In the Unacknowledged Mode multiple Interrupt sources
may simultaneously issue Interrupt requests with the same
Interrupt identifier. However, it should be noted that in the case
of several Interrupt sources which simultaneously issue
Interrupt requests with the same Interrupt identifier only one of
the requests will reach a particular Interrupt handler and it
cannot be distinguished which was the source of the particular
request. Several Interrupt handlers do not cause problems in
this mode.

The Unacknowledged Mode is recommended to be used for
applications which either do not need acknowledgments of
correct Interrupt request delivery or require considerably high
level of performance. For example, it may be a network
manager which sends an Interrupt request prohibiting all the
nodes (or several nodes of a particular type) from transmission
of data packets to clear the network. In this case it is not
necessary for nodes to response with the Interrupt
acknowledgment on the reception of the command, because
only one acknowledgement will reach the manager. Thus, the

manager will not be informed whether the command has
reached all the target nodes.

V. RELIABILITY

To increase the reliability of Interrupt codes delivery the
mechanism offers several approaches for error tolerance and
recovery. The main tools to implement reliability are broadcast
distribution of Interrupt codes, reset timers and ISR change
timers.

In networks with hardware redundancy broadcast
distribution guarantees that a loss of an Interrupt code in a link
will not stop the propagation of the code over the network.

Reset timers recover the network for the distribution of
subsequent Interrupt codes. While in Acknowledged and
Unacknowledged Modes reset timers are dedicated for
different purposes, in both modes reset timers allow recovery
after a loss of an Interrupt code.

ISRs and ISR change timers can be used to ensure a
protection from occurrence of unexpected Interrupt codes.
There are two primarily sources of unexpected Interrupt codes.
Firstly, an unexpected Interrupt code can be caused by network
malfunction producing a false Interrupt code (e.g by bits
inversion in a link due to a noise). Secondly, an unexpected
Interrupt code can be issued by an incorrectly operating node, a
“babbling idiot” node. In both cases an unexpected Interrupt
code occurrence can lead to either an Interrupt handler will
receive and process a false Interrupt request, or infinite looping
Interrupt code could occur in a network with circular
connection. Particularly, the last case can happen if a false
Interrupt request appears when the correspondent Interrupt
acknowledgment is propagating over the network and vice
versa.

ISRs are implicitly used to stop propagation of unexpected
Interrupt codes. When a received unexpected Interrupt code
dose not correlate with the value of the correspondent ISR, this
Interrupt code is ignored and not transmitted further. However,
this mechanism cannot terminate the propagation of Interrupts
which do correlate with the ISR bit state.

ISR change timers are dedicated to overcome the problem
in the Acknowledged Mode. An ISR change timer defines the
minimum allowed time between any two consecutive changes
of the ISR bit. This means that the ISR bit value may not be
changed before the correspondent ISR timer expired. In case of
an attempt to change the state of an ISR bit while the
correspondent timer has not expired yet, the bit value should
not be changed and the received Interrupt code should be
ignored. Thus, the ISR change timers mechanism partially
protect the network from distribution of unexpected Interrupt
requests when the ISR bit is ‘0’ and from the distribution of
unexpected Interrupt acknowledgments when the ISR bit is ‘1’
(in the Acknowledged Mode).

VI. TIME ISSUES

Calculation of the timeout values is important to ensure the
correctness of the operation of the Distributed Interrupt
mechanism. This section discuss some calculation rules that

37

should be taken into account while implementing SpaceWire
devices and configuring the network.

A. Estimation of the Interrupt code propagation time

Before discussing timeouts calculation principles it is
necessary to define the worst case propagation time of an
Interrupt code over the longest path in the network. The value
of the worst case propagation time (

maxIPT) should be

calculated as the worst case queuing time plus the transmission
time of Interrupt code over all the switches and links in the
longest path:

ССLenwtcLenCCQueueIP TPTPTLT ⋅+⋅−+⋅=)1(max

, (1)

where
QueueL is the worst case queue length, LenP is the number

of links in the longest path,
wtcT is the switch propagation time

and
СС

T is the transmission time of an Interrupt code over one

link. The queue length should be defined as the maximum
number of Interrupt identifiers, actually used in the network,
i.e. QueueL has the maximum value of 32. The transmission

time of an Interrupt code over one link may vary from
implementation to implementation but typically stands between
0.3 and 1.5 µs depending on the link bit rate.

The estimation of the worst case queuing time is based on
the fact that an Interrupt code propagating through a network
can be delayed by any other Interrupt code only once. After
this delay happened for the first time both Interrupt codes will
be sent in sequence to the next switch. Therefore, any Interrupt
code may be delayed by 1−QueueL Interrupt codes. Also, as it is

assumed that Time-codes are not expected to be sent often, the
worst case propagation time estimation takes into account that
an Interrupt code may be delayed by no more that one Time-
code.

The correctness of Eq. 1 can be proved by means of
simulation. Firstly, consider a network with mesh topology and
given that QueueL has the maximum possible value of 32. The

resulted value of the worst case propagation time estimated in
accordance with Eq. 1 is depicted in Fig. 1 as maxT . It is

noticeable that as the value of the
СС

T transmission time

depends on the link bit rate, the worst case propagation time is
a function of the bit rate as well. Then, we analysed the worst
case propagation time in the same network through simulation,
when all 32 types of Interrupt codes are transmitted with the
maximum possible rate. The worst case propagation time

yielded by this simulation is given at the Fig. 1 as max
'T . As a

result, at any transmission rate the theoretically estimated value
of the worst case propagation time does not contradict the
practically calculated value. Moreover, both results are
relatively close to each other thus proving the precision of the
proposed estimation approach.

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

Bit rate (Mbit/s)

W
o

rs
t

ca
se

 p
ro

p
ag

at
io

n
 t

im
e

(u
s)

Tmax

T 'max

Fig. 1. The worst case propagation time: theoretical and practical calculation

results

The worst case propagation time can be decreased at the
expense of generality. While the specification of the
Distributed Interrupt mechanism does not define the arbitration
scheme for Interrupt code of the same type (i.e. among
different Interrupt requests), implementations are permitted to
deploy any appropriate arbitration principle. Thus, a solution to
decrease the worst case propagation time of particular Interrupt
codes is to use the priority-based arbitration approach when
targeted Interrupt identifiers are assigned to the highest priority
levels. As a result, the worst case queue length for such high
priority level Interrupt codes would be considerably less than
the maximum number of Interrupt identifiers in the network. In
turn, this leads to relatively low worst case propagation time
for these Interrupt codes.

B. Calculation of the Tg minimum time interval

In the Acknowledged Mode the Tg minimum time interval
delays the transmission of an Interrupt request for a period of
time that is required for the network to become ready to
propagate this Interrupt request. The network is not ready to
accept an Interrupt request if the Interrupt acknowledgment on
the previous Interrupt request is still propagating over the
network in such a way that a collision between these Interrupt
request and Interrupt acknowledgment is possible. Thus, the
duration of the Tg minimum time interval depends basically on
the network topology and the number of handlers. Below Three
different cases of the interval calculation are discussed.

Consider a network with only one handler for an Interrupt
identifier and no cycles in the topology. When the Interrupt
source receives an Interrupt acknowledgment on the issued
Interrupt request, it means that this Interrupt acknowledgment
has been propagated via the only path between the source and
the handler. Although it is possible that the propagation of the
received Interrupt acknowledgment over the whole network
has not been completed yet, the next Interrupt request will not

38

collide with this acknowledgment on its way to the handler.
Thus, in this case the next Interrupt request may be issued as
soon as possible, i.e. the Tg minimum time interval may be
zeroed. Also, it is noticeable that a collision between an
Interrupt request and the correspondent Interrupt
acknowledgment can occur somewhere in the network, but this
will not affect the operation of the mechanism.

An example of the discussed case is shown at Fig. 2. In the
part A of the figure an Interrupt acknowledgment is distributed
over the network and reaches the source. Then, in the part B
the source issues the next Interrupt request when the Interrupt
acknowledgment has not been propagated over the whole
network due to some reasons. While this Interrupt request
reaches the handler without problems, it catches up the
Interrupt acknowledgment at its another propagating path in the
Switch N-1. As a result, the distribution of both the Interrupt
request and the Interrupt acknowledgment is terminated.
However, this situation cannot affect the distribution of the
next Interrupt requests and Interrupt acknowledgments of this
particular type as the Switch N-1 does not belong to the only
path between the source and the handler.

In the second case consider a network with only one
handler for an Interrupts with a particular identifier and cycles
in the topology. When the source of Interrupts with the
Interrupt identifier receives an Interrupt acknowledgment on
the issued Interrupt request, it does not guarantee that the
Interrupt acknowledgment has been propagated already over all
the possible paths between the source and the handler.
Therefore, the source must delay transmission of the next
Interrupt request for the worst propagation time of the Interrupt
acknowledgment via the longest cycle in the network. While it
ensures that the next Interrupt request will not collide with the
Interrupt acknowledgment on its path to the handler, the time
interval does not protect the network from a collision in some
part of the network that does not belong to the path between the
Interrupt source and Interrupt handler, so it isn’t critical for this
Interrupt correct distribution (as was discussed earlier for the
first case).

The lower bound of the Tg minimum time interval defined
as the worst propagation time of an Interrupt acknowledgment
via the longest cycle in the network may be decreased at the
expense of generality. For example, if there are cycles in a
network, but a particular source and handler are connected by
only one path (i.e. no cycles between them), the Tg minimum
time interval in the source may be zeroed as in the first case
discussed above. However, if another source and handler are
connected by several paths (i.e. there are cycles between them),
the correspondent minimum time interval needs to be bounded
by the worst propagation time of an Interrupt acknowledgment
via the longest path. Such approach increases complexity of
Distributed Interrupts configuration in a network, but improves
its operation time indexes.

Also, the lower bound of the Tg minimum time interval
may be decreased at the expense of reliability. Consider a
network with mesh topology, with the mesh size N×N, where
N is a relatively high number. In such a network the length of
the longest cycle is 4N. However, in the absence of errors it is

impossible that an Interrupt code can propagate over the whole
longest cycle because it will propagate over shortest cycles
firstly. Thus, the actual value of the Tg minimum time interval
may be calculated on the basis of a cycle shorter than 4N.
However, it could decrease reliability of the mechanism: if
several faults stop the propagation of an Interrupt code over all
the shortest cycles, the mechanism will not be able to handle
the situation correctly.

The last case for the calculation of the Tg minimum time
interval is a network with several Interrupt handlers for one
Interrupt identifier. Regardless of the network topology, in
such case it is recommended that the duration of the interval
depends on the worst propagation time of an Interrupt code
over the longest path in the network and should be calculated
as:

maxIPTkTg ⋅= , (2)

where k is a reliability coefficient which should be equal or
more than 1. The coefficient k is introduced to tolerate a
situation when the distribution of an Interrupt
acknowledgments exceed the worst Interrupt code propagation
time due to unexpected errors. The recommended value of the
coefficient is 1.2.

Equation 2 introduces the worst case value for the Tg
minimum time interval and may be used in any case, to
simplify the network calculation and configuration process.

Fig. 2. Distribution of Interrupt signals in a network with one handler and no

cycles

39

C. Calculation of the Th time interval

The Th time interval delays transmission of an Interrupt
acknowledgment for a period of time, which is needed to
ensure that the handler will not receive the acknowledged
Interrupt request once more. It can happen if the acknowledged
Interrupt request is still propagating over a part of the network
from where it can reach the handler again, i.e. over a cycle.
Three different cases of the Th interval calculation are
discussed below.

The first and second cases are appropriate when there is
only one handler for an Interrupt source with some identifier or
there could be several handlers, but it is permitted that Interrupt
requests are transmitted not to all Interrupt handlers. As the
first case, consider a network with no cycles in the topology.
When a handler receives an Interrupt request which this
handler is responsible to process, it means that this Interrupt
request has already propagated via the only path between the
source and this handler. Though it is possible that the
distribution of the Interrupt request over the whole network has
not been completed yet, the Interrupt acknowledgment will not
collide with the Interrupt request on its way to the source.
Thus, in this case the Interrupt acknowledgment may be issued
as soon as possible, i.e. the Th time interval may be zeroed.
Again, as in the case of the Tg minimum time interval, zeroing
the Th time interval makes possible a collision between the
Interrupt request and the Interrupt acknowledgment somewhere
in the network, but not in the path between the source and the
handler. As it is discussed above, such collision would not
affect correct delivery of the Interrupt codes.

As the second case consider a network with cycles in the
topology. When the handler receives an Interrupt request, it
does not guarantee that the Interrupt request has been
propagated over all possible paths between the source and the
handler. Therefore, the handler must delay transmission of the
correspondent Interrupt acknowledgment for the worst
propagation time of the Interrupt request delivery via the
longest path in the network. As in the same case for the Tg, the
minimum time interval value can be decreased at the expense
of reliability and/or generality.

The third case is appropriate when there are several
Interrupt handlers in the network and it is required that
Interrupt requests are delivered to all the handlers. To address
the requirement each handler must delay transmission of the
Interrupt acknowledgment for the worst propagation time of
the Interrupt requests propagation over the whole network
regardless of the network topology:

maxIPTkTh ⋅= , (3)

where k is a reliability coefficient which should be equal or
more than 1. Again, the recommended value for the coefficient
is 1.2.

D. Reset timers

Generally, reset timers are used in both the Acknowledged
and Unacknowledged Modes as a tool to clear the ISRs in
network switches and nodes and prepare the network for

distribution of the consecutive Interrupt codes. However, the
modes deploy reset timers in considerable different ways.

As in the Acknowledged Mode the primary way to recover
the network after propagation of an Interrupt request is to send
the Interrupt acknowledgment, reset timers should be
configured so that they are expired only when it is definitely
true that the Interrupt request or the Interrupt acknowledgment
is lost. For this reason, the timeout for a reset timer in the
Acknowledged Mode should be not less than the doubled
Interrupt code worst case propagation time plus the Th time
interval duration:

 ThTT IPset +⋅= maxRe 2 , (4)

On the contrary, in the Unacknowledged mode reset timers

are the only way to clear ISRs after the propagation of an
Interrupt request. Due to the fact that a reset timer definitely
expires each time when it is set, the timeouts of reset timers
clearly affect the rate at which Interrupt requests of a particular
type can be sent to the network. To ensure that any issued
Interrupt request will reach an Interrupt handler (in the absence
of errors) and will not collide with the previous Interrupt
request with the same identifier, the reset timer timeout should
be not less than the worst case Interrupt code propagation time,
which is calculated in accordance with Eq. 1:

 maxRe IPset TT = , (5)

In both Acknowledged and Unacknowledged Modes it is
highly recommended that the duration of reset timeouts in
nodes is not less than the duration of reset timeouts in
intermediate switches.

E. ISR change timer

ISR change timers are intended to protect the networks with
circular connections from infinite looping caused by
occurrence of unexpected Interrupt codes in the Acknowledged
Mode. The duration of ISR change timeout must not exceed the
minimum of the Tg and Th time intervals. Otherwise, the ISR
change timer mechanism would corrupt the distribution of
Interrupt codes.

VII. CONCLUSION

The SpaceWire Distributed Interrupt mechanism described
in this paper is intended for transmission of hard real-time
signals over SpaceWire networks.

The core principle of the Distributed Interrupt mechanism
operation consists in broadcast distribution of low size
Interrupt signals (14 bits), which have a high priority level
among SpaceWire characters and control codes. The broadcast
distribution allows simple configuration without specific
routing tables in switches, and high level of fault tolerance in
networks with hardware redundancy. The low size and high
priority of Interrupt codes ensure ultra-low propagation time,
some microseconds, in SpaceWire networks of any practical
size.

40

The mechanism offers two distinctive operation modes
targeted at different applications. In the Acknowledged Mode
an Interrupt handler that has received an Interrupt request
generates correspondent Interrupt acknowledgment and the
Interrupt source will be informed that the issued request has
reached at least one handler node and has been accepted for
processing. The Unacknowledged Mode does not provide the
service of automatic acknowledgments, but takes advantage in
higher transmission rate of Interrupt request and smaller
configuration efforts.

To increase the reliability of signal delivery the mechanism
offers several approaches for error protection and recovery.
Broadcast distribution guarantees that a loss of an Interrupt
signal will not stop the propagation of the signal in networks
with redundant paths. Reset timers recover the network for the
distribution of subsequent Interrupt signals.

Calculation of the Distributed Interrupt mechanism
timeouts is a critical task to ensure the proper operation of the
mechanism. While almost all the timeouts are functions of the
Interrupt code worst case propagation time, this parameter
should be estimated as close to its realistic value as possible.
The computation of the guards times Tg and Th for sources and
handlers respectively can be made by taking into account the
network topology and other specific factors. It leads to higher
performance level, but has relatively high complexity of
calculation and configuration. Another approach - one-size-
fits-all calculations, has lower configuration complexity, but
could limit the timing characteristics of the Distributed

Interrupts operation in a network, first of all – duty cycle of
Interrupt requests.

It can be concluded that the Distributed Interrupt
mechanism satisfies the basic latency and reliability
requirements and allows integrating critical system control
traffic into SpaceWire on-board networks. To increase its
flexibility the mechanism provides a number of different
modes and configuration methods that cover a wide range of
use cases. The Distributed Interrupt mechanism has been
prototyped and investigated, proved its consistency and
efficiency in implementation and operation. The mechanism is
implemented in a set of chips “Multiboard” produced by R&D
Center ELVEES Company and is under implementation in
several independent design companies now.

REFERENCES

[1] Standard ECSS-E-50-12C, “SpaceWire, Links, Nodes, Routers
and Networks,” European Cooperation for Space
Standardization, July 2008.

[2] S, Parkes, “D2.1 SpaceWire-RT Outline Specification,”
SpaceWire-RT Consortium, September 2012.

[3] Y. Sheynin, S. Gorbachev, L. Onishchenko, “Real-time
signalling in SpaceWire networks,” International SpaceWire
Conference Proceedings, Dundee, pp. 205 – 208,
September 2007.

[4] L. Onishchenko, A. Eganyan, I. Lavrovskaya, “Distributed
Interrupts mechanism verification and investigation by
modelling on SDL and SystemC,” International SpaceWire
Conference Proceedings, Nara, pp. 151 – 154, November 2008.

41

Running Disparity Management for DC-Balancing a

10-bit Code Set
SpaceWire Standardisation, Long Paper

Clifford Kimmery

Honeywell International Space Electronic Systems

Clearwater, FL, USA

clifford.kimmery@honeywell.com

Abstract— Providing bandwidth efficiency similar to standard

SpaceWire while using Direct Current (DC)-balanced Data-

Strobe encoding requires use of 10-bit codes that match the size

of SpaceWire characters. Because of the limited quantity of 10-

bit codes that meet the needs of DC-balanced Data-Strobe

encoding, appropriate running disparity management is critical

for achieving the one-zero ratio necessary for successful

Alternating Current (AC)-coupled operation. The running

disparity management is complicated by the need to balance both

the Data and Strobe signals simultaneously.

The primary goal of the running disparity management is to

minimize the running disparity of each signal without minimizing

one at the expense of the other. The characteristics and

limitations of the available 10-bit codes significantly affect the

complexity of the methods considered. Two methods have been

shown to consistently keep the running disparity within bounds.

One method (Dynamic Priority) attempts to minimize the

running disparity of the signal (Data or Strobe) with the largest

running disparity magnitude (the priority signal). If the running

disparity magnitude of the priority signal cannot be reduced, the

Dynamic Priority method attempts to minimize the running

disparity of the non-priority signal. A second method (Minimum

Sum of Magnitudes) attempts to minimize the running disparity

of both signals simultaneously by choosing the Data-Strobe code

pair that produces the smallest sum of running disparity

magnitudes. If the sums of magnitudes for both code pairs are

equal, the method chooses the code pair that minimizes the

running disparity of the signal with the largest running disparity

magnitude.

This paper discusses the characteristics and limitations of the

available 10-bit codes and describes candidate running disparity

management methods. Simulation results for the candidate

methods are also presented.

Index Terms—SpaceWire, Data-Strobe, DC-balance, disparity,

encoding, decoding.

I. DC-BALANCED DATA-STROBE ENCODING

Direct Current (DC)-balanced Data-Strobe encoding [1] is a

practical character-level encoding method for applications

requiring galvanic isolation between link endpoints. It offers an

alternative to standard SpaceWire character encoding that

supports galvanic isolation using ANSI/TIA/EIA‐644 LVDS

devices and conventional Alternating Current (AC)-coupling

circuits.

The terminology used in this paper is derived from that

defined by the SpaceWire standard [2]. The term character is

defined by the SpaceWire standard and includes data characters

and control characters. The term code is defined as a binary

value used to represent a character when transmitted on the

SpaceWire link. In standard SpaceWire, a character and the

corresponding code are identical. DC-balanced encoding

represents each character with one or more different code

values.

DC-balanced Data-Strobe encoding uses a class of codes

that simultaneously DC-balance both the Data and Strobe bit

streams. The code size used directly establishes the resulting

link overhead. Link overhead is the ratio of the code size to the

datum size (standard SpaceWire has a link overhead ratio of

10/8).

The code size also indirectly affects two characteristics of

the encoded bit stream: the maximum running disparity and the

maximum run length. The running disparity is the difference in

the number of ones and zeroes measured on a continuous basis

and is a relative indicator of the DC-balance of the signal. The

maximum run length is the largest number of ones or zeroes in

a row and establishes the lowest frequency of the encoded bit

stream (the highest frequency of the encoded bit stream is

always one-half the baud rate). Standard SpaceWire data

characters have a maximum run length of nine bits.

A smaller code size generally offers fewer values that meet

the needs of DC-balanced Data-Strobe encoding. As a result, it

is difficult to select values with the small disparity values

needed to limit the running disparity and the shorter run lengths

needed to minimize frequency bandwidth.

Of the available DC-balanced codes, the 10-bit code offers

the smallest link overhead in comparison to standard

SpaceWire (within 5%) [1]. The small size of the 10-bit code

set severely restricts the ability to optimize the disparity and

run-length characteristics. Because of the limited number of

42

10-bit code values, the only opportunity available for

optimizing the bit streams is to manage the running disparity.

The 10-bit DC-balanced code set contains codes with zero

disparity (an even number of ones and zeros), positive disparity

(more ones than zeros) and negative disparity (more zeros than

ones). Unfortunately, there are no 10-bit DC-balanced codes

that produce zero disparity on both the Data and Strobe signals

simultaneously. As a result, each SpaceWire character must be

assigned two 10-bit codes with opposite disparity so that the

running disparity can be maintained close to zero. Establishing

the two 10-bit codes with opposite disparity is a trivial exercise

since the bitwise inverse of any binary value has opposite

disparity. The term base code is defined as the binary value

directly mapped to a SpaceWire character. The inverted base

code is the code with opposite disparity mapped to the same

SpaceWire character.

II. SIGNIFICANT PROPERTIES OF DC-BALANCED CODES

The SpaceWire Strobe encoding function uses the Data

code bit stream to produce the corresponding Strobe code bit

stream by Exclusive-OR with an alternating-one-zero pattern

(clock). This behavior is inherent in Data-Strobe encoding and

is unchanged when the Data code bit stream is composed of

DC-balanced codes.

A 10-bit DC-balanced code value assigned to a SpaceWire

character (the base code) is paired with an alternate code value

(the inverted base code) to manage running disparity. Any code

value can be inverted (ones-complement) to produce a

corresponding code value with the opposite disparity

characteristic. The Data-Strobe encoding function can also be

viewed as pairing each Data code value with an alternate

Strobe code value.

Since the Exclusive-OR and Inversion operators are

associative, there is a defined relationship between the 10-bit

code values used to represent a specific SpaceWire character in

the Data and Strobe cases. Figure 1 exhibits these relationships.

Fig. 1. Code Pair Relationship Example

These properties allow a one-to-one assignment of each

SpaceWire character with a single base-code value, simplifying

the character encoding implementation. The opposite-disparity

encoding of the base-code value is easily generated by

inverting the base-code value. The base-code value (or its

inverse) is transmitted on the Data signal and the conventional

Strobe generation mechanism automatically produces the

appropriate code for transmission on the Strobe signal.

III. RUNNING DISPARITY MANAGEMENT

As with 8b10b encoding, DC-balanced Data-Strobe

encoding manages running disparity to limit the difference in

the number of ones and zeroes in successive codes. Unlike

8b10b encoding, the Data-Strobe running disparity must be

managed for both SpaceWire signals (Data and Strobe)

simultaneously [1]. The goal is to minimize the running

disparity of each signal without minimizing one at the expense

of the other.

Several running disparity management methods were

considered. While other methods are possible, the Dynamic

Priority and the Minimum Sum of Magnitudes methods were

chosen for extensive evaluation.

A. Dynamic Priority Method

The Dynamic Priority method attempts to minimize the

running disparity of the signal (Data or Strobe) with the largest

running disparity magnitude (the priority signal). The running

disparity represents the distance of the signal DC-balance from

zero and may be positive or negative. By using the magnitude

of the running disparity, the method can compare the distance

without the complication of adjusting for signed values. If the

running disparity magnitude of the priority signal cannot be

reduced, the method attempts to minimize the running disparity

of the non-priority signal. The set of rules for minimizing the

running disparity of both signals with one of the signals having

priority is shown in Table I.

B. Minimum Set of Magnitudes Method

The Minimum Sum of Magnitudes method attempts to

minimize the running disparity of both signals simultaneously

by choosing the Data-Strobe code pair that produces the

smallest sum of running disparity magnitudes. If the sums of

magnitudes for both disparity code pairs are equal, the method

chooses the code pair that minimizes the running disparity of

the signal with the largest running disparity magnitude. The

terms used in defining the rules for minimizing the running

disparity of both signals simultaneously are shown in Table II.

The set of rules is shown in Table III.

NOT

XOR

0010111000
Strobe code

Base code

1000010010

1101000111
Inverted

Strobe code

Disparity pair

Disparity pair

Clock Pattern
1010101010

Inverted
base code

0111101101

XOR

NOT

-4 +4

-2 +2

43

TABLE I. RULES FOR DYNAMIC PRIORITY METHOD

Precedence Rule Condition Rule Conclusion

First If the base code disparity makes the priority signal running disparity magnitude greater Use the inverted base code

Second If the base code disparity makes the priority signal running disparity magnitude smaller Use the base code

Third If the base code disparity makes the non-priority signal running disparity magnitude greater Use the inverted base code

Fourth Otherwise Use the base code

TABLE II. DEFINITIONS OF MINIMUM SUM OF MAGNITUDES TERMS

Term Definition

RDDcurrent The current Data running disparity value

RDScurrent The current Strobe running disparity value

RDDbase Computed Data running disparity value (base code)

RDSbase Computed Strobe running disparity value (base code)

RDDinverted Computed Data running disparity value (inverted base code)

RDSinverted Computed Strobe running disparity value (inverted base code)

SumMagbase SumMagbase = |RDDbase| + |RDSbase|

SumMaginverted SumMaginverted = |RDDinverted| + |RDSinverted|

TABLE III. RULES FOR MINIMUM SUM OF MAGNITUDES METHOD

Precedence Rule Condition Rule Conclusion

First If SumMagbase is greater than SumMaginverted Use the inverted base code

Second

If SumMagbase is equal to SumMaginverted, and

 If [|RDDcurrent| > |RDScurrent| and |RDDbase| > |RDDinverted|] or
 [|RDDcurrent| < |RDScurrent| and |RDSbase| > |RDSinverted|]

Use the inverted base code

Third Otherwise Use the base code

The running disparity management methods were evaluated

by implementing model encoders of each. A 10 million

character random data set was used to build a histogram of the

running disparity characteristics of each model. The Dynamic

Priority method allowed running disparity excursions of ±12

for the test data set as shown in Fig. 2. Figure 3 shows that the

Minimum Sum of Magnitudes method is able to maintain the

running disparity within ±8 for the same test data set. Note that

the running disparity varies in increments of two because a

change in the state of a single bit causes the difference between

the number of one bits and the number of zero bits to change

by two.

Another attribute of running disparity that is important to

assessing the management methods is the dwell time at each

running disparity value. The histograms in Fig. 4 and Fig. 5

show that the Dynamic Priority method clustered the dwell

time around zero with no dwell time greater than fifteen

characters. The histograms in Fig. 6 and Fig. 7 show that the

Minimum Sum of Magnitudes method performed similarly

with no dwell time greater than fourteen characters.

The Minimum Sum of Magnitudes method clearly provides

the best performance for the test data set used. Since a random

data set is unlikely to represent real-world SpaceWire packet

statistics, the possibility exists of a pathological data set that

produces a different result.

Fig. 2. Dynamic Priority Excursion Histogram

Fig. 3. Minimum Sum of Magnitudes Excursion Histogram

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Dynamic Priority Simulation
Histogram

Data Signal Running Disparity Strobe Signal Running Disparity

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Minimum Magnitude Simulation
Histogram

Data Signal Running Disparity Strobe Signal Running Disparity

44

Fig. 4. Dynamic Priority Data Dwell Time Simulation Histogram

Fig. 5. Dynamic Priority Strobe Dwell Time Simulation Histogram

-10

-6

-2

2

6

10

-

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dynamic Priority Dwell Time Simulation Histogram - Data

-12

-8

-4

0

4

8

12

-

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dynamic Priority Dwell Time Simulation Histogram - Strobe

45

Fig. 6. Sum of Magnitudes Data Dwell Time Simulation Histogram

Fig. 7. Sum of Magnitudes Strobe Dwell Time Simulation Histogram

-10

-6

-2

2

6

10

-

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimum Magnitude Dwell Time Simulation Histogram - Data

-10

-6

-2

2

6

10

-

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimum Magnitude Dwell Time Simulation Histogram - Strobe

46

I. IMPLEMENTATION CONCEPTS

Simple concepts for implementing DC-balanced encoders

and decoders are shown in Fig. 8 and Fig. 9. The model

encoder used to evaluate the running disparity management

methods use the encoder concept shown. Responsibility for the

running disparity tracking is in the encoder, increasing its

complexity. Because of the limited number of 10-bit codes

available for DC-balanced encoding, development of an

algorithmic method for translating the protocol characters into

equivalent base codes is unlikely. The encoding lookup table

shown in the Fig. 8 provides for arbitrary mapping of

characters to base codes in a straightforward manner.

The decoder lookup table requires more entries because it

must decode multiple codes for each protocol character as well

as detect illegal code values. Appropriate definition of the

mapping between protocol characters and base codes can

reduce the number of decoding table entries required.

Note that the dimensions of the encoding and decoding

tables are a major factor in establishing the gate count of an

implementation. In addition, the complexity of the disparity

tracking function can significantly affect the size of the

encoder.

II. SUMMARY

The feasibility of using a 10-bit DC-balanced code as an

alternative SpaceWire character-level encoding method has

been evaluated. The results of that evaluation show that by

using an appropriate running disparity management method,

the Data and Strobe signals can be balanced within a bounded

range.

This assessment of the 10-bit DC-balanced code is based on

digital modeling and simulation to determine the performance

characteristics. Establishing more complete performance

characteristics will require analog modeling and simulation as

well as testing of a laboratory implementation.

REFERENCES

[1] C. Kimmery, “DC-balanced character encoding for SpaceWire,”

Proceedings of the 4th International SpaceWire Conference,

November 2011, San Antonio, Texas, pp. 269-278.

[2] ECSS Standard ECSS-E-50-12C, “SpaceWire, Links, Nodes,

Routers and Networks”, European Cooperation for Space Data

Standardization, July 2008

Fig. 8. Conceptual Encoder Diagram

Fig. 9. Conceptual Decoder Diagram

Protocol
Character

Encoding
Table

(260 x 10 bits)

Strobe
Generator

9

Strobe

10 Data

Disparity
Tracking

0

1

10

Shift
Register

Base Code

Decoding
Table

(1024 x 9 bits)

Exclusive
OR

10 9Data Protocol
Character

10Strobe

Error
Flag

10 ≠1010101010

10

Shift
Register

Shift
Register

Clock
Recovery

(Inverted) Base Code

47

Test & Verification (Long)

48

Determining the Behaviour of

Black-Box SpaceWire Components
SpaceWire test and verification session, Long Paper

Roger Peel, Paul Walker, Barry Cook
4Links Limited

Bletchley Park, United Kingdom
roger@4links.co.uk

David Jameux
On-Board Data Systems Division (TEC-ED)

ESTEC, European Space Agency
Noordwijk, The Netherlands

Abstract—This paper outlines how we investigated a rare
behaviour that was seen every few hours in the engineering
model of a spacecraft data network, which caused a SpaceWire
packet to be truncated. This event occurred seemingly at
random, a few times per day. The cause turned out to be timing-
related, and we identified an interval of a few hundred
nanoseconds in which the system was vulnerable. A non-standard
feature of the 4Links Multi-link SpaceWire Recorder (MSR) and
the standard features of a 4Links Diagnostic SpaceWire Interface
(DSI) were used to determine these timings and to reproduce
some of them experimentally.

If one only has access to the links in a SpaceWire network, (i.e.
black-box testing), one has to utilise capable test equipment and
devise a sensitive investigation strategy to maximise the
knowledge that can be discovered from monitoring the network
in depth.

We initially built a pipeline of two 10X routers, connected by
SpaceWire, which we fed from a DSI port that generated test
traffic. A second DSI port was used as the data sink at the other
end of the pipeline. We exercised this pipeline using carefully-
crafted SpaceWire packets and monitored all of the links using
an experimental feature of the 4Links MSR. The recordings
allowed us to determine the buffering characteristics of the
routers. We also enabled timeouts in the routers, and observed
the consequences when the router outputs were stalled for longer
than the timeout period.

This paper describes the novel test equipment feature, the
techniques used to explore the behaviour of the 10X routers in a
laboratory setting, and the precise circumstances of the packet
spillage in a spacecraft’s data network.

Index Terms— SpaceWire, 4Links test equipment, ESA 10X
router, black-box testing.

I. INTRODUCTION

When testing a SpaceWire [1] communication network, one
might have complete knowledge of the behaviour of all of the
components involved, or one might only have access to the
external connections of these devices - the SpaceWire links. In
the latter case - black-box testing - one has to devise a testing

strategy that maximises the knowledge that can be discovered
from the external observations.

In the experiments reported in this paper, we determined
the buffer sizes at the input and output of the ESA 10X router
[3], as well as its behaviour when it spills packets after a
timeout.

In addition, we observed timeouts on an ESA 10X router in
the engineering model of an ESA spacecraft, and discovered a
situation where packet loss occurred.

II. STAND-ALONE MEASUREMENTS

We first explored the behaviour of the 10X routers in a
laboratory setting. We set up a pipeline from a 4Links
Diagnostic SpaceWire Interface (DSI), acting as a traffic
generator, through two 10X routers, to another port on the DSI
that acted as the traffic sink. Each of the SpaceWire links
between these devices was passed through a 4Links Multi-link
SpaceWire Recorder (MSR), so that all of the link traffic could
be recorded and, more importantly, time-tagged so that the
precise time of transmission of each character on the links was
known.

The hardware configuration is shown in figure 1.

Fig.1. A pipeline through two 10X routers

The 4Links Diagnostic SpaceWire Interface provides the
facility to vary its Flow Control Token (FCT) generation
algorithm away from the behaviour specified in the SpaceWire
standard. Normally, this is done to investigate the flow-control
behaviour of a SpaceWire device-under-test. In this instance,

49

the mechanism was used by the receiving DSI to temporarily
stop the advertisement of any flow-control credit to the 10X
routers. Data characters sent from the DSI into the pipelined
routers were therefore eventually blocked as the routers' input
and output buffers filled up. The receiving DSI could then be
instructed to send individual FCTs, which each allowed a
group of eight characters to flow along the pipeline. By
recording the precise sequence of events as these groups passed
through the routers, the characteristics of the routers could be
derived.

The novel aspect of this work is that an experimental mode
has been exploited in the 4Links Multi-link SpaceWire
Recorder to record time-tags, with a resolution of better than
2ns, for all tokens on the links being monitored (except
NULLs). The standard MSR will record time-tags at the start
and end of packets, but it does not provide an insight into the
gaps that appear within packets if they are blocked within, say,
a router. The paper shows output from the prototype analysis
tool that was written to visualise this new data.

Our final experiment in the laboratory was to see what
would happen when a router timed-out a link because it had
become blocked for too long. We enabled this feature on the
link between the second router and the DSI. By varying the
transmission time of FCTs from the DSI, a timeout could be
provoked in a controlled manner, and its effects could be
measured.

III. LABORATORY EXPERIMENTS

A. Hardware Arrangement

The work performed in this section of the paper used the
following arrangement of equipment:

• Two 10X routers.
• One 4Links Diagnostic SpaceWire Interface (DSI) to

act as a data source and a data sink for the routers;
• One 4Links Multi-link SpaceWire Recorder (MSR) to

record traffic on three bidirectional SpaceWire links
through the routers. A non-standard MSR recording
program was used - msr2.

• A laptop computer, running Ubuntu Linux, was used to
control the DSI and the MSR.

• A separate desktop PC was used to issue occasional
configuration commands to the 10X routers.

B. Observing the Buffering in the 10X Routers

Inspection of the 10X Router's VHDL source code suggests
that it has a 32-byte receive buffer. We set out to confirm this.

The only way to obtain a measure of buffering in a pipeline
is to stall the sink end of the pipeline, and count the number of
bytes that can be sent into the pipelined buffers while no output
is consumed. We were able to do this using the SpWIO feature
that disables its automatic generation of FCTs in each DSI
receiver. After sending the usual full set of seven FCTs during
link initialisation, it is possible to command the DSI (using its
/f 7. parameter) not to send any more FCTs, except under
subsequent manual control.

Putting all of this together, and sending a stream of 256
data bytes lets us see what blocks in the routers' buffers:

java jar SpWIO.jar /f 7. /d 1 /u 192.168.0.252

@1 7 8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111 112 113 114
115 116 117 118 119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150 151 152 153
154 155 156 157 158 159 160 161 162 163 164 165 166
167 168 169 170 171 172 173 174 175 176 177 178 179
180 181 182 183 184 185 186 187 188 189 190 191 192
193 194 195 196 197 198 199 200 201 202 203 204 205
206 207 208 209 210 211 212 213 214 215 216 217 218
219 220 221 222 223 224 225 226 227 228 229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244
245 246 247 248 249 250 251 252 253 254 255 eop

@8 fct fct fct

Fig.2. Sending packets and FCTs using the SpWIO program

The results of this stimulus, shown in figure 2, may be seen
in the following three plots, which illustrate the same network
activity on different scales. Notice that activity on the eight
ports of the MSR is plotted on eight horizontal rows. Each non-
NULL character is represented with the correct width. The
links to the DSI connected to the MSR on ports 1 and 8 (see
figure 1) were being run at 10Mb/s, while those connected to
the 10X routers were being run at 100Mb/s. The data stream of
256 bytes plus two path address bytes was long enough to fill
each router buffer completely, and allowed for more data to
propagate along the pipeline when the DSI at the sink was used
to manually send FCTs.

Figure 3 shows the initial filling of the pipeline with a data
stream that was long enough to block all the way back to the
output of the DSI.

56 bytes were able to flow right along the pipeline to the
receiving DSI port, from where no FCTs were generated in
return. 35 bytes were buffered in Router B, and 35 bytes were
buffered in Router A. It is impossible to say how many bytes
were stored in the routers' receive buffers and how many were
in their transmit buffers - but 32 bytes in the receive buffers
(c.f. the four FCTs generated on start-up) and up to four bytes
(a 32-bit word) in the transmit buffers would be plausible.

Due to the blockage at the sink end of the pipeline, the DSI
transmission was stalled after two header bytes plus the first
126 bytes of the packet had been sent.

Figure 4 expands the link's start-up phase. The DSI sent
seven FCTs to ports 1 and 8, and the 10X routers on these links
sent four in the opposite direction in each case. Remembering
that the DSI does not report the FCT that is part of the
SpaceWire link start-up state machine, a total of six and three
FCTs, respectively, are shown in this plot. The 10X Routers
had already been started before this recording, so the flow
control tokens between them are not recorded here.

50

Fig.3. Data bytes filling a blocked pipeline

Fig.4. FCTs on link start

Fig.5. Traffic flow in response to single FCTs

Once the pipeline had become full, the script twice
instructed the receiving DSI port to transmit a single FCT to
Router B. In turn, these permitted eight more bytes to be sent
from Router B to the DSI, and an FCT could also be sent
further back along the pipeline from Router B to Router A.
Likewise, another FCT was sent from Router A back to the
transmitting DSI port. This is shown in figure 5, and illustrates
the correct flow control behaviour.

C. Observing a link timeout in a 10X Router

In another experiment, router B was set up to spill blocked
packets after a 1.3s timeout. Figure 6 shows that a burst of
three FCTs was sent from the DSI back down the pipeline to
Router B. Each of these FCTs caused eight further bytes to
flow into the DSI, and an extra FCT to be sent back to Router
A.

After the initial burst of three FCTs, an extra FCT was sent
(by hand) after a delay that was long enough for the link from
Router B to time out. It can be seen that five bytes of data
were sent out of the router before the remaining data was
spilled and the (expected) EEP was transmitted to the DSI.

51

Fig.6. Observing a link timeout

IV. OBSERVING THE 10X ROUTER IN THE FIELD

We used the information reported above to understand our
observations of a 10X router that was running in the
engineering model of a spacecraft.

Our goal was to investigate the very occasional loss of an
uplinked telecommand, which occurred seemingly randomly, a
few times per day. We monitored two SpaceWire links - one
that carried the initial command, and the other that connected
to the destination instrument - by passing them through a
4Links Multi-link SpaceWire Recorder, as shown in figure 7.

Fig.7. Monitoring SpaceWire links through a 10X Router

The 10X router was configured to disconnect its output
links after a period of inactivity (Automatic deactivate driver
mode) and to restart these links when they were required again
(Start on Request mode).

Traffic within the spacecraft was scheduled on a cyclic
basis with the majority of activities taking place every eighth of
a second, and with a one second SpaceWire timecode
transmission.

Between each of the eighth-second bursts of SpaceWire
traffic, the SpaceWire output link from the router to the
instrument was allowed to time-out and disconnect. The
disconnect timeout was set to 0.01024s, and the 10X data sheet
[3] specifies a 2s tolerance on this value. The MSR
typically reports the time from the last use of the link to its
disconnection as 0.01028s, once it has detected the time-out via
the receiver state machine. This minor difference illustrates a
limitation of black-box testing.

All messages within the part of the spacecraft that we
observed were carried in SpaceWire Remote Memory Access
Protocol (RMAP) [2] packets.

Simulated telecommands were injected into the system
every few seconds.

A standard Multi-link SpaceWire Recorder data capture
was performed on these two links over a period of 17.77 hours.
This created a logging file of 844.6MB. Analysis of this
logging file demonstrated that almost all of the SpaceWire
RMAP packets were successfully passed through the router to
the instrument and their results were returned successfully.

Various behaviours could be observed:
• An RMAP read or write transaction, issued when the

router's output link was active, was always successful.
• An RMAP transaction, started whilst the router's

output link was disconnected, was also reliable - the
link being restarted link before transmission.

• An RMAP transaction issued immediately after a link
had been shut down and disconnected, was also
successfully transferred.

• However, over nearly 18 hours of recording, four
RMAP packets (corresponding to uplinked
telecommands) were observed to be spilled in the
router and a truncated EEP packet was generated on
the output link of the router. These four command
packets were all scheduled for transmission through
the SpaceWire network at the same time in the one-
second schedule, just over 10ms after the last message
and therefore just as the router was timing out and
disconnecting its output link.

The time between the presentation of the telecommand
RMAP packet to the router and any timeout before onward
transmission on the SpaceWire link to the instrument was
calculated in each case. There were 13737 telecommand
packets in total. Of these:

• The vast majority of these packets arrived at, and were
forwarded by, the router before the link to the
instrument timed-out and disconnected - see figure 8.

• 170 more telecommand packets arrived after the output
link had disconnected, and they were successfully
transmitted to the instrument once the link had been
restarted - see figure 9.

• The remaining four telecommand packets were four
out of the seven packets that arrived very close to the
time that the timeout was being triggered - just over
4s before the MSR time-tagged the link
disconnection event.

52

124:23:21:54.254 473 494 4s [6] 1>2 Data @0000 90 01 4C 20 4A 10 33 00 00 00 17 D0 00 03 26 A4 (16 bytes)
 1>2 EOP at 124:23:21:54.254 489 495 7s (SOP + 16.001us) ~8.0 Mb/s
124:23:21:54.254 476 659 7s [6] 3>4 Data @0000 90 01 4C 20 4A 10 33 00 00 00 17 D0 00 03 26 A4 (16 bytes)
 3>4 EOP at 124:23:21:54.254 492 659 7s (SOP + 16.000us) ~8.0 Mb/s
124:23:21:54.254 496 453 1s [6] 3<4 Data @0000 4A 01 0C 00 90 10 33 00 00 03 26 BE EB 92 00 00 ... (819 bytes)
 3<4 EOP at 124:23:21:54.255 315 455 7s (SOP + 819.003us) ~8.0 Mb/s
124:23:21:54.254 499 557 1s [6] 1<2 Data @0000 4A 01 0C 00 90 10 33 00 00 03 26 BE EB 92 00 00 ... (819 bytes)
 1<2 EOP at 124:23:21:54.255 318 563 7s (SOP + 819.007us) ~8.0 Mb/s
124:23:21:54.265 595 643 7s [6] 1>2 Data @0000 90 01 7C 20 4A 00 02 00 00 00 29 01 00 00 02 5C DC BA 5F (19 bytes)
 1>2 EOP at 124:23:21:54.265 614 645 1s (SOP + 19.001us) ~8.0 Mb/s
124:23:21:54.265 599 886 4s [6] 3>4 Disconnect
124:23:21:54.265 601 310 4s [6] 3<4 Disconnect
124:23:21:54.275 896 467 7s [6] 3>4 Data @0000 90 01 7C 20 4A (5 bytes)
 3>4 EEP at 124:23:21:54.275 901 467 7s
124:23:21:54.286 182 486 4s [6] 3>4 Disconnect
124:23:21:54.286 183 886 4s [6] 3<4 Disconnect

125:03:17:06.629 437 995 7s [6] 1>2 Data @0000 90 01 4C 20 4A 10 33 00 00 00 13 20 00 03 20 2D (16 bytes)
 1>2 EOP at 125:03:17:06.629 453 995 7s (SOP + 16.000us) ~8.0 Mb/s
125:03:17:06.629 441 138 4s [6] 3>4 Data @0000 90 01 4C 20 4A 10 33 00 00 00 13 20 00 03 20 2D (16 bytes)
 3>4 EOP at 125:03:17:06.629 457 138 4s (SOP + 16.000us) ~8.0 Mb/s
125:03:17:06.629 460 891 7s [6] 3<4 Data @0000 4A 01 0C 00 90 10 33 00 00 03 20 5A A4 F1 0F FF ... (813 bytes)
 3<4 EOP at 125:03:17:06.630 273 895 7s (SOP + 813.004us) ~8.0 Mb/s
125:03:17:06.629 464 235 7s [6] 1<2 Data @0000 4A 01 0C 00 90 10 33 00 00 03 20 5A A4 F1 0F FF ... (813 bytes)
 1<2 EOP at 125:03:17:06.630 277 243 7s (SOP + 813.008us) ~8.0 Mb/s
125:03:17:06.640 547 345 1s [6] 1>2 Data @0000 90 01 7C 20 4A 00 02 00 00 00 29 01 00 00 02 5C DC BA 5F (19 bytes)
 1>2 EOP at 125:03:17:06.640 566 346 4s (SOP + 19.001us) ~8.0 Mb/s
125:03:17:06.640 551 566 4s [6] 3>4 Disconnect
125:03:17:06.640 552 998 4s [6] 3<4 Disconnect
125:03:17:06.640 576 246 4s [6] 3>4 Data @0000 90 01 7C 20 4A 00 02 00 00 00 29 01 00 00 02 5C DC BA 5F (19 bytes)
 3>4 EOP at 125:03:17:06.640 595 246 4s (SOP + 19.000us) ~8.0 Mb/s
125:03:17:06.640 599 435 7s [6] 3<4 Data @0000 4A 01 3C 00 90 00 02 7F (8 bytes)
 3<4 EOP at 125:03:17:06.640 607 435 7s (SOP + 8.000us) ~8.0 Mb/s
125:03:17:06.640 602 543 7s [6] 1<2 Data @0000 4A 01 3C 00 90 00 02 7F (8 bytes)
 1<2 EOP at 125:03:17:06.640 610 543 7s (SOP + 8.000us) ~8.0 Mb/s
125:03:17:06.650 883 070 4s [6] 3>4 Disconnect
125:03:17:06.650 884 390 4s [6] 3<4 Disconnect

124:23:21:49.254 383 070 4s [6] 1>2 Data @0000 90 01 4C 20 4A 10 33 00 00 00 17 D0 00 03 26 A4 (16 bytes)
 1>2 EOP at 124:23:21:49.254 399 071 7s (SOP + 16.001us) ~8.0 Mb/s
124:23:21:49.254 386 342 4s [6] 3>4 Data @0000 90 01 4C 20 4A 10 33 00 00 00 17 D0 00 03 26 A4 (16 bytes)
 3>4 EOP at 124:23:21:49.254 402 342 4s (SOP + 16.000us) ~8.0 Mb/s
124:23:21:49.254 406 114 4s [6] 3<4 Data @0000 4A 01 0C 00 90 10 33 00 00 03 26 BE EB 6A 00 00 ... (819 bytes)
 3<4 EOP at 124:23:21:49.255 225 114 4s (SOP + 819.000us) ~8.0 Mb/s
124:23:21:49.254 409 439 7s [6] 1<2 Data @0000 4A 01 0C 00 90 10 33 00 00 03 26 BE EB 6A 00 00 ... (819 bytes)
 1<2 EOP at 124:23:21:49.255 228 447 7s (SOP + 819.008us) ~8.0 Mb/s
124:23:21:49.265 489 621 1s [6] 1>2 Data @0000 90 01 7C 20 4A 00 02 00 00 00 29 00 00 00 02 D0 DC BA 5F (19 bytes)
 1>2 EOP at 124:23:21:49.265 508 622 4s (SOP + 19.001us) ~8.0 Mb/s
124:23:21:49.265 493 251 7s [6] 3>4 Data @0000 90 01 7C 20 4A 00 02 00 00 00 29 00 00 00 02 D0 DC BA 5F (19 bytes)
 3>4 EOP at 124:23:21:49.265 512 251 7s (SOP + 19.000us) ~8.0 Mb/s
124:23:21:49.265 515 959 7s [6] 3<4 Data @0000 4A 01 3C 00 90 00 02 7F (8 bytes)
 3<4 EOP at 124:23:21:49.265 523 959 7s (SOP + 8.000us) ~8.0 Mb/s
124:23:21:49.265 519 349 1s [6] 1<2 Data @0000 4A 01 3C 00 90 00 02 7F (8 bytes)
 1<2 EOP at 124:23:21:49.265 527 349 1s (SOP + 8.000us) ~8.0 Mb/s
124:23:21:49.275 806 678 4s [6] 3>4 Disconnect
124:23:21:49.275 808 062 4s [6] 3<4 Disconnect

Fig.8. The 19-byte command is immediately sent to the router's output port

Fig.9. The 19-byte command is transmitted when the link restarts

Fig.10. The 19-byte command is spilled as the output link is disconnected

The packets affected had the three longest times and
the seventh-longest time between the arrival of the
packets and the disconnection of the outgoing link at
the router, so why all seven were not affected is not
clear. However, the arrival time of these seven packets
all fell within 150ns of each other, relative to the
following link disconnection. Once the router
committed to shutting down its output link, it appears
to have treated the arriving packet as if it was blocked,
rather than simply pausing while the link restarted

again. Thus, the four failing packets were truncated by
the router and spilled when it restarted its output link
about 10ms after the timeout, and only their five
leading bytes, plus an EEP, were eventually sent to the
instrument (where they were discarded as incomplete).
See figure 10 for these timings. Notice that the normal
link restart, shown in figure 9, occurs about 25s after
the packet arrives (as specified in [1], figure 8-2), not
10ms as for the erroneous case.

53

The five-character output packet with the EEP termination is
identical in nature to the truncated packets generated by the
10X router in the laboratory experiments described earlier. It
is therefore likely that the 10X router, if it receives a packet at
almost exactly the time when it decides to disconnect one of its
output links, treats it as blocked rather than buffering it for
transmission when the link is restarted. This vulnerable arrival
period appears to be around 150ns in duration, or less than two
bit intervals at 10Mb/s.

There is not a good correlation in the differences of times
from the last use of the outgoing SpaceWire link to the
instrument and the arrival time of the next telecommand packet
as a predictor for this failing behaviour - the 2s tolerance on
the timeout blurs this measure.

V. RESULTS

Analysis of our measurements shows that the 10X router
appears to have a 32-byte input buffer, and that up to three
further bytes are stored in the router's switching fabric and its
output buffers when the output link is blocked. Flow control
tokens were propagated properly by the routers throughout.

When used in a real system, with link disconnection after
an idle period, packet loss was observed if the packet arrived at
the 10X router in a predictable very brief interval before a link
disconnection. This was sufficiently disruptive that the
spacecraft's timing schedule had to be redesigned, calling into
question the benefit of this operating mode.

VI. CONCLUSIONS

Using test equipment with very fine-grained time-tag
recording capabilities allows a precise understanding of the
behaviour of SpaceWire devices to be determined. These
results were fed into the development stages of an ESA
spacecraft mission, where they helped to resolve some
problems with the configuration of a 10X router.

VII. REFERENCES

[1] ECSS-E-ST-50-12C, "SpaceWire - Links, nodes, routers and
networks", ESA, 2008

[2] ECSS-E-ST-50-52C, "SpaceWire - Remote memory access
protocol", ESA, 2010

[3] C. McClements, S. Parkes and G. Kempf, "SpW-10X
SpaceWire Router User Manual", Atmel, 2008, available at
http://www.atmel.com/Images/UoD_SpW_10X_UserManual_3
_4.pdf

54

Probabilistic Analysis of SpaceWire Communication

Processes
Session: SpaceWire Test and Verification, Long Paper

Yuexing Li, Xiaojuan Li, Rui Wang, Yong Guan

College of Information Engineering,

Capital Normal University

Beijing, China

liyuexingok@163.com, lixj66@gmail.com,

rwang04@163.com, guanyong@mail.cnu.edu.cn

Jie Zhang

College of Information Science & Technology, Beijing

University of Chemical Technology

Beijing, China

jzhang@mail.buct.edu.cn

Xiaoyu Song
Dept.of ECE, Portland State University Portland,

Oregon, USA

Abstract—SpaceWire is a bus standard for high speed data

transmission in aerospace. With the complexity of application it

is very important to guarantee the reliability and stability of the

transmission system. Since the system exhibits both probabilistic

and nondeterministic behavior, this paper applies probabilistic

model checking to make quantitative formal analysis for

SpaceWire. We model the process of the link initialization and

link maintenance of the protocol with probabilistic model

checking. Sender model, receiver model and channel model are

set up respectively. Owing to that the packets may be lost during

transmission, the probability of losing the packet is considered in

channel model, which is more close to the reality. The models are

encoded as a Markov decision process (MDP) for analysis by the

probabilistic model checker PRISM. The paper verifies key

properties in Probabilistic Computation Tree Logic (PCTL),

including the maximum probability of the successful initialization

in both directions within T time, and the maximum probability of

maintaining link during data transmission under constraints. A

systematic level model is built and the probability of losing

packet with constraints is evaluated. The quantitative verification

results provide a useful reference for the design, implementation

and application of SpaceWire.
Index Terms—SpaceWire, Probabilistic Model checking,

Markov Decision process, PRISM

I. INTRODUCTION

The European Space Agency proposes SpaceWire bus

standard based on IEEE1355-1995 and IEEE1596.3 (LVDS).

SpaceWire provides a unified high-speed data processing

infrastructure for connecting together high data-rate sensors

and downlink telemetry subsystem [1]. In recent years

SpaceWire bus technology is mainly used in aerospace field. It

requires the internal communication network is capable of high

speed, reliability and resistance to radiation. As the

environment of SpaceWire’s application is harsh, it is very

important to guarantee the reliability. It is significant to verify

the correctness of SpaceWire design [2].

Nowdays, most researchers use testing and simulation to

analyze SpaceWire. For example, Harbin Institute of

Technology simulates every functional module of SpaceWire

by constructing test bench [3]. ASA/Goddard Space Flight

Center provides the Total Verification System (TVS) to test

SpaceWire [4]. Such traditional research methods have some

limitations. On the one hand, the traditional verification

methods can’t cover all paths of execution for a large and

complex system. On the other hand, the traditional verification

methods are often used to test the known types of fault and

difficult to find subtle fault [5]. Formal verification method is

proposed to model mathematically, and then using strict

mathematical reasoning proves the correctness of the design.

There are two fundamental techniques in formal verification:

model checking and theorem proving [6]. Li Li-ming etc.

verify equivalence of the DS code design and specification of

SpaceWire bus physical level by theorem proving [7]. Beijing

Engineering Research Center of High Reliable Embedded

System etc. propose model checking to verify the SpaceWire

error detection mechanism [8]. However, model checking and

theorem proving can only have qualitative analysis on

SpaceWire.

In order to systematically validate SpaceWire protocol

under uncertain environment, this paper proposes probabilistic

model checking to build formal model and make verification.

Probabilistic model checking, an automatic verification

technique for the systems that exhibit random behavior, can be

applied to the analysis, design and verification of such

protocols. The basic idea is to construct a mathematical model

that captures the system’s behavior, and then use it to enable a

range of exhaustive and quantitative analyses of properties.

Like traditional model checking, this technique involves

constructing, from a description in some high-level formalism,

a finite-state model of a real-life system, but additionally

including information about the likelihood and timing of

transitions between states occurring [9, 10, 11].

This paper is organized as follows: Section II introduces the

exchange level of SpaceWire. Section III is probabilistic model

checking method. It contains a brief description of MDP and

55

mailto:jzhang@mail.buct.edu.cn

PCTL. Section IV describes formal modelling of SpaceWire.

Section V presents several properties in PCTL for verification.

The last section is a conclusion to the paper.

II. INTRODUCTION OF THE EXCHANGE LEVEL OF SPACEWIRE

The exchange level is responsible for making a connection

across a link and for managing the flow of data across the link.

The exchange level contains mainly sending module, receiving

module, control module. Sending module is responsible for

encoding data and transmitting it using the DS encoding

technique. Receiving module is responsible for receiving

NULL,FCT and Time-Code and decoding the DS signals (Din

and Sin) to produce a sequence of N-Chars(data, EOP, EEP)

that are passed on to the host system. The main function of

control module is to control conversion between multiple states.

Task of exchange lever is divided into two stages: link

initialization and normal operation. Initialization is described in

Fig.1. (a), normal operation is described in Fig.1. (b).

A

ErrorReset

Ready

Connecting

Run

B

Run

ErrorReset

ErrorWait

Ready

6.4

μs

Send
Nulls

Send
FCTs

Receive
NULL

Receive
FCT

Receive
FCT

time time

（a)

A

time

Send

FCTs

Send

Nchars

Send

Nulls

Run

time

B

(b)

Send

Time-codesErrorWait

Started Started

Connecting
Receive
NULL

Run

Fig. 1. Link initialization and normal operation

Link initialization: link A and link B remains in the

ErrorReset state for approximately 6.4 µs and then moves to

the ErrorWait state. Link A and link B can’t send and receive

any characters, when they are in the ErrorReset state. In the

ErrorWait state link A and B can’t send any characters, but link

A and B can receive NULLs. The link interface remains in the

ErrorWait state for 12.8 µs and then moves into the Ready state.

The link interface moves from the Ready state to the Started

state as soon as the link is enabled. In the Started state the link

A and B start sending NULLs. It remains in this state until the

link A and B detects that a NULL is received over the link or

until a connection timeout expires. The connection timeout is

set to a nominal 12.8 µs. If a NULL is received then the link

interface moves to the Connecting state. If no NULL is

received within 12.8 µs it moves to the ErrorReset state. In the

latter case the link interface goes through the reset sequence

(ErrorReset, ErrorWait, Ready) and attempts to make a

connection again a short time later. In the Connecting state the

link interface sends some FCTs and waits for the reception of

an FCT. If an FCT is received the link interface moves on to

the Run state. If an FCT is not received within 12.8 µs then

link connection was not made properly, so the link interface

returns to the ErrorReset state. The link interface then goes

through the reset sequence (ErrorReset, ErrorWait, Ready) and

attempts to make a connection again a short time later.

Link normal operation: When the link enters the Run state

it starts normal operation, sending and receiving data and

control characters. These characters are NULLs, FCTs, Time-

Codes, N-chars.

III. PROBABILISTIC MODEL CHECKING

A. Probabilistic Model

Probabilistic model checking is based on the construction

and analysis of a probabilistic model. It has been applied to a

variety of different types of model, such as Markov Decision

Processes (MDPs). MDPs are widely used to model systems

that exhibit both probabilistic and nondeterministic behavior.

Probability is employed to quantify aspects of system behavior

where probability distributions are known. Nondeterminism is

used to model unknown environments [12]. Since the behavior

of SpaceWire is stochastic, we build formal model based on

MDP. Properties are then expressed using Probabilistic

Computation Tree Logic (PCTL) [13].

Definition1. A labeled Markov decision process is a tuple

(, , ,)M S S Steps L

 S is the finite set of states

 S S is the initial state

 (): 2
Act Dist SSteps S is the transition probability function

where Act is a set of actions and Dist(S) is the set of

discrete probability distributions over the set S

 : 2
APL S is a labelling with atomic propositions

In an MDP, several actions may be available in a given

state, each corresponding to a probability distribution. The

behavior of an MDP M is as follows. First, a choice between

one or more actions is made nondeterministically; secondly, for

the chosen action, a successor state is chosen randomly,

according to the transition probability function.

B. Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic (PCTL) is an

extension of the non-probabilistic Computation Tree Logic

(CTL) [14,15].

Definition2. The syntax of PCTL is given by: let a be an

atomic proposition, used to identify states of interest,

[0,1]p is a probability. The symbols X and U represent the

usual operators for next and until. , , , ，m .

state formulas:

:: true | | | | []
p

a p

path formulas:

:: | |mX UU

56

Definition3. The semantics of PCTL formulae is defined:

A state sS satisfies , denoted |s ,if the following holds:

| [] ()
p s

s pp p

| [] ()k
r s C ks rCR E X

| [] ()r s Fs rR F E X

IV. FORMAL MODELLING OF SPACEWIRE

In order to verify systematic properties and analyze the

effect of environment on SpaceWire, the paper models the

process of the link initialization and link maintenance of the

protocol based on MDP. Modelling structure of SpaceWire is

shown in figure 2. The models are sending model, receiving

model and channel model. SpaceWire provides a full-duplex

communication network, so we build two channel models:

sending channel and receiving channel.

sender

receiving

channel

send0

receiver

sending

channel

rec0

rec

send

reset reset0

Fig. 2. Model Structure

Reset

x<=64
Wait

x<=128

x=64 x:=0

reset

x=128

x:=0

send

Start

x<=128

x=128

x:=0

x:=0

rec

Bridge

x<=0

reset

x=0

Connect

x<=128 send

recRun

true

reset

m:=2Run0

true

send

m>0

m:=m-1

reset

m=0

m:=2

Run1

true

send

m>0

m:=m-1
reset

x=128

x:=0

reset

m=0

Fig. 3. The model of sender

Figure 3 is sender model and describes the process of the

link initialization and normal operation. The model commences

in the location Reset. X of the model is clock variable. The link

waits approximately 6.4µs in the location Reset before the

transitions from Reset to Wait. After 12.8µs the link of the

model moves to the location Start directly. In Start, the link

can send NULLs and remains 12.8µs at most. The transition is

labelled with the event send to inform the sending channel that

the link will send NULLs. The link may receive a NULL by

means of the event rec within 12.8µs. If the link receives a

NULL within 12.8µs, it will move to the location Bridge. If the

link doesn’t receive a NULL after 12.8µs, it will move to the

location Reset and attempt to make a connection again. The

location Bridge is a committed location, and therefore must be

left immediately. The link sends a reset event to inform

sending channel to clear the sending buffer from the location

Bridge to the location Connect. In Connect the link can send

FCTs and NULLs and remains 12.8µs at most. If the link

doesn’t receive a FCT after 12.8µs, it will move to the location

Reset to restart a connection. When the link receives a FCT

within 12.8µs, it will move to the location Run. The link

initialization is successful when the receiver model also gets to

the location Run.

After Run the link will reach normal operation. The model

describes the process that the link sends packets from the

location Run0 to Run1. We make link send 2 FCTs in the

location Run0 so that we can make formal verification for the

process of the link normal operation. In order to indicate the

link is still active the link shall send NULL in location Run1.

Reset

y<=64

Wait

y<=128

y=64

y:=0

y=128

y:=0

send0

Start

y<=128

y=128

y:=0

rec0

y:=0

Bridge

y<=0

Connect

y<=128
Run

true

Run2

true

reset0

y=0

reset0
y=0 send0

send0

j=2

Run1

true rec0

y:=0

y=128

y:=0

Fig. 4. The model of receiver

Figure 4 is receiver model and describes the process that

the process of the link initialization and normal operation. The

process of this model is similar to figure 3. Here we don’t

describe this figure in detail. The send0 event informs the

receiving channel the link will reply NULLs and FCTs in the

location Start and Connect. The link will inform the sending

channel to clear receiving buffer by reset0 event. When the

sender model and receiver model gets to the location Run, both

ends of the link initialization is successful and the link starts

normal operation. The model presents the process that the link

57

receives the packets from the location Run1 to the location

Run2. We can check the properties of link normal operation by

the transition from the location Run1 to the location Run2. The

link will move to the location Run2 from the location Run1 if

the link receives 2 N-Chars. The link shall send NULL to

indicate the link is still active in location Run2.

(1) send n<3 Ssend[n]:=1

n:=n+1
(2) send n=3 (3) reset

n:=0

j=3,j:=3

p:

1-p:

send0

(a)sending channel

(b)receiving channel

(4) reset0

j:=0

BusyFree

 n>0，i<=2 ，Sdata:=Ssend[0],

Ssend[i-1]:=Ssend[i],n:=n-1

1-p:j<3,Rrec[j]:=Sdata,j:=j+1

p:j<3,Rrec[j]!=0

rec0

Lost

Get

Free Busy

Lost

Get

rec

Fig. 5. channel

The packets may be lost during transmission .The channel

model sets probability of losing packets .We make the

assumption that the probability of losing packets is 0,1p .

Figure 5(a) describes the process that the sender sends packets

to receiver through the sending channel. We create a sending

queue and a receiving queue in the sending channel model. The

size of the sending and receiving queue is three. The box

labelled with four transitions which surrounds the model

denotes that these transitions are available in all of the

locations of the model. Transition (1) describes that if the

sending queue is not full, the sending channel receives a send

event from sender model and adds the corresponding packet to

the sending queue. Transition (2) describes that if the sending

queue is full, the sending channel loses the packets. Transition

(3) describes that the sending queue is cleared by a reset event

from the sender model and setting variable n to zero. Transition

(4) describes that the receiving queue is cleared by a reset0

event from the receiver model and setting variable j to zero.

The sending channel is sending packets to the receiver from

the location Free to Busy. There are three transitions in Busy.

The receiving queue is full by setting variable j to three and the

packets are lost. The receiving queue is not full if variable j is

less than three. The sending channel adds the packet to the

receiver with the probability 1-p. The packet is lost with the

probability p by the sending channel. The sending channel is

free from the location Lost and Get to Free. The sending

channel adds the packet to the receiver model by event rec0

from the location Get to Free.

Figure 5(b) describes the process that the receiver sends

packets to the sender through the receiving channel. The

transition will happen from the location Free to Busy If the

receiving channel receives event send0 from the receiver. The

packet is lost by the receiving channel with the probability p

from the location Busy to Lost. The packet is received by the

sender with the probability1- p. The receiving channel informs

the sender that the packet is received by the event rec from the

location Get to Free.

V. PROBABILISTIC ANALYSIS AND VERIFICATION

PRISM [16] provides model checking for several types of

probabilistic models: discrete-time Markov chains and Markov

decision processes. PRISM uses a uniform modelling language

for all the probabilistic models that it supports. This is a textual

language [17]. This paper uses PRISM to make formal

verification. The properties are represented by formulae in the

probabilistic logic PCTL. We now report on the probabilistic

model checking results.

Prop.1: When the link initialization is successful at first try,

the maximum probability is shown as Fig 6 in which the

probability of channel losing packet is different. In PCTL the

property is expressed by: Pmax=? [F s=7&r=7×=1].

Fig. 6. result of property 1

The horizontal axis represents the probability of channel

losing packet. When the link initialization is successful at first

try, the maximum probability is represented in vertical axis. It

indicates that the higher the probability of losing packet is, the

lower the maximum probability is in Fig 6. As the link can

continue to send NULLs and FCTs within 12.8µs in the state of

Started and Connecting during initialization, the maximum

probability is still high when the probability of losing packet is

increasing.

Prop.2: The minimum time of link initialization is

presented in Fig 7.In PCTL the property is expressed by:

Rmin=? [F s=7&r=7].

58

Fig. 7. result of property 2

Fig 7 shows the minimum expected reward to initialize

successfully. The result shows that it will take at least 51 time

units to initialize successfully. The actual time is 4 times as

much as the model’s time, so it spends at least 204 time units

(20.4µs) to initialize. It has 64 time units (6.4µs) and 128 time

units (12.8µs) delay in the states of ErrorReset and ErrorWait.

Then it takes 12 time units (12µs) to send a NULL and an FCT.

Prop.3: When the link initialization is successful, the

maximum probability within T time is shown in Fig8. In PCTL

the property is expressed by: Pmax=? [F s=7&r=7&t<T].

Fig. 8. result of property 3

There are four curves in the graph. The light green curve

shows the verification results when T equals 54. The red curve

is the results of which the time T is 57. When the time T is 60

and 63, the verification results are green curve and blue curve.

For the same probability of losing packet p, the result that T

equals 63 is bigger than the others’ result. The reason is that

the link can send more NULLs and FCTs when the time T

increases. According to the result of verification in the graph,

we can limit time for the link initialization.

Prop.4: When the link starts normal operation, the

maximum probability within T time is shown in Fig 9. In

PCTL the property is expressed by: Rmin=? [F

s=10&r=9&t<T].

Fig. 9. result of property 4

With the increasing of time T the maximum probability is

higher at the same value of p. Combining Fig 8 and Fig 9 it

shows that the maximum probability of Fig 9 is lower than Fig

8 at the same value of p and T. The reason is that link

initialization is first reached before link normal operation. The

blue curve in which T is equal to 63 is almost same with the

green curve in which T equals 60. We can infer that the curve

will be stable after the condition in which T is more than 63.

VI. CONCLUSION

This paper applies probabilistic model checking to make

quantitative formal verification for the exchange level design

of SpaceWire. Firstly, the exchange level of SpaceWire is

modeled abstractly on the basis of MDP. Sender model,

receiver model and channel model are included. Then the paper

verifies key properties of SpaceWire by PCTL. The properties

are related to the maximum probability in the condition of

which link initialization is successful and the link reaches the

normal operation. The quantitative analysis for SpaceWire is

carried out by probabilistic model checking and the results of

quantitative verification can provide a useful reference for the

design, implementation and application of SpaceWire.

ACKNOWLEDGMENT

This research was supported by the BJNSF (4122017),

Beijing Education Science and technology development project

(KZ201210028036), ISTCP (2011DFG1-3000), and

International Science and technology cooperation

project(2010DFB10930), The authors are grateful to Prof. Jin

Shengzhen for his valuable suggestions.

REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12C. SpaceWire-Links Nodes,

Routers and Networks[S].

[2] Wang Fang, Li Ke, Su Lin and Geng Lihong. Development of

onboard solid state recorder for space solar telescope [J]. Acta

Electronical Siniea, 2004,32 (3):472-475.

[3] Wang--Na. Design of SpaceWire Node Interface [D].Harbin

Institute of Technology, 2007,7.

[4] Damaris L.Guevara, Omar A. Haddad. Using TVS to Verify

SpaceWire Designs[C]. SpaceWire-2011 Proceedings of the 4th

International SpaceWire Conference. San Antonio,2011: 220-

225.

59

[5] Michael C McFarland. Formal verification of sequential

hardware: a tutorial[J].IEEE Transactions on Computer-aided

Design of Integrated Circuits and Systems,1993,12(5):633-654.

[6] Meenakshi B. Formal Verificaiton[J].Resonance,2005,10(5):26-

38.

[7] LI Li-ming, Guan Yong, WU Min-hua ,Zhang Jie and Shi Zhi-

ping. Formal Method for Verifying SpaceWire Encoding Circuit

by Applying Theorem Proving [J]. Journal of Chinese

Computer Systems, Vol33, No.6, 2012:1372-1376.

[8] Dong Lingling, Guan Yong, Li Xiaojuan, Shi Zhiping, Zhang

Jie and Hua Wei. Verification for SpaceWire Error Detection

Mechanism by LTL Model Checking[J]. Computer Engineering

and Applications,2012,48(22):88-94.

[9] Marta Kwiatkowska, Gethin Norman ,David Parker. Advances

and Challenges of Probabilistic Model Checking[C].In

Proc.48th Annual Allerton Conference on Communication,

Control and Computing, University of Illinois at Urbana-

Champaign, 2010:1691-1698.

[10] Nipkow, Tobias, O. Grumberg and B. Hauptmann,eds.Software

Safety and Security:Tools for Analysis and Verification[M].IOS

Press,2012.

[11] Andrew Hinton, Marta Kwiatkowska, Gethin Norman and

David Parker. PRISM: A Tool for Automatic Verification of

Probabilistic Systems[C]. 12th International Conference on

Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’06). 2006: 441-444.

[12] David Anthony Parker, Implementation of Symbolic Model

Checking for Probabilistic Systems[D].University of

Birmingham,2002,8.

[13] Marta Kwiatkowska and David Parker. Advances in

Probabilistic Model Checking[C]. Proceedings of the 11th

international conference on Verification, Model Checking, and

Abstract Interpretation. Springer-Verlag, 2010: 25-25.

[14] http://www.prismmodelchecker.org/

[15] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM

4.0: Verification of Probabilistic Real-time Systems[C]. In Proc.

23rd International Conference on Computer Aided Verification

(CAV'11), volume 6806 of LNCS, pages 585-591, Springer.

July 2011.

[16] Matthias Fruth D，formal methods for the Analysis of Wireless

Network Protocols[D].University of Oxford,2011.

[17] Marta Kwiatkowska, Gethin Norman and David Parker.

Probabilistic Symbolic Model Checking with PRISM: A Hybrid

Approach[J]. International Journal on Software Tools for

Technology Transfer (STTT), 2004, 6(2):128–142.

60

http://www.prismmodelchecker.org/bibitem.php?key=KP12
http://www.prismmodelchecker.org/bibitem.php?key=KP12
http://www.prismmodelchecker.org/

Margin Testing of SpaceWire Devices
SpaceWire test and verification, Long Paper

Alan Spark, Pete Scott

STAR-Dundee

Dundee, Scotland

alan.spark@star-dundee.com,

pete.scott@star-dundee.com

Paul Crawford, Steve Parkes

University of Dundee

School of Computing

Dundee, Scotland

psc@sat.dundee.ac.uk,

sparkes@computing.dundee.ac.uk

Abstract— The SpaceWire Physical Layer Tester (SPLT) is a

device designed to support margin testing of the physical level of

SpaceWire devices. This paper gives an overview of some useful

tests that can be performed with the STAR-Dundee SPLT, whose

hardware was introduced at the 2011 SpaceWire Conference [1].

The software used to control the SPLT to conduct margin and

production tests is also introduced.

The SPLT's unique Low Voltage Differential Signalling

(LVDS) transmitters can be configured through software to

simulate various forms of signal degradation.

The platform software can perform margin testing on

individual characteristics of the LVDS transmitters. A start

point is set for the desired parameter (for example Voltage

swing) and fixed values for all other transmitter characteristics

are configured. The test parameter is then progressively

degraded by the software until the SpaceWire link disconnects.

Performing margin testing on all of the variables will give an

envelope outside of which the system will cease to function.

Margin test data may be used to define a set of production

parameters under which a Unit Under Test (UUT) is expected to

operate. This data is fed into a production test feature of the

software platform for testing and validation of flight hardware.

The production test feature manually, or automatically, explores

the UUT's performance at the extremes of the production

parameters and prints out a results sheet detailing the tests

performed, and any failures that have occurred.

The SPLT also features high speed analogue buffers on either

end of the LVDS receiver termination resistors. Measurements

are presented of the tests outlined above using an oscilloscope

interfaced through these buffers. The eye pattern is observed

and verified using masks on oscilloscope software.

Index Terms—Physical Layer, Software, Margin, Production,

Test, LVDS, Eye Pattern, SpaceWire

I. INTRODUCTION

The SpaceWire Physical Layer Tester is a new test unit

from STAR-Dundee that supports margin testing of the

physical layer of SpaceWire. It is able to operate in two

principal modes: unit test mode and system test mode.

In unit test mode the SPLT is connected to the unit under

test and sources the SpaceWire packets used during the testing.

The SPLT is able to manipulate the physical level signals,

modifying the data to strobe skew, the LVDS positive and

negative signal skew, the LVDS differential signal level and

the LVDS common mode skew. It can also add controlled jitter

to the LVDS signals. The unit under test (UUT) receives the

aberrated LVDS signals and will operate normally until they

become too severe. At this point the UUT will receive and

detect errors on the line and disconnect the SpaceWire link.

This disconnection is detected by the SPLT and used to

determine the margin of operation

 In system test mode the SPLT is placed in the SpaceWire

link between two units and both units are tested at the same

time. Each unit sends packets to the other unit. The SPLT

modifies the physical level signals to assess the margins of the

system.

The SPLT has specialised LVDS drivers which are used to

measurably control the offset, swing, slew, skew and jitter

characteristics of its transmitted SpaceWire signals. A UUT

will disconnect the link when the SpaceWire signal received

from the SPLT is sufficiently deteriorated to prevent recovery

of its bit stream. The envelope of aberrations under which the

UUT is able to sustain a SpaceWire link can then be

determined, for example the amount of data to strobe skew that

can be sustained when all the other LVDS signal parameters

are nominal.

Application software provided with the SPLT supports

both margin testing and production testing. These separate

functions make it easy to determine the operational margins of

a UUT and to then define on-going test criteria to ensure that

these margins are met during production.

The SPLT software also provides an application

programming interface (API) to allow users to integrate SPLT

functionality into their own applications.

II. MARGIN TESTING

The margin testing software can be used to determine the

amount of signal degradation that a UUT can cope with. The

user can set the initial amount of degradation to be applied to

the signal for various different types of signal aberration. The

software will then automatically increase the amount of

degradation that is applied to the signal for a chosen type of

aberration and the test will stop as soon as a failure is detected.

61

mailto:alan.spark@star-dundee.com
mailto:pete.scott@star-dundee.com
mailto:psc@sat.dundee.ac.uk

Fig. 1. Initial SpaceWire Margin Tester screen.

In Fig. 1. the SpaceWire Margin Tester software is shown

in its default state where all aberrations are set to their nominal

values. The type of aberration that is to be automatically

altered is selected using the associated radio button.

Meanwhile, the static values of the other aberrations can be set

manually. This allows for each aberration to be tested in

isolation whilst keeping other variables at a constant level.

Fig. 2. Failure of margin testing on Data to Strobe Skew.

The automatic margin testing feature constantly degrades

the signal by increasing the amount of aberration that is applied

until either the link fails, or else continues to run under

maximum aberration. In the example shown in Fig. 2. the test

has failed after the Data to Strobe Skew was increased to 11.05

ns. The testing immediately stops at this point so that the

failure parameters can be noted. Failed tests are indicated by a

red exclamation mark icon. The aberration value may then be

set to the value prior to where the failure last occurred before

the other types of aberration are tested.

Fig. 3. The Data to Strobe Skew test completed successfully.

If a link continues to run under maximum aberration

(shown in Fig. 3.) a green tick icon is shown alongside the

associated slider. Each of the aberrations can be applied one

after the other so that the full spectrum is tested and the

acceptable margin of operation can be determined.

 By default, aberrations will be applied to analogue

port 1 on the SPLT. As shown in Fig. 3. this can be changed to

port 2 or both ports using the tabbed display.

The SPLT hardware supports various types of Jitter

including triangular, square and sawtooth and Gaussian. It is

possible to configure the Jitter parameters in the software. The

level of which is then controlled by the associated slider in the

margin tester screen.

Each SPLT unit is calibrated to the optimal settings during

production. However, depending on various factors such as

cable length and ambient temperature, the device may need to

be recalibrated by the user to ensure that the most accurate

levels of aberration are being output by the hardware. The

software supports a guided user calibration using a few simple

measurements that can be carried out at any time with the use

of a high speed oscilloscope.

III. PRODUCTION TESTING

In addition to the margin testing software, production

testing software is also being developed for the SPLT. This

software is complementary to the margin tester software and

will allow for acceptable limits of signal degradation to be

defined, giving the user full manual control over the

aberrations.

The margin testing software is the first port of call in

exploring the physical layer of a SpaceWire system as it can

quickly establish the operational limits of a UUT. The results

of margin tests can then be used to define production testing

criteria.

The production testing software is used to evaluate a

production unit against a set of static values. A test against

these acceptable limits can be run manually or as part of an

automated verification process. The results of the test will then

be logged in a report.

62

IV. RESULTS

The SPLT was set up as shown in Fig. 4. A 50 cm

SpaceWire cable was attached between ports 1 and 2 of the

device. Aberrations were applied to the output of port 2, with

their effect captured by an oscilloscope connected to the

buffers on port 1.

SpW Router

Host PC

SpW

SPLT
Control

SpW
Validation
Software

Delay Lines

Analogue
Aberration

Buffers Oscilloscope

SpW 2 SpW 1

SPLT

SpW

Port 2 Port 1

Port 4

Fig. 4. Setting up the SPLT to test its own SpaceWire ports.

The SpaceWire Router was configured to set port 2 to

“start” state, such that the SpaceWire link would automatically

attempt to restart following a link disconnect. The tests were

then performed with the link running and transmitting Nulls.

In all traces, unless otherwise stated, the timebase is at 10

ns per division, and voltages at 500 mV per division. The

traces from top to bottom are D+, D−, S+ and S−

A. Margin testing Data-Strobe skew

The Data-Strobe skew was progressively degraded by

progressively delaying the data differential pair from 0ns (no

aberration) until link disconnect at 4ns. The results are shown

in Fig. 5.

Fig. 5. Data-Strobe skew test at 1, 3 and 4 ns (top to bottom) of delayed data.

The final image in Fig. 5. is zoomed out to show the link

trying to re-establish a connection at the 10Mbit/s standard. A

connection is briefly made, until a parity error due to the skew

aberration causes an exchange of silence before a similar

pattern repeats itself.

B. Margin testing in-pair skew

The test in section IV.A was repeated, but this time only the

positive end of the Data signal was delayed, whilst the Strobe

was unchanged. The results are shown in Fig. 6.

63

Fig. 6. In-pair skew test at 0, 2 and 4 ns (top to bottom) of delayed Data+.

The link in Fig. 6. eventually disconnects at 4 ns of skew.

A single trace is shown where the link speed switches from the

10 Mbit/s startup speed to the 200Mbit/s configured speed.

The link soon fails, and reconnection is repeatedly attempted.

C. Margin testing jitter

A triangular pattern was applied to the delay lines such that

the stobe delay ramped up to a maximum value in 10 ps steps,

before ramping back down to a minimum value in 10 ps steps.

This gives a jitter characteristic of a burst of “short” bits,

followed by a burst of “long” bits, which are 10 ps shorter and

longer than the link transmit rate, respectively. The major

effect of this is that the skew rapidly transitions linearly

between the two endpoints. The results are shown in Fig. 7.

Fig. 7. Jitter triangular pattern on the strobe with 0, 2 and 5 ns of jitter applied

from top to bottom.

Fig. 7. Shows the signal’s progressive deterioration as the

increasing jitter causes the eye of the signal to narrow. The eye

is only just visible at 500 ns as the link is pushed to the edge of

its margins. The eye eventually closed to cause the link to

disconnect at 6 ns of triangular jitter.

The SPLT was then configured to drive 3 ns of Sawtooth

Jitter. In this mode, the Strobe was configured to count up

from zero to 3 ns of delay synchronously to the transmit clock.

64

The Data was configured to a constant skew of 1.5 ns. Traces

of this setup are shown in Fig. 8. and Fig. 9.

Fig. 8. 3ns Sawtooth Jitter with persistence on.

Fig. 9. Single oscilloscope trace of 3ns Sawtooth Jitter.

In Sawtooth jitter mode with the parameters configured in

this test, the Strobe moves from 1.5 ns leading the Data to 1.5

ns lagging the Data. It does this by increasing the bit period by

10 ps compared to the Data bit period. When the Strobe

reaches this limit, a single bit of period 3ns shorter than the

Data bit period is injected to return the Strobe to lead the Data

signal by 1.5 ns. A trigger on this short bit period was used to

show the shortened bit in the middle of the traces in Fig. 8. and

Fig. 9.

The SpaceWire link was seen to periodically disconnect

throughout this test every few seconds as the link was pushed

to the limit of its margins at 300 ns of sawtooth jitter.

Comparison of this value to the 500 ns of triangular jitter that

the link was able to sustain in Fig. 7. shows that sawtooth jitter

is more detrimental to the link operation than triangular jitter.

D. Margin testing swing

The swing on the Data signal was reduced in steps down to

a value of 35 mV, where the link disconnected. The

progressively aberrated waveforms are shown in Fig. 10.

Fig. 10. Reducing swing through 620, 310 and 155 mV from top to bottom.

The eye of the received waveform closes as the swing is

reduced. Once the swing is reduced below 150 mV, it becomes

very close to the 100 mV minimum swing specified in the

LVDS receivers’ specifications. Link disconnects start to

become increasingly regular as this value is approached.

E. Margin testing offset

The offset of the Data signal was reduced from 2 Volts

down to zero volts. Oscilloscope screen captures of this test

are shown in Fig. 11.

65

Fig. 11. Reducing the common mode through 1.83, 1.22 and 0.61 Volts.

The link was sustained without any disconnects across this

range of tests. The LVDS receivers’ specifications stated an

input common mode range of 0.3 to 2.35 Volts. This is still a

useful test to perform as it confirms the validity of the

datasheets’ quoted values.

F. Margin testing slew

The SPLT features three different sizes of capacitor which

can be independently switched onto each of the drivers to

achieve different slew rates depending on the combination of

capacitors selected. A test was run with slew loads ranging

from 0 pF up to the full 116 pF from all 3 capacitors switched

in. For the cable used in this test, this caused the 90% - 10%

rise and fall times to increase from approximately 1 ns up to 6

ns. The screenshots of this test are shown in Fig. 12.

Fig. 12. Increasing the slew capacitance through 0, 48 and 116 pF, shown

from top to bottom. The vertical scale is set to 100 mV / division

and the horizontal scale to 5 ns / division.

No disconnections occurred during throughout this test. It

can be clearly seen from Fig. 12. that, whilst the signal has

been progressively degraded at the corners, there is still a clear

eye opening allowing for the bit stream to be successfully

received.

Slew was then progressively introduced in-pair to the

negative end of the Strobe line, whilst the positive end was

maintained at minimum slew (all slew capacitors disabled).

A number of oscilloscope screenshots from this test are

shown in Fig. 13.

66

Fig. 13. Increasing the in-pair slew capacitance through 0, 48 and 116 pF,

shown from top to bottom. The vertical scale is set to 100 mV /

division and the horizontal scale to 5 ns / division.

As with the previous slew test, no disconnections occurred

at maximum slew settings. The eye of the signal is still open,

allowing for the bit stream to be successfully recovered.

Whilst no disconnects were observed with maximum slew

in this test, slew can cause a link to fail when combined with

aberrations which would have previously caused no link

disconnects.

G. Tests with Data

A number of test data packets were transmitted at 200

Mbit/s, with high levels of aberration configured in each test.

The following oscilloscope screenshots show the results of

these tests.

Fig. 14. Transmitting a data packet with 3ns skew caused by Strobe delay.

Notice the almost simultaneous transition of the Data and Strobe

lines occurring three divisions from the centre of the trace.

Fig. 15. Sawtooth Jitter causes 2ns shorter bit every 5th bit on strobe. The

strobe bit pattern therefore consists of four bits extended by 0.5 ns

and one bit shortened by 2 ns.

Fig. 16. Transmitting data with the Strobe swing reduced to 75 mV. This

link continues to run despite the 100 mV minimum swing specified

in the LVDS receiver’s datasheet.

67

Fig. 17. Transmitting data with the Strobe offset to 2700 mV. Notice how

the signal is clipped at such high offsets; the strobe’s swing was
configured to the same level as the data. The link continues to run,

despite the 2350 mV operating limit specified in the datasheet.

Fig. 18. Transmitting data with full 116 pF of slew

In all of the above tests, the link was left to run for several

minutes, an no disconnects were observed.

H. Combined aberrations

Any number of the above aberrations can be combined in

any combination to define an envelope in which a link can

operate. The following aberrations were configured on the

SPLT whilst the link was transmitting data:

 Swing 100 mV

 Offset 2700 mV

 Slew 116 pF

An oscilloscope screenshot of these conditions is shown in

Fig. 19.

Fig. 19. Combining swing, offset and slew aberrations onto the Strobe

signal with a SpaceWire link transmitting data.

Fig. 19. shows the oscilloscope measurement of these

combined aberrations. The offset is set so high, that the signal

is somewhat clipped at the top. The link disconnected every

few seconds under these aberrations; but a significant amount

of data could still be transmitted between these disconnects.

The disconnects are largely attributed to the high offset, which

at 2700 mV, is 350 mV higher than the operating limit of the

LVDS receivers’ specification (but still well within the

absolute maximum!).

A number of combined aberrations could be used for

production testing to validate that a link can operate under a

number of harsh corners of the envelope which a fully

functional production unit could be expected to withstand. A

manufacturing defect which might not be detectable under a

standard LVDS test could then cause the link to fail when

subjected to such an envelope of aberrations from the SPLT.

V. CONCLUSION

This paper has described the SPLT hardware and

introduced the application software that has been developed to

simplify the process of physical layer testing.

A number of tests performed in the resuts section have

yielded fully operating SpaceWire links; but analysis of the

oscilloscope screenshots show how poor the LVDS signal is.

This demonstrates how a SpaceWire device can appear to be

fully functional when it is powered up and successfully

transferring data with other SpaceWire components. Using the

Physical Layer Tester’s analogue buffers, it is possible to

unobtrusively measure the received waveform and validate that

a piece of equipment is operating correctly at the Physical

layer.

Likewise, when receiving SpaceWire data, a link can seem

perfectly functional. The SPLT can be used to subject the

SpaceWire link receiver to an envelope of harsh aberrations

that should be able to sustain an active link, based on

measurements from previous margin testing of equipment. A

manufacturing defect, or damage to the unit that does not

68

disrupt a link under standard LVDS parameters could cause the

link to fail under these harsh tests.

In Summary, the SPLT is an essential quality control tool

for manufacturers of SpaceWire equipment. It is also a

powerful validation tool for end users of SpaceWire

equipment.

REFERENCES

[1] P. Scott, P. Crawford, S. Parkes and J. Ilstad, “Testing

SpaceWire systems across the full range of protocol levels with

the SpaceWire Physical Layer Tester”, International SpaceWire

Conference 2011, San Antonio, 8th – 10th November 2011.

69

Modeling and Verification of SpaceWire Interface by

Timed Automata
SpaceWire Test and Verification, Long Paper

Ping Luo, Yong Guan, Xiaojuan Li, Rui Wang,

College of Information Engineering,

Capital Normal University,

Beijing, 100048, China

{luoping0718@126.com, guanyong@mail.cnu.edu.cn,

lixj66@gmail.com, rwang04@gmail.com}

Jie Zhang
College of Information Science & Technology, Beijing

University of Chemical Technology,

 Beijing, 100029, China

jzhang@mail.buct.edu.cn

Xiaoyu Song
Dept.of ECE, Portland State University Portland, Oregon, US

Abstract—SpaceWire is a serial link Standard for on-board

network applications. A design of the standard at the exchange

level was implemented in the previous work by our research

group. Due to the special demand of higher reliability, it is

necessary to test and verify its correctness. This paper presents a

formal modeling and verification method of the SpaceWire

implementation resorting to Uppaal, a model checker based on

timed automata theory. In this work, we focus on the connection

process across a link, which is one of the primary missions of the

exchange level. We extract the timed automata models for the

two ends of the link. Each end of the link is formalized as a

network of timed automata including the LocalHost, the Timer,

the StateMachine, the Transmitter and the Receiver. In the paper,

the SpaceWire safety requirements are specified as computation-

al tree logic (CTL) properties. We find out some detail errors of

the original implementation by checking if the link interface is

deadlock-free or not. It is also verified that the link connection

can be made successfully conforming to the specification. The

experimental results demonstrate the effectiveness of the

approach presented here.

Key Words—SpaceWire, Formal Verification, Model Checking,

Timed Automata, Uppaal.

I. INTRODUCTION

SpaceWire [1] is a serial link standard for onboard network

applications, which is put forward by the European Space

Agency (ESC for short) in 2003. It provides a full-duplex,

bidirectional, serial point-to-point, high speed data link. Data

can be transferred at a different data signaling rate in the both

directions, which ranges from 2 to 400 Mb/s [2]. Due to the

broad prospects of space applications, it has been attracting

more and more attention from the space agencies and

companies all over the world. Lots of work has been done and

variable designs and implementations come forward.

Considering the special demand of higher reliability and the

possible misunderstanding of designers or programmers, it is

quite necessary to test and verify the correctness of SpaceWire

designs and implementations.

Formal verification [3] shows great prospects, compared to

the incompletion of traditional verification methods, like test

and simulation. It is done by proving a formal proof on an

abstract mathematical model of the target system. Many

powerful mathematical objects are used to model systems, such

as finite state machine, Petri nets, timed automata, hybrid

automata, and Hoare logic and so on [4]. Model checking [5]

[6], one of the formal verification approaches, is put forward

by Edmund Melson Clarke, Ernest Allen Emerson, etc., who

together won the 2007 Turing Award. The main idea of model

checking is: through extracting the model of the target system,

to exhaustively and automatically check whether it meets some

given specifications. It has been increasingly applied to both

hardware and software. Many tools are developed for model

checking, like SPIN [7], SMV [8], Uppaal [9], etc. Uppaal will

be introduced here, which is jointly developed by Uppsala

University and Aalborg University. It is a model checker based

on the theory of timed automata. In view of its special

advantage to models involved with time, it suits modeling and

verifications for real-time systems. The timed automata models

of a system can be established in the editor of Uppaal GUI. A

simulator can help to check whether the models meet the

expectation. At last, we can verify in the verifier the

requirement specifications, which are expressed in

computational tree logic (CTL for short). If the given result of

a property turns out to be satisfied, it indicates that the system

meets that specification. Otherwise, a counterexample will be

fed back [10].

This paper proposes an approach of model checking to

verify our design of the SpaceWire exchange level [11],

resorting to the tool Uppaal. The timed automata theory in

Uppaal is introduced in section II. Section III makes a brief

introduction to SpaceWire link. Its models of timed automata

are illustrated in section IV, and verification is done in section

V. Conclusion comes at last.

II. TIMED AUTOMATA IN UPPAAL

Timed automata theory is first introduced by Rajeev Alur

and David L. Dill in 1990 [12]. A timed automaton is a finite

state Buchi automaton extended with a set of real value

variables in Uppaal.

70

mailto:%7bluoping0718@126.com
mailto:rwang04@gmail.com

To define its syntax and semantics, the following notations

are used: C is a set of clocks and F(C) is the set of conjunctions

over simple conditions of the form or , where

 . Let be the set of

all clock valuations, where a clock valuation is a function

 . Let () for all . We adopt the

definition of timed automaton in [10][13].

Definition 1 (Timed Automaton)

A timed automaton is a six-tuple , where

 L is a set of locations,

 is the initial location,

 is the set of clock variables,

 is a set of actions and co-actions,

 () is a set of edges between

locations with an action, a guard and a set of clocks to

be reset,

 () assigns invariants to locations.

Definition 2 (Semantics of Timed Automaton)

A timed automaton can be

semantically defined as a labeled transition system

 , where

 is the set of states,

 () is the initial state,

 () is the transition relation such

that:

 ()

 () if

 satisfies ()

 ()

 () if ()

 []

 () , where [] denotes the

clock valuation which maps each clock

in to 0 and agrees with over

A network of timed automata is often comprised of several

timed automata over a common set of clocks and actions.

These timed automata synchronize each other through pairs of

channels of the form a! and a?.

III. SPACEWIRE INTERFACE

In a SpaceWire network, units of nodes and routers are

interconnected through bidirectional, full-duplex, point-to-

point data links. At the exchange level of SpaceWire, the

interfaces of both ends across the link are designed for making

a connection and managing the flow of data. Our design

includes modules of Controller, Transmitter, Receiver, Timer,

CreditCounter, BaudrateCounter, Recovery, and ErrorNotifica-

tion. In this paper, Controller(StateMachine), Transmitter,

Receiver, Timer, only the primary ones, will be modeled and

analyzed, purposively and for simplicity. The following Fig. 1

displays the simplified SpaceWire link interface block diagram.

The StateMachine, as the center of control, controls the

overall operation of the interface. It is designed as a finite state

machine consisting of several states. After a system reset signal,

it starts to work. It controls the affair states of Transmitter and

Receiver via signals, Reset, enableTx, and enableRx. When

assterting signals of sendNULL, sendFCT, sendTimeCode,

sendNChar at some specific moments, it directs the Transmitter

to send corresponding characters. Also the Receiver will

inform the StateMachine when receiving a(an) NULL/FCT/Ti-

meCode/NChar. Timer keeps time for StateMachine and

provides two periodic signals of After64 and After128.

Transmitter

Receiver

StateMachine

Timer

LocalHost

Reset

LinkEnabled

After128

After64

sendNChar
sendTimeCode
sendFCT

sendNULL

enableRx

enableTx

Reset

Sout

Din

gotNULL
gotFCT

gotTimeCode

TimerReset

Reset

DisconErr
gotNChar

Dout

Sin

Fig. 1. A simple example of link interface block diagram

Before successfully establishing a connection across a link,

both ends of the link will go through ErrorReset state,

ErrorWait state, Ready state, Started state, Connecting state,

until the state Run. A typical example of initialization sequence

is illustrated in Fig. 2. After a delay of 6.4us in ErrorReset and

a 12.8us one, the state machine of one end goes into the Started

state. Entering that state, its Transmitter becomes enabled and

begins to send NULLs to the other end. It will keep sending

until the moment an FCT arrives, when it then moves into the

Connecting state. In that state, FCTs are allowed to be

transmitted. Once an FCT is received in the state Connecting,

the state machine shall enter the state Run. So far a NULL

handshake and an FCT one have taken place, which make sure

of the bidirectional communication. The link initialization

succeeds. Further details will be presented in the timed

automaton model of StateMachine below.

Fig. 2. An example of typical initialization sequence[cite]

71

IV. MODELS OF TIMED AUTOMATA

Let id, an integer variable, be the identity of each end. All

the models in this paper shall be set the parameter id in order to

be identified. We can suppose that end A is marked with id==0

and end B with id==1. The unit of time of 100ns-long is used

here. Thus the delays of 6.4us and 12.8us can equal to 64 time

units and 128 ones, respectively. Since the Transmitter shall

operate at a data signaling rate of (10 1) Mb/s, it takes one

time unit to send a bit.

In accordance with the VHDL codes of implementation, the

models of timed automata are extracted here including

LocalHost, StateMachine, Transmitter, Receiver, and Timer, as

shown below.

A. LocalHost

The simplest case of the local system is modeled here in

Fig. 3. The system may send a Reset signal to start the link any

time. Once a Reset signal beamed, an clock variable x starts to

keep track of time, performed by a function TimeStart() as

TABLE 1 shows. Also a LinkEnabled signal is assumed to be

asserted if needed.

TABLE I. FUNCTIONS DEFINITION

//LocalHost

void TimeStart(){

// bool s, true only if at least one end has been reset;

 if(!s) x=0;

 }

//global declaration

void reset(int id){

 firstNULL_gone[id]=0;

 firstNULL_received[id]=0;

 numberofFCT[id]=0;

}

Fig. 3. Timed Automaton of LocalHost

B. Timer

Timer is a quite significant module for SpaceWire. It

provides a timer of 64 and one of 128, which control the state

transition of link interface, make sure not to wait forever in any

state. Figure 4 illustrates the implementation. In the timed

automaton, the initial location has an invariant, clk<=64, where

clk is a local clock. A bool variable trigger denotes the timer to

be triggered. Replying the channels Reset! and TimerReset!,

the clock clk is reset to 0, and trigger is updated to be false,

signifying the timer of 64 is ready to start. After time of 64 is

up, it emits a channel After64! and updates clk to 0 and trigger

to 1. 64 time units later, a signal of After128 will be sent out.

After that, a new cycle runs.

Fig. 4. Timed Automaton of Timer

C. StateMachine

The Fig. 4 illustrates the timed automaton for the

StateMachine at a link end. Responding to Reset! from the

LocalHost, it stays in ErrorReset for 64 time units. When the

delay elapses, it unconditionally enters ErrorWait, with

enableRx! sent to Receiver and TimerReset to Timer. When

firstNULL_received is true, the StateMachine will go back to

ErrorWait from ErrorWait, if any channel, DisconErr?,

gotFCT?, gotTimeCode?, gotNChar?, is activated by Receiver.

Otherwise, it will enter the state Ready after a delay of 128. As

the state ErrorWait does, channels of DisconErr?, gotFCT?,

gotTimeCode? and gotNChar? can lead to reset the link. If the

link is enabled, it moves to the Started location and commands

to keep sending NULLs since the Transmitter is enabled here.

Also the Timer gets reset for a trigger of 128 time units. The

StateMachine is expecting the reception a NULL, whereas

FCTs or TimeCodes or NChars is not allowed to be received

unless the first NULL has arrived in Started state. Having

received a NULL and with at least a NULL gone, the state

Connecting will come, where FCTs and NULLs are both

permitted to be transmitted. Once receiving an FCT, the

StateMachine leaves for the Run location and the link

initialization is made. Normal operations are allowed across the

link, unless an error occurs or link is disabled. The characters

that are allowed to be transmitted in every state have different

priority levels, as TimeCode > FCT > NChar > NULL.

Characters of higher priority will be transmitted first. We

declare for the priorities: chan priority sendNULL<sendNChar

<sendFCT<sendTimeCode.

72

Fig. 5. Timed Automaton of StateMachine

D. Transmitter

We have a high level model of Transmitter as shown in Fig.

6, owing to the specific task of verification discussed in this

paper. There are 6 locations: an initial one, an urgent one, and

four for sending a type of characters, like TimeCodes, NULLs,

FCTs, and NChars. If enabled, the Transmitter sends

corresponding characters submitted to the StateMachine’s

instruction. For instance, while a synchronization channel

sendNULL comes, it enters the load_NULL location and

commences to send a NULL. A NULL control code contains a

ESC of 4 bits and a following FCT of 4bits. Thus a local clock

clk is involved. The invariant of clk<=8 is added to the location

load_NULL, which indicates that time spent sending a NULL.

If clk reaches to 8, it sends a synchronization signal

receiveNULL to Receiver at the other end of the link. Here, the

propagation of the SpaceWire link is ignored. In the similar

way, FCTs/TimeCodes/NChar are transmitted. And that will

separately take 4/14/10 time units. A Reset signal can be valid

at any location.

Fig. 6. Timed Automaton of Transmitter

E. Receiver

The Receiver is responsible for decoding the DS signals

and passing a sequence of NChars received on to the host

system. It also informs the StateMachine of the receptions of

characters. As shown in the Fig. 7, there are three prime

locations(not committed ones): an initial one, two enabled with

any bit received or not, en_nobit, en_bit. In the location

en_nobit, a disconnection error is not activated yet, while it

will be detected in the location en_bit. On receiving the first bit,

it switches into the en_bit location. The signal channel is not

introduced alone here. Owing to the need of disconnection

error detection, we combine the channel and receiver into a

high level extracted model. A particular channel is involved,

with three situations: 1) codes may be received normally; 2)

codes may be received incompletely; 3) the whole character

may get lost in the channel. Due to that three cases, when

synchronized by receiveNULL? (receiveFCT?, receiveNChar?,

receiveTimeCode?) in the location en_nobit, it may switch into

en_bit emitting an edge with gotNULL!, or not because of the

part reception of codes. It may also do nothing at all since

characters are lost. So does the location en_bit. In addition, it

has an invariant clk<9, which is introduced for the detection of

disconnection error. If clk>8 (roughly 850ns specified in the

Standard) becomes true, a disconnection error occurs, of which

will be informed StateMachine.

Fig. 7. Timed Automaton of Receiver

V. VERIFICATION

Uppaal uses a simplified version of CTL to express the

requirement specification. Path formulae and state formulae are

supported.

73

TABLE II. PROPERTIES IN UPPAAL

property expression meaning

Reachability E<> p p is satisfied in reachable states

Safety
A[] p ,

E[] p
something bad never happens

Liveness
A<> p,

p --> q
p is eventually satisfied

In this paper, a network of timed automata is established,

consisting of such 5 ones belonging to end A as LocalHost[0],

Timer[0], StateMachine[0], Transmitter[0], Receiver[0], and 5

to end B, such as LocalHost[1], Timer[1], StateMachine[1],

Transmitter[1], Receiver[1]. And several properties are verified

below.

1) The system should be deadlock-free.

A[] not deadlock

It turns out that the property is not satisfied. The verifyta in

Uppaal presents a counterexample illustrated in Fig. 8. It is

shown that end A began to send a NULL entering the Start

state while end B still stayed in the ErrorWait state. However,

end B didn’t receive the intact character. The Receiver at end B

transited to the en_bit location where detection of

disconnection error was activated. After more than 8 time units,

a disconnection error should have occurred.

Fig. 8. A counterexample for Property 1).

From the timed automaton of StateMachine in Fig. 5, we

can see the edge labeled with the channel DisconErr[1]? is not

enabled since the guard firstNULL_received[1] didn’t satisfy.

TABLE III shows a small part of original VHDL codes of

the StateMachine, where the state transition is described in the

ErrorWait state.

TABLE III. PART OF CODES IN VHDL OF STATEMACHINE

CASE CurrentState IS

WHEN ErrorWait => IF After128 = '1' THEN

 NextState <= Ready;

ELSE

 NextState <= ErrorWait;

 IF FirstNULLreceived_internal = '1' THEN

 IF RX_Error = '1' OR RX_GotSomethingWrong =

'1' OR DisconnectionError = '1' THEN

 NextState <= ErrorReset;

 END IF;

 END IF;

END IF;

END CASE;

Referring to clause 8.5.2.3 e in [], however, it is said below:

If, while in the ErrorWait state, a disconnection error is

detected, or if after the gotNULL condition is set, a parity error

or escape error occurs, or any character other than a NULL is

received, then the state machine shall move back to the

ErrorReset state.

We can learn that the error results from blocking the

disconnection error with the gotNULL condition in the original

design. Hence a revised version is displayed as follows.

Furthermore, a corresponding timed automaton is modeled to

be checked.

TABLE IV. CODES REVISED

CASE CurrentState IS

WHEN ErrorWait => IF After128 = '1' THEN

 NextState <= Ready;

ELSE

 NextState <= ErrorWait;

 IF DisconnectionError = '1' OR

(FirstNULLreceived_internal = '1' AND (RX_Error

 = '1' OR RX_GotSomethingWrong = '1')) THEN

 NextState <= ErrorReset;

 END IF;

END IF;

END CASE;

The same error also occurs in the Ready state and the

Started state. Similar modifications are made to the timed

automaton model of StateMachine. And the deadlock is

resolved in these three states.

2) The link connection can be made successfully.

E<>StateMachine(0).Run&&StateMachine(1).Run

That property is one of the most significant requirements

for SpaceWire link. Both ends enter the Run state, which

means that link connection has been made and both link

characters and normal characters can flow freely in both

74

directions across the link. The property is checked to be

satisfied. Uppaal also generates the path to it, which is same as

the initialization sequence in Fig. 2. In addition, the time cost

in that given path ranges from 204 to 268. The minimum time

of 204 can be the time taken to transfer a NULL and an FCT,

besides the delay of 64 in the ErrorReset state and 128 in the

ErrorWait state during the whole initialization. In fact, 204 is

the most perfect minimum time, the ideal one, due to the

ignorance of all the delays occurring in the program and in the

SpaceWire channel. Even though the transmitters at both ends

transmit a NULL of 8 bits at the same time, they will send the

second NULL before informed of the reception of a NULL

from each other. Thus two NULLs and a FCT at least shall be

transferred during initialization in reality, which indicates that

at least 212 time units (21.2 us equaled) will be taken.

VI. CONCLUSION

This paper has proposed an approach of model checking to

verify our design of the SpaceWire link interface, resorting to

the model checker Uppaal. Both end A and end B across the

SpaceWire link are modeled as a network of timed automata.

Each end is comprised of LocalHost, Timer, StateMachine,

Transmitter and Receiver. By verifying the models extracted

from the VHDL codes, a few potential errors are detected,

which are caused by the designer’s misunderstanding about the

constraint of a disconnection error. The results of verification

demonstrate the effectiveness of this approach.

ACKNOWLEDGMENT

We would like to acknowledge our group for the work done

before and thank Professor S. Z. Jin, Z. P. Shi, and C. N. Zhao

for their instructions. This research was supported by the

BJNSF (4122017), Beijing Education Science and technology

development project (KZ201210028036), ISTCP (2011DFG1-

3000), and International Science and technology cooperation

project (2010DFB10930).

REFERENCES

[1] http://www.spacewire.esa.int/content/Home/HomeIntro.php

[2] European Cooperation for Space Standardization, “SpaceWire-

Links, nodes, routers and networks”, ECSS-E-ST-50-12C, July

2008, available from http://www.ecss.nl/.

[3] D. Dill, S Tasiran, “Simulation meets formal verification”,

slides from a presentation at ICCAD, 1999.

[4] http://en.wikipedia.org/wiki/Formal_verification

[5] E. M. Clarke, O. Grumberg, and D. Peled, “Model Checking”,

MIT Press, 2000

[6] Edmund M. Clarke, “The Birth of Model Checking”, Lecture

Notes in Computer Science, 2008, Volume 5000/2008.

[7] http://spinroot.com/spin/whatispin.html

[8] A. Cimatti, E. Clarke, F. Giunchiglia, “NUSMV: a new

symbolic model checker”, International Journal on Software

Tools for Technology Transfer, 2000, Volume 2, Issue 4, pp

410-425.

[9] http://www.uppaal.org/

[10] Gerd Behrmann, Alexandre David, and Kim G. Larsen, “A

tutorial on Uppaal”, In proceedings of the 4th International

School on Formal Methods for the Design of Computer,

Communication, and Software Systems (SFM-RT'04). LNCS

3185.

[11] M. N. Wan, “Reseach and implementation of a high speed bus

technology in rugged surrounding” (in Chinese),Master Thesis,

Capital Normal University, Beijing, 2007.

[12] R. Alur and D. L. Dill. “A theory of timed Automata”.

Theoretical Computer Science 126(2):183-235, 1994

[13] Johan Bengtsson and Wang Yi, “Timed Automata: semantics,

algorithms and tools”, In Lecture Notes on Concurrency and

Petri Nets. W. Reisig and G. Rozenberg (eds.), LNCS 3098,

Springer-Verlag, 2004.

[14] C. McClements, S.M. Parkes, and A. Leon, “The SpaceWire

CODEC”, International SpaceWire Seminar, ESTEC Noordwijk,

The Netherlands, November 2003

[15] Christel Baier and Joost-Pieter Katoen, “Principles of Model

Checking”, London, England: The MIT Press .2008

75

http://www.ecss.nl/
http://www.cerc.utexas.edu/~jay/fv_surveys/DillICCAD99.ps
http://spinroot.com/spin/whatispin.html
http://www.uppaal.org/

Onboard Equipment & Software (Long)

76

High Processing Power Digital Signal Processor with

SpaceWire and SpaceFibre Interfaces
SpaceWire Missions and Applications, Short Paper

Bruce Yu
1
, Steve Parkes

2
, John Franklin

3
, Chris McClements

2
, Pete Scott

1
 and David Dillon

1

1
STAR-Dundee, STAR House, 166 Nethergate, Dundee, DD1 4EE, Scotland, UK

2
Space Technology Centre, 166 Nethergate, University of Dundee, Dundee, DD1 4EE, Scotland, UK

3
Astrium UK, Stevenage, UK

 Email: bruce.yu@star-dundee.com

Abstract—There is a need for high-performance digital

signal processing systems for spacecraft applications. The

problem is that commercial DSP processors are not

radiation tolerant and even when they can tolerate a

reasonable total radiation dose, they are subject to single

event upsets (SEUs). STAR-Dundee is working with

Astrium to provide a solution to this problem. A

commercial DSP processor is controlled by a radiation

tolerant FPGA to detect and recover from SEUs. Operating

in a dual redundant configuration the High Processing

Power Digital Signal Processor (HPPDSP) unit is able to

meet demanding signal processing applications in support

of space missions. To configure and control the HPPDSP

and to get data in and out of the DSP signal processor a

combination of SpaceWire [1] and SpaceFibre [2]

interfaces are provided.

This paper introduces the HPPDSP, outline its overall

architecture, and describe the SpaceWire and SpaceFibre

interfaces provided.

Index Terms—SpaceWire, SpaceFibre, digital signal processing,

spacecraft onboard processing

I. INTRODUCTION

Commercial DSP processors generally have high

processing power which is needed by future Space missions

that require very large data processing throughput.

The HPPDSP unit contains a commercial DSP processor

connected to memory and an FPGA that provides fault

detection and memory management services, and all the

input/output functions for the unit. Three SpaceFibre links are

provided along with two SpaceWire interfaces. General

purpose input/output signals, status display, high-speed ADC,

and an interface to a boot FLASH PROM are also provided.

The SpaceFibre interfaces provide the high-speed data

input/output to the DSP processor. A DMA controller is

provided to read and write data directly to processor memory.

Each SpaceFibre interface has multiple virtual channels to

support various independent data streams. One virtual channel

on each SpaceFibre port is connected to an RMAP target to

support configuration and control of the HPPDSP and sharing

of critical information about detected faults.

The two external SpaceWire interfaces are connected to an

internal SpaceWire router which has two internal ports

dedicated to data transfer and one acting as an RMAP target

providing similar capability to the RMAP targets attached to

SpaceFibre.

Configured in dual redundancy, two HPPDSP units are

paired to work together, one as prime and the other one as

redundant. The pair consists of two identical copies of the

hardware. When the prime unit fails, the redundant unit can

take over.

II. BLOCK DIAGRAM

The block diagram of a HPPDSP unit is shown in Fig. 1.

DSP
Prog/Data

SDRAM

EDAC Parity
SDRAM

DMA
Controller

SpFi 1 RMAP
Target

req

SpFi 2 RMAP
Target

req

SpFi
M/S

RMAP
Initiator

req

SpW
Router

req

req

RMAP
TARGET

0

1

2 3

4

Boot
Management

req

Memory
Management

Interrupt
Management

CHECKER

Memory
Mapped
Registers

Watchdog
Time Mgmt
LCD Display

Power Control
V & T Monitor

GPIO
External Intr

LEDs

Shared RAM

FLASH
Boot PROM

intr

intr

intr

intr

JTAG

Control FPGA

RMAP
Target

DMA Bus A

Configuration
Bus

Slave
Access Bus

DSP
Peripheral

Bus

intr

Slave Access

intr

EMIF bus

UHPI

intr

WakeUp Timer
intr

DMA Bus B

Fig. 1. Block Diagram of a HPPDSP Unit

77

The commercial DSP processor is TI TMS320C6727B [3],

which is Texas Instruments' high-performance 32-/64-bit

floating-point digital signal processors. It has on-chip RAM

and ROM as unified program/data memory, and for external

memory it has External Memory Interface (EMIF) which

supports a single bank of SDRAM and a single bank of

asynchronous memory. The Universal Host-Port Interface

(UHPI) is a parallel interface through which an external host,

i.e. Control FPGA, can access memories on the DSP. The

Control FPGA is a Virtex-4 device.

The DSP can boot either directly from a FLASH-based

boot PROM, or over a SpaceWire/SpaceFibre interface

accessing other resources on a network. The PROM stores the

boot and DSP program data, which can be uploaded from a

SpaceWire/SpaceFibre network. A simple Error Detection and

Correction (EDAC) technique is utilised to protect data in the

PROM. These functionalities are covered by the Boot

Management module.

For fast access to program and data, a 32-bit wide large

SDRAM memory block is attached to the EMIF interface. An

EDAC function is also included, inside Memory Management

module, to protect data integrity in the SDRAM memory,

which is susceptible to SEU events. The Memory Management

also controls which SDRAM regions are allowed for a task to

access. The Memory Management module has control over the

DMA Bus B, from which it can access DSP memory via a

DMA controller. It also can access the DSP peripheral Bus,

which allows the DSP processor to access various memory

mapped registers, along with Slave Access and Checker

modules. The Slave Access and Checker Modules are used to

exchange information and share memory data between the

primary HPPDSP unit and the redundant HPPDSP unit when

necessary. Both the Slave Access and Checker modules have

access to an RMAP Initiator attached to SpaceFibre

Master/Slave interface, so can start a RMAP transaction to the

other unit of the Master/Slave pair.

SpaceFibre interface 1 and SpaceFibre interface 2, each

have four Virtual Channels (VCs). VC0, connected to a RMAP

Target accessing the Configuration Bus, is used to

configure/control all modules attached to this Bus, which

includes configuring the SpFi and SpW operating parameters.

The rest of VCs, from VC1 to VC3, are connected to DMA

Bus A for DMA data in-to/out-of DSP memory via the DMA

controller. These two SpaceFibre interfaces can be configured

to work as a prime/redundant pair to achieve dual redundancy.

The SpaceFibre Master/Slave interface has eight VCs. VC0

is used for configuration/control purposes. The rest of the VCs,

from VC1 to VC7, are connected to DMA Bus A for sending a

copy of any incoming IO data stream to the slave HPPDSP

unit.

All these SpaceFibre interfaces use STAR-Dundee

SpaceFibre Codec IP, which has direct interface to connect

with an external serialiser/de-serialiser (SerDes) device, i.e. TI

TLK2711[4] in this design.

There is a five port SpaceWire Router on the Control

FPGA, with two external SpaceWire ports and three internal

ports. Two of the internal ports are connected to DMA Bus A

for DMA data in-to/out-of DSP memory, and the other internal

port is connected to an RMAP Target accessing the

Configuration Bus so that it can configure or control modules

attached to this Bus.

There are many occasions where the Control FPGA needs

to interrupt the DSP processor, for instance when a data error is

detected by the EDAC circuit for SDRAM data and the error is

not a one-bit error i.e. not self-correctable. All interrupts are

gathered from their sources and then an interrupt signal is

connected to a pin of UHPI interface which can be configured

as an interrupt input pin to the DSP processor.

III. SPACEWIRE INTERFACE

A five port SpaceWire router is provided on the HPPDSP

unit. It has two SpaceWire ports (ports 1 and 2), two ports

connected to the DMA Bus A inside the Control FPGA (ports 3

and 4) and a configuration port (port 0) connected to the

Configuration bus inside the Control FPGA. If nominal and

redundant ports are required the two SpaceWire ports may each

be given a nominal and redundant external LVDS

driver/receiver. The SpaceWire Router is illustrated in Fig. 2.

Fig. 2. SpaceWire Router Block Diagram

The two SpaceWire interfaces are connected to a routing

switch as ports 1 and 2. Ports 3 and 4 are attached to pairs of

VCBs which are connected to the DMA Bus A. Port 0 is

attached to an RMAP Target attached to the Configuration

Bus. Configuration of the SpaceWire interfaces (e.g. link

speed) and router (e.g. routing tables) is performed over the

Configuration Bus. They can therefore be configured by any of

the SpaceFibre or SpaceWire interfaces.

IV. SPACEFIBRE INTERFACE

There are three SpaceFibre interfaces on the HPPDSP. Two

of them, SpFi 1 and SpFi 2, are for connecting to instruments

or other HPPDSP units operating in parallel. Each of these

SpaceFibre interfaces has three VCs that can be used for data

transfer to/from DSP memory. These VCs are connected to the

DMA Bus A. A fourth VC is used for configuration/control

purposes and is connected to an RMAP Target that is attached

to the configuration bus. The VC attached to the RMAP Target

SpW
CODEC

ROUTING
SWITCH

DMA
BUS
I/F

wr addr

rd addr

data

wr

rd

DMA
Bus
A

DMA
Requests

Configuration
Bus

SpW
Interface

SpW
CODEC

SpW
Interface

VCB out

VCB in

VCB out

VCB in

RMAP
TARGET

0

1

2 3

4

78

provide a means of configuring the HPPDSP system remotely

over SpaceFibre.

The SpaceFibre interfaces use external SerDes devices (TI

TLK2711) which are available in space qualified version.

A block diagram of the SpaceFibre interfaces is given in

Fig. 3.

Fig. 3. SpaceFibre Interface Block Diagram

The DMA Bus interface connects the DMA Bus A to the

input and output VCBs in the SpaceFibre interface. When

writing to a SpaceFibre interface the output VCBs are

addressed. When reading the input VCBs are addressed. The

output VCBs are multiplexed by the MUX into a single stream

of SpaceFibre data frames into the SpaceFibre CODEC. The

SpaceFibre CODEC encodes the data frames, adding any link

control characters that are required and passes the resulting

symbol stream to the external SerDes for 8B/10B encoding and

transmission. Symbols received from the SerDes device are

passed to the SpaceFibre CODEC and the data frames are

extracted and passed to the DEMUX for writing into the

appropriate input VCB. The data in the input VCBs are taken

out when the DMA Controller reads the VCB.

There is an input and output pair of VCBs that are not

attached to the DMA Bus A. These are connected to an RMAP

Target and used for configuring and controlling the HPPDSP

unit.

SpFi 1 and SpFi 2 each have four pairs of VCBs (three

attached to the DMA Bus A and one pair to an RMAP Target)

and SpFi M/S has eight pairs (seven attached to the DMA Bus

A and one pair to an RMAP Target).

V. DMA CONTROLLER DESIGN

The DMA Controller takes DMA requests from DMA Bus

B, for a small amount of data access at any memory location.

The DMA Controller also manages transfer of data from

the SpaceFibre, SpaceWire, to and from DSP memory. It does

this under control of the DSP i.e. the DSP processor determines

where in DSP memory the data is to be placed and how much

data is to be read in a burst.

In a Master HPPDSP unit, the DMA Controller copies the

data being read to the SpaceFibre master/slave interface. This

is done at the same time as the data is being read out of one of

the interface by the DMA controller by providing a concurrent

write strobe and IO write address that specifies where the data

is to be copied to. In this way the data is read from one of the

interfaces, written to DSP memory and concurrently written to

the SpaceFibre master/slave interface for transferring to the

slave HPPDSP.

For Slave unit, the DMA Controller accesses the

SpaceFibre master/slave interface in place of the SpaceFibre,

and SpaceWire interfaces. It DMAs data from VCBs in the

SpaceFibre master/slave interface as if it were coming from

VCBs in the SpaceFibre, SpaceWire interface. For slave unit, if

the DSP processor requests to write data to a SpaceFibre or

SpaceWire interface via the DMA Controller it simply discards

the information.

The DMA Controller contains several channels each

channel may be programmed by the DSP processor to perform

the required data transfer.

VI. APPLICATIONS

One of the possible target applications can be processing

image data, for instance image compression, where image data

arriving over a SpaceFibre link is streamed into the DSP

memory and then processed by the DSP processor. Once

processed the image processing results are transferred out using

another SpaceFibre or SpaceWire interface, depending on the

data rate required.

VII. CONCLUSIONS

The HPPDSP is an experimental DSP processing system

for spaceflight applications with both SpaceFibre and

SpaceWire interfaces. Currently the prototype board is

developed and tested, and the design of the Control FPGA is

nearly finished. Once the hardware design is complete software

will be developed by Astrium and the entire system tested.

ACKNOWLEDGEMENTS

The authors would like acknowledge the support of ESA

with Astrium as the main contractor for the HPPDSP activity.

REFERENCES

[1] ECSS Standard ECSS-E-50-12C, “SpaceWire, Links, Nodes,

Routers and Networks”, Issue 1, European Cooperation for

Space Data Standardization, January 2008.

[2] S.M. Parkes, A.Ferrer, A. Gonzalez, and C. McClements,

“SpaceFibre Specification”, Draft E1, University of Dundee,

September 2012.
[3] Texas Instruments, “TMS320C6727B Floating-Point Digital

Signal Processors – Data Sheet,” SPRS370E, September 2006.

[4] Texas Instruments, “TLK2711A 1.6 TO 2.7 GBPS

TRANSCEIVER”, SLLS908A, September 2009.

SpFi
CODEC

MUX

VCB out

VCB out

VCB out

…
…

VCB in

VCB in

VCB in

DMA
BUS
I/F

wr addr

DMA Req

rd addr

data

wr

rd

DMA
Bus
A

…
…

DMA
Requests

Direct
VCB
Interface

SpFi
SerDes
Interface

DEMUX

79

Development of Software Platform Supporting a

Protocol for Guaranteeing the Real-Time Property of

SpaceWire
SpaceWire onboard equipment and software, Long Paper

Mitsutaka Takada, Hiroaki Takada, Yang Chen

Center for Embedded Computing Systems,

Graduate School of Information Science,

 Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.

mtakada@nces.is.nagoya-u.ac.jp,

hiro@ertl.jp, chenyang@ertl.jp

Takayuki Yuasa, Tadayuki Takahashi

Institute of Space and Astronautical Science, JAXA

3-1-1 Yoshinodai, Sagamihara, Kanagawa, Japan.
yuasa@astro.isas.jaxa.jp, takahashi.tadayuki@jaxa.jp

Masaharu Nomachi

Research Center for Nuclear Physics, Osaka University,

10-1 Mihogaoka, Ibaraki, Osaka, Japan.

normachi@rcnp.osaka-u.ac.jp

Abstract— We have investigated a method to guarantee the

real-time properties of SpaceWire based on SpaceWire-D, and

proposed an extended protocol. The proposed protocol has wider

applicability and a higher transfer rate than SpaceWire-D. In

addition we have developed a software platform incorporating

the proposed protocol to enable application software that uses the

protocol to be developed with greater ease.

First, this paper describes the proposed protocol for

guaranteeing the real-time properties of SpaceWire and then

presents the software platform that implements the protocol.

The proposed protocol is an extension of SpaceWire-D and

incorporates the following features/concepts: subnet concept,

flexible time slotting, network operation mode concept, split

RMAP transaction, accommodation of any upper layer protocol,
and optional FDIR mechanisms.

The developed software platform consists of an embedded real-

time operating system (RTOS), called the TOPPERS/HRP2
kernel, and middleware that implements the proposed protocol.

The TOPPERS/HRP2 kernel is an open-source RTOS based on

the ITRON specification, an RTOS API specification that is

widely used in Japan. Key features of the TOPPERS/HRP2

kernel include its small footprint, real-time properties, high-level

reliability and ability to support the protection mechanisms for
memory access and object access.

The middleware running on the RTOS supports RMAP

initiator functions, RMAP target functions, and other basic

functions supporting SpaceWire. The RMAP initiator functions

are responsible for sending RMAP commands in according with

the predefined schedule table. Therefore, application software

running on the middleware can initiate an RMAP transaction at
arbitrary times.

The developed software platform helps application developers

carry out software development without having to become

involved in the complex time management process of SpaceWire
packets, RMAP transactions.

In addition to this middleware, we have also studied worst-case

latency (WCL) analysis and real-time scheduling of RMAP

transactions for SpaceWire-D. These will be reported separately
by Yang Chen et al. (this conference).

Index Terms— SpaceWire-D, time slot, middleware, real-

time kernel, schedule table.

I. INTRODUCTION

SpaceWire as a network standard for spacecraft has begun

to be adopted for use on scientific satellites. In order to apply

SpaceWire to spacecraft other than satellites and to areas other

than space, there is considered to be a need for techniques that

have the ability to guarantee worst-case latency (WCL) for

packet delivery over SpaceWire.

SpaceWire-D has been proposed as a method of real-time

properties guarantee of SpaceWire.

In order to ensure real-time properties using existing

SpaceWire nodes and routers, the network is time-divided into

units called time slots in SpaceWire-D, and the basic approach

is to have one RMAP packet transfer in each time slot. This

approach ensures that it is easy to guarantee real-time

80

properties, however, there is a problem in that the effective

transmission rate becomes lower. It was reported in [5] that the

effective transmission rate when transferring data by the

RMAP packet using a command consisting of 256 bytes and 4

bytes on SpaceWire-D will be approximately 15% of the

SpaceWire link rate.

Furthermore, this paper assumes (that the node receiving

the RMAP command starts transmittings the RMAP reply

within 5μs) that the RMAP target is implemented in hardware.
If the RMAP target is implemented in software, the effective

transfer rate is significantly lower to the degree that it is no

longer practical.

In order to widen the application scope of SpaceWire, we

have examined methods to guarantee its real-time properties.

Regarding the study into guaranteeing real-time properties, we

started from the requirements for the SpaceWire network. Even

in the satellite network, each system – bus control, mission

control and the attitude control system – has quite different

network requirements. In addition, considering application to

other spacecraft and non-space fields, network requirements

become more diverse.

In cooperation with JAXA, Japan’s Nagoya University has

set up a study group to guarantee the real-time properties of

SpaceWire, and called for participation from companies that

develop spacecraft. In this study group, we collected

requirements for the SpaceWire network and have examined
real-time assurances based on it. In line with the basic

approach of SpaceWire-D – and to study improvements aimed

at extending the scope – we have produced guidelines for

methods that guarantee the real-time properties of SpaceWire

[4].

In this paper, we describe middleware (hereinafter referred

to as SpaceWire middleware) that runs SpaceWire control

software that was developed based on SpaceWire real-time

guarantee method guidelines created by the study group using

real-time OS(RTOS), and RTOS that controls SpaceWire

middleware. We also describes a software platform that

consists of tools used to assign time slots that are determined in

advance utilizing static SpaceWire packets.

The paper is organized as follows: In Chapter 2, we

describe proposal protocols aimed at extending SpaceWire-D,

and SpaceWire real-time properties guarantee methods

guidelines. In Chapter 3, we describe relevant components and
a software platform developed by applying the guidelines of

the real-time properties guarantee method. In Chapter 4, we

describe the operation of the software test platform. Finally,

Chapter 5 summarizes the paper.

II. PROPOSED PROTOCOL EXTENDS SPACEWIRE-D

SpaceWire middleware has been used in the

implementation process based on the proposed protocol that

extends the functionality of the part from SpaceWire-D. This

chapter describes the part that extends from SpaceWire-D in

the proposed protocol. The schedule information decision tool

will be stated in each component of the software platform in

Chapter 3.

A. Network operation mode

When using SpaceWire in spacecraft, we shall support a

change of operation mode in a spacecraft and a switch of traffic

route during a failure depending on the importance of the

mission. The concept of “Network operation mode” is

introduced to support a change of operation mode and a switch

of route in the proposed protocol. However, another method is

assumed to be provided so that the current network operation

mode can be transmitted to all routers and nodes.

B. Subnet

SpaceWire-D did not describe SpaceWire networks that

consist of a number of nodes. As the proposed protocol defines

the SpaceWire network, it was decided to provide a constraint

that is divided into multiple closed networks that do not share a

network link between each network operation mode. Multiple

closed networks that do not share a network link between each

network operation modes are called subnets.

The following example is considered one way to use a

subnet. SpaceWire network is divided into multiple subnets by

the functional unit node shown in Fig. 1.

Fig. 1. Example of subnets (function)

Otherwise it has been divided into subnets as redundant

paths between the nodes in Fig. 2. When it cannot

communicate between nodes in subnet1, it will be able to

communicate to switch to the subnet 2.

Fig. 2. Example of subnets (redundancy)

Different subnets can share the routers and nodes, but they

cannot share links. However, it is assumed that no interfaces

may occur during packet transfer of another link. If a packet

transfer of another link causes an interface, this interface needs
to be considered during calculation of packet transfer latency

as well as the potential of this interface to divide time slots.

When using the proposed protocol, packet transfer must finish

A

Subnet 1

Subnet 2

B

C

D

E

A

Subnet 1

Subnet 2

B

C

D

E

B

C

D

E

F

G

Subnet 1 Subnet 2

A

B

C

D

E

F

G

Subnet 1 Subnet 2

A

81

within each closed subnet; then it will be able to calculate the

allocation of time slots for the packet transfer per subnet.

C. Flexible time slot

Time slots are specified to be divided in the SpaceWire

time code in SpaceWire-D. However, it is difficult to

implement SpaceWire-D protocol stacks in software in the case

where SpaceWire networks are configured within a short time

span by time slot. Therefore, even if time code used by the

entire network is short, the time slots definition needs to be

more flexible so that software can accommodate the time slot

used in SpaceWire-D. In this proposed protocol, it is suggested

that a way to address the above problems is to extend the time

slot as follows.

If the time value contained in the time code is a multiple of

2n (where, n = 0 to 6, and value n depends on each subnet), this

time code is referred to as the “Time code that separates time

slot.” An interval from “Time code that separates time slot” to

the next “Time code that separates time slot” is called the
“Time slot.” When the number of time slot is 2m, the time slot

number is caluculated according to as the following equation.

TimeSlots ＝（TimeCode /２n）mod2m (1)

The length and number of time slots are determined for

each subnet. Basically, the time slots are separated by all time

codes, and 64 time slots are used. In addition, n=0 and m=6 are

used. Any time code other than “time code that separates time

slots” is ignored by the proposal protocol. When the time code

cycle is shortened, usage of link bandwidth is reduced even if

the latency is increased. In this case, an effective strategy is to

increase the usage of link bandwidth by increasing the length

of time slot used in the proposal protocol.

Fig. 3. Example of flexible time slot

D. Transfer packet type

SpaceWire-D can be transfered only if RMAP packet, the

proposal protocol, cannot be limited to the RMAP packet. If

we know the destination nodes and the size of any packet, it

can be applied to a packet other than RMAP.

E. Split RMAP Transaction

In SpaceWire-D schedule, the RMAP reply packet is to be

sent in the same time slot as the RMAP command packet.[3]

However, if the target node is implemented in software, a long

period of time is required before a RMAP reply packet is sent,

and network usage as a whole is reduced because the latency is

reduced. As part of the proposed protocol, it was suggested that

the node could transmit RMAP reply packet by using a time

slot that is different to the time slot received from the RMAP

command packet. This is called “Split RMAP Transaction.” If
using the Split RMAP Transaction, it is necessary to determine

in advance - in the initiator and target nodes - not only the

RMAP command packet but also the time slot number of the

RMAP reply packet.

TABLE I. EXAMPLE OF SCHEDULE INFORMATION

Time

slot

number

Packet

type

Target

node

list

Slot

number

of RMAP

command

Total

packet

size

Total

RMAP

reply

size

0 RMAP

command

("write"

command

without

verify)

11, 12,

13, 14

0 1024 20

Others 15 2000

6 Others 10 6 －

8 RMAP

command

("read"

command)

11, 12,

13, 14

9 40 1024

10 Others 17 2000

12 RAMP

Reply

10 11 －

… … … … … …

III. COMPONENTS OF THE SOFTWARE PLATFORM

In order to ensure the real-time properties guarantee of

SpaceWire, it is necessary to not only provide the proposed

protocol, but to also provide a solution that make it easy to use

the proposal protocol. We consider it necessary to include the

following as a component of the software platform where the

SpaceWire real-time properties guarantee can be ensured.

1) SpaceWire schedule information decision tools
Used to determine the scheduling table for the appropriate

time slot assigned to SpaceWire network consisting of multiple

nodes.

2) SpaceWire middleware
Implementes the proposed protocols based on SpaceWire-D,

and performs communication control based on the schedule

information assigned by SpaceWire schedule information

decision tools.

3) Embedded system Real-Time OS
A real-time kernel with high response performance that can

run SpaceWire middleware and communications applications,

the processing mission of software. We have developed a real-

time OS - the TOPPERS/HRP2 kernel - in this study.

▶ n=0，m=6

▶ n=2，m=4

▶ n=2，m=6

time- code

time-slot

0

0 1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

63

63 0time- code

time-slot

0

0 1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

63

63 0

63

63 0

0

0

1 2 3 4

4

5 6 7 8

15

63 0time- code

time-slot

0

0

1 2 3 4

4

5 6 7 8

15

63 0time- code

time-slot

4 16 63

extended
time- code

62

3

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

15

62

0

63

0

0

1

1

1

2

1

3

1

4

1

63

3

time- code

time-slot
4 16 63

extended
time- code

62

3

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

15

62

0

63

0

0

1

1

1

2

1

3

1

4

1

63

3

time- code

time-slot

82

Fig. 4. System diagram of SpaceWire software platform

B. TOPPERS/HRP2 kernel

Detection of the time code is becoming a very important

step in managing the time slot because of the neccessity to send

SpaceWire packets according to the timing of predetermined

time slots. This is because the time at which to send a packet

that the user assigned to the time slot after the time code was

detected is directly linked to the performance of real-time OS.

We have subsequently developed the TOPPERS/HRP2

kernel (HRP2 kernel: High Reliable system Profile kernel

version 2), a real-time OS for embedded systems. Based on the

μITRON specification that has become the de facto standard,

the HRP2 kernel is a real-time OS the user adds a functions to

in order to apply to areas where high-level reliability is also

required to develop embedded software; for use in areas such
as the space and medical fields. Features of the HRP2 kernel

are as follows:

1) Source code is easy to read and change
The HRP2 kernel was produced in part to enable greater

readability of source code or modifications. However, we have

not adopted inefficient algorithms in order to pursue ease of

readability. It enables efficient implementation of the algorithm

even for complex structures, such as when using a heap.

2) Easy porting to another target CPU
As many parts of the HRP2 kernel have been written in C

language and there is a clear separation of the target-dependent

and non-dependent parts, this structure makes it easy to

facilitate the porting to other targets. While interrupt

processing is a very important in terms of improving run-time

performance, the difference between proccessors is large and

easily masks the differences between processors.

We define the "TOPPERS standard interrupt processing

model", and have adopted an interrupt process to absorb the

difference interrupt with other processors while at the same

time; maintaining balance between the run-time performances

in the HRP2 kernel. The real-time kernel, which is the base of

the HRP2 kernel has been porting for the main CPU used by

embedded system.

3) High performance and small footprint
The kernel, the majority of which was written in C

language, exhibits high execution performance and low

memory use. As a matter of policy and to reduce the amount of

memory used, in the HRP2 kernel, the kernel maintains the

resources statically in advance, a process called static

configuration. Embedded systems, which perform

predetermined processing, differ between general computers

and personal computers, and response performance is required
for processing. Therefore while the amount of resources used,

in applications (tasks, semaphores, etc.) can be determined for

each application, it is possible to maintain the resources of the

kernel in advance during the application development stage.

Advantages of static configuration are as follows:

a) High response time when using kernel resources

Dynamic configuration requires preparation in order to use

in run-time, in addition to resource preparation. It eliminates

the need for a preparatory process through adoption of a static

configuration.

b) Store configuration information into ROM region

Often, many application areas in embedded systems have

greater capacity in the built-in ROM than in the RAM.
Configuration information can be stored in the ROM by

performing a static configuration, and it is expected to have an

effect on reducing RAM consumption.

c) Memory protection function to perform static memory

allocation

In recent years, embedded systems have become

increasingly complex, and as such, high-level reliability is

required. General computers typically have a memory

protection function that prevents unauthorized access to the

memory in order to ensure the reliability of complicated
systems. Similarly, it may be necessary for embedded systems

have memory protection even in areas where high-level

reliability is required. The HRP2 kernel has a memory

protection feature that prevents access other than that permitted

to enable access to the memory area where a task is carried out.

The HRP2 kernel can statically allocate code and data section

areas that need to set the same access authority to a continuous

address, and can detect illegal memory access that is occurring

during execution of the embedded system. By using the HRP2

kernel, the application developer does not need to know the

specific memory address and size to set in MMU/MPU.

Application developers can determine attribute settings of

memory protection in unites of section and object file.

4) Additional features functions of the high-level reliability
The HRP2 kernel has the following additional function in

addition to the memory protection function in the kernel of

μITRON specification:

 Object Access feature

 Mutex function

 Overrun handler function

5) Easy to deploy open source license for embedded systems
The HRP2 kernel has been released as open source,

however, applying licenses such as GNU to embedded systems

after modification will be a higher hurdle. The HRP2 kernel

developers are applying for an open source license called

“TOPPERS license” to make it easier to introduce when using

in an embedded system. In particular, a license should notify

User
Application

User
Application

SpaceWire Middleware

RMAP Layer

SpaceWire-D+ Layer

Schedule
Information

TOPPRES/HRP2 Kernel

SpaceWire I/F Device

Schedule
Information
decision tool

83

the secretariat running a project that they are using the source

code. This is called "Report wear." [7]

In this way, the HRP2 kernel was developed in mind to be

utilized in highly reliable embedded systems. The previous

version of the HRP2 kernel has a proven track record, and

produce such as the TOPPERS/HRP kernel have been loaded

on board the H-IIB rocket, which is used for launching

satellites in Japan.

C. SpaceWire middleware

1) The role of SpaceWire middleware regarding real-time

property guarantee
SpaceWire middleware has two primary roles. First, to

forward the packet according to a predefined schedule.

Application programs should no longer have to process packet

transfer schedules. SpaceWire middleware also provides

support so as not to affect the entire network, even if there is a

problem in the application program. Second, when multiple

applications are running on SpaceWire middleware, it does not

use the time slots of other applications. Therefore, we decided

to introduce a communication path - called a channel - in order

to implement a SpaceWire middleware.

2) Channel
Channel is a logical communication from an application on

a source/initiator node to a destination/target node. One end of
the channel is called the communication end point. A channel

is referred to as a communication path connecting a

communication endpoint in source/initiator node and a

communication end point on multiple destination/target nodes.

Fig. 5. Example of channel in SpaceWire network

One application can open multiple channels because a

channel can be established for each communication purposes.

It can also include more than one route to the same

destination/target node.

The purpose of introducing the channel is to distinguish the

time slot each application is using SpaceWire middleware
when multiple applications are running in the node. Decision

tools, which will be described later in the schedule information,

are also used as a description unit of the communication

request.

The following three items are determined by the channel:

 Protocol type

 Source/Initiator node

 List of destination/target nodes

The reason why there is a list of destination nodes, is

because the logical topology of a star shape is considered from

multiple nodes, and the prospect of the application improves

since a channel is open for each application, and packet can be

collected from multiple nodes in one channel. Although the

method of time slot allocation becomes difficult due to the

existence of multiple destination nodes, it does not affect run-

time processing since the time slot allocation is completed at

the application development.

The contents added with the channel number information to

each entry of the schedule information are as follows.

TABLE II. EXAMPLE OF SCHEDULE INFORMATION (WITH CHANNEL ID)

Time

slot

number

Ch.

ID

Packet

type

Target

node

list

Slot

number

of RMAP

command

Total

packet

size

Total

RMAP

reply

size

0 1 RMAP

command

("write"

command

without

verify)

11, 12,

13, 14

0 1024 20

4 Others 15 2000

6 2 Others 10 6 －

8 1 RMAP

command

("read"

command)

11, 12,

13, 14

9 40 1024

10 5 Others 17 2000

12 3 RAMP

Reply

10 11 －

… … … … … … …

3) Main function

a) Summary of common function

The number of network operation modes and time slot for

each SpaceWire node port, which is a common feature that sets

the basic parameters related to the proposed protocol, is set. It

also has the ability to change the network operation mode.

Because the protocol agreement network operation mode

between nodes are not currently standardized, the network

operation mode for the middleware is obtained from the

application.

b) Summary of RMAP initiator function

RMAP initiator is a function that is primarily able to

generate (during system design) static end points.

Communication end points have a one-to-one correspondence

with the channel, and any command of RMAP

Write/Read/Read-Modify-Write can be issued for one

communication end point. In addition it has the ability to issue

the RMAP transaction for communication end points. This

function can send a RMAP Write/Read/Read-Modify-Write

command and receive the reply packet. This function describes

the following information for each entry in the schedule

information:

 SpaceWire port ID

 Network operation mode number

 Time slot number

 Channel ID

 Command type

 Total size of the packet

 Time slots number receiving RMAP reply

Source / Initiator node

Destination
/Target node

Channel

84

 Total size of RMAP reply packet

The issuance of RMAP transaction supports both the blocking

and non-blocking types. It also has a function that initializes

the communication endpoint and refers to the state of the

communication end points and transactions.

c) Summary of RMAP target function

This function can register how to handle each range of

RMAP addresses that are accessible from other nodes. Users

are usually able to choose whether to access the memory or

register the callback function of the application, and leave the

process to the application. The RMAP target processing

function according to the command type, and in the case of

memory access, returns a RMAP reply packet. Regarding

RMAP memory access, the RMAP target function carries out

processing according to the command type and returns a reply

packet. The RMAP reply packet returns the response in the

time slot determined according to the schedule information.

This information is described for each schedule information

entry RMAP target as it is in the RMAP initiator function.

D. Schedule Information decision tools

When SpaceWire middleware is used experimentally or the

network topology is simple, schedule information can be

created and used manually.

However, since the actual SpaceWire network has

redundant paths and the communication requirements of the

application become complex, it is difficult to execute

verification even when it is created manually. Therefore, a tool

that detects redundant paths from the network topology and

allocates time slots automatically from the communication

requirement of the application will be needed.

We have studied and developed algorithms to determine the

schedule information of allocating time slots of the

communication path and communication packets based on the

network topology and communication requirements. This paper

describes the network topology that inputs information into a
tool as well as communication requirements. The algorithm to

determine the schedule information has been omitted [6].

1) Network Topology

a) Subnet

A subnet is a unit used to divide networks that do not share

a SpaceWire link for each network operation mode, and is used

to configure the network topology according to the proposed

protocol. It is necessary to describe the communication request

for each subnet in the case when describing the different

communication requests on the same node, however we will

not cover in this paper. A subnet consists of each component of
nodes, routers and links, and parameters of the subnet. The

parameter requires the following information:

TABLE III. SUBNET PARAMETER

Parameter name Description

Network operation mode Since subnets are required for network
operation mode, they defines network
operation mode. The schedule
information decision tool performs the
calculation for each network operation
mode.

FDIR period FDIR is not set as a latency margin of
time slots when determining the
allocation of a time slot.
FDIR is not necessary in the case of
successful communication. However, it
is necessary for recovering the entire
subnet when a packet that does not
match SpaceWire-D comes into the

subnet. It is presumed that the value of
an FDIR period is given; it is not
calculated by the schedule information
decision tool. Described as a period of
time until error recovery FDIR from
error detection.

Time slot Time slot duration and the number of
time slots in one cycle, and the number

of time codes separating the time slot is
set as a parameter of the time slot.

b) Node

Node is a SpaceWire device with an endpoint port of the
channel and can be described in communication requirements

for the source/initiator node and destination/target node. Node

parameters are as follows:

TABLE IV. NODE PARAMETER

Parameter name Description

Maximum sending
delay time

Maximum delay time from when a packet
node recognizes the time slots to the time
when the packet assigned in the time slot

begins transmission. This parameter becomes
effective for a source/initiator node. Although
it is currently set as a parameter fixed in the
node, it is considered that it will provide
mode appropriate values when dividing the
parameter for each port.

Maximum
receiving delay

time

Maximum delay time from when the node
starts receiving a packet until when it starts

sending a reply packet. This parameter sets a
conservative value because it is fixed in the
node. It is presumed in future that a more
appropriate value will be expected by setting
the constitution of a port and receiver, a
command packet type and packet length, and
the memory access processing time of the
node.

Port

A port number, logical address and a key that
is unique to each node can be set in the port.
Because the channel ties between logical
addresses of the node, the logical address is
always given to the node.

85

c) Router

In the proposed protocol, the SpaceWire router is a device

used to wormhole route packet. Since a packet flowing in the

time slot with the subnet does not prevent wormhole routing,

propagation delay time can be set as a parameter in the router.

d) Link

A link is a line segment to link between nodes and routes,

and ports of the node and router. Link ID as a parameter of the

link, link speed, link propagation delay time and endpoint

information of the node and router can be set as a parameter.

 The network topology can be described in XML from the

information.

Fig. 6. Example of network topology description

2) Communication requirements definition
The purpose of the communication requirements definition

is to describe the requirements for a communication packet

from the application developer's perspective. Communication

requirements can be seen as a list of the information in relation

to the channel in network operation mode in a subnet. The

elements consisting of the channel and its parameter are

described in this paper.

a) Source node

This is source/initiator node and only once source node

exists in the channel.

b) Destination nodes

These are the destination/target nodes, and one or more

destination nodes can be described in the channel.

c) Packet information

This describes the information packet used in the channel.

The following information is required when determining the

schedule information.

TABLE V. PACKET INFORMATION PARAMETER

Parameter

name

Description

Type Packet type

CargoSize Cargo maximum size used by the channel

Period Number allocated in 1 cycle time slot by this channel.

Cf. If the cycle in the network topology is 64 and the

period is set as 64, it means this channel is required to

be used for each time slots.

Reply When there is a reply to RMAP command, this

information is described because the calculation for

the processing time of the reply packet is required.

Verify This information is described because the

calculation for the delay of the maximum
receiving delay time is required when the target
node is used to verify processing.

Reply

Interval

This can be specified when responding to a reply

packet with a time slot other than the time slot

receiving the reply packet. It is effective whten the

target node is implemented with software or a node

that has slow processing time. It is also a parameter

used to implement a Split RMAP transaction of the

proposal protocol.

Jitter Jitter can be used when time slot allocation with

optional communication can be implemented by

shifting the allocated time slots only at the time slot

allocating a channel according to the communication

cycle interval. It is only valid in the case of search

algorithms able to can handle jitter.

The communication requirements definition can describe as

following:

Fig. 7. Example of communication requirement description

IV. OPERATION TEST

In this study, implementation of a software platform was

executed. An operation test using actual equipment was

executed to determine whether applications created on top of

the software platform work correctly in the examined proposed

protocol. The following results were reported:

A. Test contents

SpaceWire network topology and communication

requirements are described in XML format, the schedule

<SpaceWireChannelsInfo>

<Channel Id="TEST1">

<Source Id="SpaceCardA-memory" />

<Destination Id="SpaceCardB-memory" Redundancy="1">

<Path Id="SpaceCardA-memory-to-SpaceCardB-memory">

<Link Id="SpaceCardA-memory-0-to-SpaceCardA-SOISOC-5" />

<Link Id="SpaceCardA-SOISOC-3-to-SpaceCardA-FPGA-1" />

<Link Id="SpaceCardB-SOISOC-5-to-SpaceCardB-memory-0" />

</Path>

</Destination>

<Packet Id="TEST1_RMAP-R" Type="RMAP-R" Reply="True"

 Cargosize="1000" Period="2" ReplyInterval="0" Jitter="0"

Requirement="Constraint" />

<Packet Id="TEST1_RMAP-W" Type="RMAP-W" Reply="True"

Cargosize="1000" Period="2" ReplyInterval="0" Jitter="0"

Requirement="Constraint" />

</Channel>

</SpaceWireChannelsInfo>

<?xml version="1.0" encoding="UTF-8"?>

<SpaceWireNetworkTopology>

<Subnet>

<FDIR IntervalTime="5" />

<Timeslot Number="64" SlotTime="15625" TimecodeInTimeSlot="1" />

<Router Id="SpaceCardA-SOISOC" NetworkPropagationDelay="2">

<Port Number="1" />

<Port Number="2" />

</ Router>

<Node Id="SpaceCardA-memory" MaxSendDelayTime="5"

 MaxReceiveDelayTime="15" NetworkPropagationDelay="2">

<Port Number="0" LogicalAddress="0x50" Key="0x50" />

</Node>

<Link Id="SpaceCardA-SOISOC-1-to-SpW-GbW-1" Speed="10"

 NetworkPropagationDelay="0">

 <Endpoint1 Id="SpaceCardA-SOISOC" Port="1" />

 <Endpoint2 Id="SpW-GbE" Port="1" />

</Link>

86

information decision tool analyzes paths, and the allocation of

time slot is implemented.

 Prepare the test scenarios for SpaceWire Traffic

Generator to generate pseudo traffic by the allocated

time slot.

 Embed the results of the time slot allocation of

source/initiator node into the configured application.

 Implement communication between initiator/target

nodes, connect the equipment, and send packets and

time code from Traffic Generator.

 Analyze the RMAP packet information between

initiator/target nodes using SpaceWire Link Analyzer.

B. Test results

It was confirmed that initiator/target nodes send and receive
RMAP command reply packets with using the assigned time

slot.

We confirmed that the packets cannot be transmitted in the
time slot assigned by the initiator/target node when packets in

the schedule information not assumed by the Traffic Generator

are transferred, SpaceWire middleware detects associated

errors and alerts the application software.

Fig. 8. Test environment of software platform

V. CONCLUSION

SpaceWire software platform, which is the proposal

protocol, has been put together as a guideline based on

SpaceWire-D. Furthermore, a software platform that satisfies

the proposal protocol has been developed, operation tests have

been executed, and communication that guarantees the real-

time properties of SpaceWire has been confirmed.

In future, we expect to examine the scheduling algorithm

used in the schedule information decision tool, and porting

SpaceWire middleware to other target boards and OS. Because

input information about the schedule information decision tool

is in text base format, it is expected to be effective in

confirming the network topology that becomes complex when

it is possible to present descriptions and displays in a graphical

environment.

VI. REFERNCES

[1] ECSS, “SpaceWire – Links, nodes, routers and

networks” ECSS-E-ST-50-12C, 31 July 2008, available from

http://www.ecss.nl.

[2] ECSS, “SpaceWire – Remote memory access protocol”,

ECSS-E-ST-50-52C, 5 Februrary 2010, availabe from

http://www.ecss.nl.

[3] SpaceWire WG, “SpaceWire-D Deterministic Control

and Data Delivery Over SpaceWire Networks”, Draft B, April

2010, availabe from http://spacewire.esa.int/WG/SpaceWire/

[4] NCES, “SpaceWire Reai-Time Property Guarantee

Methods Guidline”, NCES-SPWRT-1-100, 2 July 2012

[5] S. Parkes, A Ferrer, S. Mills, A. Mason, “SpaceWire-

D:Deterministic Data Delivery with SpaceWire”, International

SpaceWire Conference, St Pertersburg, Russia, June 2010.

[6] Y. Chen, M. Takada, R. Kurachi, H. Takada, “A

Scheduling Method of RMAP Transaction for SpaceWire-D”,
International SpaceWire Conferenece, Gothenburg, Sweden,

June 2013

[7] TOPPRES Project, http://www.toppers.jp/en/index.html

87

Advanced SpaceWire core with external clock

recovery PHY and programmable protocol processing
Onboard Equipment & Software, Short Paper

Björn Osterloh, Andre Schäfer

Digital Signal processing & Information technology GmbH

DSI

Bremen, Germany

osterloh@dsi-it.de

Harald Michalik

Institute of Computer and Network Engineering

IDA, Technical University Braunschweig

Braunschweig, Germany

Abstract—Challenges for SpaceWire implementation within

Microsemi RTAX FPGAs are especially the clock recovery of a

SpaceWire link. With the UT200spWPHY from Aeroflex a space

suitable device is provided for external clock recovery. For the

Payload Data Handling Unit (PDHU) on the ESA ExoMars

mission we have developed a SpaceWire core with interface to

the SpaceWire PHY. The core shows significant improvements in

terms of resource utilization, complexity, implementation effort

and performance. Additionally, we have encountered the need

for SpaceWire cores with enhanced protocol processing.

SpaceWire supports the implementation of variety protocols,

which provides a high flexibility. Dependent on the mission,

protocols change and therefore adaption to mission specific

requirements is needed. This has led us to develop an advanced

SpaceWire core with integrated programmable protocol

processing. As most programmable machines, they have a high

risk to be non-deterministic because usually they represent

processors with infinite states. In these systems it is hard to

achieve the complete verification and validation coverage.

Therefore, we have chosen a programmable stack machine

approach, which is deterministic and provides easy validation.

Index Terms—SpaceWire core, Aeroflex UT200spPHY,

programmable protocol processing

I. SPACEWIRE CORE WITH EXTERNAL CLOCK RECOVERY

Currently, we are developing for the ESA ExoMars mission

the Payload Data Handling Unit (PDHU). The main objective

of the PDHU is payload data management with PUS13

support. Data storage is performed in a 1TBit Flash based mass

memory. The PDHU comprises 4 SpaceWire links to the

instruments, operating at 167 Mbps raw data rate with a net

data rate to the PDHU of 100 Mbps. The target device

architecture for the SpaceWire cores is a Microsemi RTAX

FPGA. Within these devices the most challenging part of a

SpaceWire implementation is the clock recovery.

SpaceWire uses Data-Strobe (DS) encoding and the clock

can be recovered by simply XORing the Data and Strobe

signal. An example for an RTAX clock recovery

implementation circuit is depicted in Figure I-1.

DFD

XOR
CLK
BUF

DF

DF
S

DF

Figure I-1: RTAX DS Clock Recovery

The clock recovery requires a clock path with a delay larger

than the data path to prevent Flip Flop setup time violation. On

the other hand, the delay difference must not get near to the bit

period because otherwise a hold time violation would occur.

Implementing the clock recovery in an FPGA is difficult

because the tools usually do not perform well to handle a clock

path with an XOR in it because both D and S have to be treated

as clocks. Careful manual timing analysis is required and for

high data rates even manual placing of critical FPGA

primitives. Furthermore, these timing requirements have to be

guaranteed over the full temperature and voltage range, and

even have to consider device degradation and radiation effects

e.g. total dose.

 The UT200SpWPHY implements this critical circuit and

provides a simple single data rate, two bit with clock interface

to the FPGA, as depicted in Figure I-2.

PHY FPGA

RxClk

RxDR

RxDF

Figure I-2: PHY RX interface to FPGA

The RxDR signal represents the on the rising edge (even)

received bit. And the RxDF signal represents the on the falling

edge (odd) received bit. This scheme has several advantages

for a SpW RTAX implementation with:

88

I. Synchronous Clock to Data relation results in a

simpler SpW Receiver implementation

II. No time consuming manual timing checks which

results in a robust FPGA design.

III. Supports data rates beyond an FPGA only approach.

We have developed a SpW Core with interface to the

UT200SpWPHY. The layout results are depicted in Table I-1

and Table I-2:

Resource Used Total (%)

Sequential 297 2,76

Combinational 485 2,26

RAMs 1 1,5

Table I-1: SpW RTAX 2000S resource utilization

Clock Source Frequency (MHz)

RxClk (from PHY) 145

Clk (Core Clk) 102

Table I-2: SpW RTAX performance

The RxClk of 145 MHz provides a raw link data rate from

the transmitting end of 290 Mbps, due to the two bit transfer.

However, the limiting factor is the transmitter Clk which is

equal to the maximum SpW Core frequency of 100 MHz.

Consequently, a maximum transmitter raw data rate of 100

Mbps can be achieved. This provides a maximum full-duplex

data rate (data and FCTs only) of 70 Mbps for the transmitter

and 228 Mbps for the receiver (net). It has to be considered that

the maximum data rate of the SpW PHY is limited to 200Mbps

(raw). For ExoMars only a unidirectional data transfer from

instrument to PDHU has to be supported. In this case the

PDHU SpW transmitter provides only the flow-control

characters to instrument. Receiver and transmitter are allowed

to operate at different signalling rates. The transmitter can run

by a factor up to 20 slower than receiver in a unidirectional

setup without wasting bandwidth. This is because only one

FCT (Flow Control Token) from transmitter has to be sent

every 8 Data Character. For ExoMars the Core Clk frequency

is 40 Mhz and an overall unidirectional data rate of up to 320

Mbps can be supported. Considering a full-duplex operation,

the ExoMars setup achieves data rates of: 26Mbps transmitter

and 127 Mbps receiver (net).

The Aeroflex UT200SpWPHY provides significant

improvements for a SpW RTAX implementation in terms of

performance, resource utilization and implementation effort.

II. SPW CORE WITH PROGRAMMABLE PROTOCOL PROCESSING

SpaceWire supports a variety of protocols. Instruments

with SpaceWire and CCSDS compliant protocols are capable

to transfer within the packet structure Housekeeping (HK) data

and e.g. image data. These packets must be checked for

accuracy and furthermore the data has to be demultiplexed

into: HK data for e.g. status of the instrument and e.g. image

data. Furthermore, the SpW Remote Memory Access Protocol

(RMAP) provides means to access memory or registers directly

of a SpW node [3]. Since the protocol and data content changes

from mission to mission, a dedicated decoder or protocol

handler has to be implemented for each mission specific

requirement. An improvement is to implement programmable

protocol processing for this task. The disadvantage is that

programmable processing is mostly related to CPUs. CPUs are

highly flexible but have also a high risk to be unpredictable. A

CPU with heap, stack, interrupts and cache maybe represented

as a state machine with infinitive states. Furthermore, the

translation of source code into CPU instructions (compiler)

with optimization stages implies also high risk for non-

determinism. This approach requires high validation effort for

both: CPU (hardware) and software. CPUs have furthermore

high resource utilization requirements. Therefore, we have

evaluated different architectures to find an appropriate

candidate which provides:

I. Low resource utilization, low complexity.

II. High data throughput.

III. Determinism and robustness.

IV. Easy to program

V. Linear deterministic program flow.

VI. Small resource requirements for programs.

Within this context we were looking for a simple stack

machine with Forth support. The Forth language has several

advantages like its simple compiler and is especially very

compact in terms of code size. We found the J1 Forth CPU

developed by James Bowman [4]. The J1 has been developed

to process video streams in Xilinx Spartan-3E FPGAs and is

implemented with less than 200 lines of Verilog. The internal

states of the CPU consist of: (i) a 33 deep data stack of 16 bit

width (ii) a 32 deep return stack of 16 bit width and (iii) 13 bit

program counter. No other states exist in the J1; neither

condition flags, modes or extra registers. This low complexity

leads to a low state set and is therefore ideal for a robust

deterministic design. The J1 is subdivided into five categories

of instructions with (i) literal, (ii) jump, (iii) call and (iv) ALU

which are implemented in an unencoded hardwired layout. The

ALU supports overall 16 operation codes which comprise e.g.

add, and, or, shift and stack operations. Instruction fetch and

decode is performed in parallel due to the non-dependency of

ALU codes and instruction codes. Programming the J1 is very

simple. A set of Basewords is available which are written in

Assembler. These Basewords are direct ALU operations with

e.g. add and stack pointer manipulation and represent the

supported Forth words. All additional user defined functions

are implemented in a Dictionary which comprises e.g. loop or

if comparison statements which are build-up from the available

Baseword set. The compiler has therefore a low complexity

and only maps the hardwired ALU operations from the

Baseword set into any user defined program sequence and

calculates the offsets for jump conditions. This simplicity of

the compiler also carries out a linear and deterministic program

flow.

89

The J1 has been developed for Xilinx and dual-port RAM.

Xilinx RAM provides the capability to initialize its content

within the FPGA configuration stream. This is used in the J1

for loading the program code. Forth stores variables usually

within the program code, there are no separate memory section

for program and data. RAM is a costly resource in an RTAX

device due to the low availability. Additional, a RTAX device

does not provide the initialization of RAM with a predefined

configuration.

We have therefore modified the J1 to a RTAX suitable design:

A minor task was the translation from Verilog to VHDL which

is more commonly used in Europe. The memory areas for

program code and variables have been separated. As

replacement for local variables the return stack can be used or,

if necessary, an additional RAM can be added. The compiler

has been modified to store the variables consecutive in the

RAM area. The program code is represented by a ROM which

is implemented as combinational logic. This can be become

costly in terms of resource utilization and depends highly on

the program code size. But this has also the advantage for

secure sensitive applications, because the program code itself

cannot be read-out and is hardwired in the RTAX anti-fuse

device. To support an external ROM we have modified the J1

to support hand-shaking mechanism. This provides the ability

to connect to common bus interfaces e.g. AMBA or Wishbone,

and external memory devices e.g. ROM or EEPROM.

We have implemented the modified J1 into a Microsemi

ProASIC3E in a basic hardware setup with a Wishbone bus

and a UART interface to test its functionality. First results

showed the correct behaviour of the core and also 100 % code

coverage during simulation could be easily achieved. In the

ProASIC3E the system runs at 40 MHz. The core has been

synthesized for an RTAX2000S and the results are depicted in

Table II-1.

Resource Used Total (%)

Sequential 290 1

Combinational 116 1

RAMs (optinonal) 1 1,5

Table II-1. J1 RTAX implementation (without ROM)

The depicted resource utilizations are without any

combinational ROM implementation. The core itself achieves

then an operating frequency of 100 MHz. As mentioned before,

the operating frequency depends highly on the program code

size if it is implemented as combinational ROM. Therefore, we

are working on a cascaded ROM implementation to improve

the overall performance.

The next step will be to add a SpaceWire core to the J1 and

implement a protocol handler e.g. RMAP for a common space

application. RMAP is especially suitable for an implementation

because of its relatively low-level complexity. The J1 could be

connected to the SpaceWire input/output ports and perform all

necessary processing with packet data integrity checks for the

verified option, acknowledge codes and error codes processing

and the actual data transfer to destination. The J1 architecture

provides means to extend the available ALU operation code

set. This could be used to implement CRC calculation directly

within the CPU. Overall we think the J1 RTAX

implementation provides an efficient and robust solution to

implement SpaceWire protocol and data handling within an

space suitable device.

III. CONCLUSION

The Aeroflex UT200SpWPHY provides significant

improvements for a SpW RTAX implementation in terms of

performance, resource utilization and especially

implementation effort. SpW cores with integrated protocol

processing based on stack machines provide high flexibility,

fast adaption to mission specific protocols and non-complex

validation. Within this scope we have presented a Forth

programmable stack machine based on a modified J1 which

can be implemented into a Microsemi RTAX device. The stack

machine has low complexity, low resource utilization

requirements and is easy to program. Especially the low

complexity provides deterministic design which has several

advantages for the verification and validation. The stack

machine provides an efficient and robust solution to implement

SpaceWire protocol and data handling within a space suitable

design. The verification of the stack machine has been

completed and we plan now to connect it to a SpW core and

implement a protocol handler e.g. RMAP.

IV. REFERENCES

[1] ECSS, Space Engineering: SpaceWire–Links, nodes, routers, and

networks, ESA-ESTEC, Noordwijk Netherlands, January 2003,

ECSS-E-50-12A

[2] Aeroflex, UT200SpWPHY01 SpaceWire Physical Layer
Transceiver, Aeroflex Datasheet, February 2008.

[3] ECSS, Space Engineering: SpaceWire–Remote memory access

protocol, ESA-ESTEC, Noordwijk Netherlands, February 2005,

ECSS-E-50-52C

[4] James Bowman, J1: a small Forth CPU Core for FPGAs,
EuroForth 2010, p.43-46, Hamburg September 2010

90

Wednesday 12 June

91

Components 1 (Long & Short)

92

18x SpaceWire Router based on the

DARE 180nm Library
SpaceWire Components

Long Paper

Sandi Habinc, Jonas Ekergarn, Martin Simlastik,

Fredrik Ringhage

Aeroflex Gaisler AB

Gothenburg, Sweden

info@gaisler.com

Steven Redant, Kurt Stinkens, Geert Thys, Jagadeesa

Das Arul Mahesh

Imec

Leuven, Belgium

Martin Suess

European Space Agency

Noordwijk, The Netherlands

Abstract— The 18x SpaceWire router is a new 18 port stand-

alone router component currently being specified by Aeroflex

Gaisler. Today there is no component available on the world

market exhibiting more than eight SpaceWire ports. The goal

with this new development is to provide this missing key

component to the ever increasing number of customers requiring

manifold ports.

The 18x router is based on the GRSPWROUTER configurable

SpaceWire IP core developed by Aeroflex Gaisler. The IP core

has been configured to provide 16 SpaceWire ports with on-chip

LVDS transceivers and two SpaceWire ports with LVTTL

signals supporting off-chip LVDS devices.

The device includes support for the incoming SpaceWire

standard revision 1 (ECSS-E-ST-50-12C Rev. 1), the SpaceWire-

D protocol and the SpaceWire Plug-and-Play protocol currently

being developed for ECSS.

Index Terms—SpaceWire, Networking, Spacecraft Electronics

I. INTRODUCTION

Currently there is no SpaceWire router component on the

market with more than 8 SpaceWire ports. Both ESA and

several companies in the space industry have indicated 16 as

the most viable number of SpaceWire ports for routers in the

near future. Aeroflex Gaisler intends to provide this key

component with a new 18 port SpaceWire router ASIC. The

design is be based on the GRSPWROUTER configurable

SpaceWire router IP core [1]. This core supports three different

port types: SpaceWire ports, AMBA ports and FIFO ports.

These will be further explained later in the IP core section.

During the development phase, two configurations of the IP

core were identified as potential candidates for the final ASIC:

one with 16 SpaceWire ports with on-chip LVDS transceivers

and two additional SpaceWire ports or two FIFO ports; and the

other with 16 SpaceWire ports and two internal AMBA ports

connected to a PCI interface. Both were evaluated in detail to

determine which one would eventually be used for

manufacturing. The final choice was driven by the number of

available pins in the package that was selected, a 256 pin

ceramic quad flat package.

Other considerations that were taken into account were

such as whether to include support for the incoming revision 1

of the SpaceWire standard (ECSS-E-ST-50-12C Rev. 1), the

new SpaceWire-D and Plug-and-Play protocols. The problem

has been the lack of a firm schedule for finalization of these

standards. In fact, none of the standards have been completed

at the time of tape out.

However, Aeroflex Gaisler is actively involved in the

revision 1 work and has also been reviewing and discussing the

two other protocols with the developers. In this way the risk

implementing something that will later on changes in the

protocols have been mitigated.

II. ROUTER IP CORE PROPERTIES

The GRSPWROUTER IP core is the central component in

both of the suggested configurations. It supports from 2 to 31

ports of three different types: SpaceWire, AMBA and FIFO.

The SpaceWire ports are normal SpaceWire links and will

support at least 200 Mbit/s. FIFO ports provide 9-bit parallel

interfaces with control signals in each direction (read/write)

which can be used to interface external units or to cascade two

or more 18x routers without any glue logic. The AMBA ports

interface to an AMBA AHB bus using DMA on the bus. All

three port types connect to the core router switch matrix using

identical FIFO based interfaces. There is no way to distinguish

the three ports on the SpaceWire packet level and upwards.

The configurability provided by the IP core makes it usable

in many different applications. It has already been used in

several standard rad-hard components on Actel RTAX2000SL

and RT ProASIC3 FPGAs and is also used in the Next

Generation MicroProcessor (NGMP) system-on-chip activity

funded by the European Space Agency.

93

mailto:info@gaisler.com

Fig. 1. GRSPWROUTER IP core overview

All mandatory features currently in the ECSS SpaceWire

standard are supported by the core as well as some additional

key functions not being available in other implementations e.g.

packet distribution.

III. OVERALL FUNCTIONALITY

This section lists the key features that were common to the

two potential configurations of the router presented earlier. The

list consists of features available in the router IP core as well as

external auxiliary interfaces.

The base consists of the 16 SpaceWire ports with on-chip

LVDS transceivers. Each router port, regardless of type, is

equipped with a timer which can be enabled/disabled. It is used

to prevent deadlocks resulting from stalling source or

destination nodes which could lock a port indefinitely. This

feature might be introduced in the upcoming revision 1 of the

SpaceWire standard but is already available in this design.

All addressing modes mentioned in the standard are fully

supported. Physical and logical addresses can be individually

enabled to use group adaptive routing or packet distribution to

any number of physical ports available in the router. The

addressing is setup using a routing and port setup table.

The addressing tables and port FIFOs in the router consist

of a considerable amount of memory which can experience

SEUs and the contents can thus be corrupted. All memory is

protected by hardened flip-flops, simplifying the design.

All configuration and status access are handled through

configuration port 0 which is accessed using the RMAP

protocol from any of the other ports. The allowed ports for

configuration accesses can be restricted if needed using several

configuration options.

For diagnostic and test purposes UART and JTAG

interfaces are provided. These low pin count interfaces are

suitable in the small package that will be used (see below) but

at the same time have sufficient bandwidth for the amount of

status and configuration in the router internals. As this method

is available most of the router configuration options have been

set to known good values after the reset which can then be

changed using these interfaces.

IV. FINAL CONFIGURATION

The final configuration that has been selected for the ASIC

consist of the base mentioned in the previous section with 16

SpaceWire ports with on-chip LVDS transceivers and in

addition two SpaceWire ports with support for external LVDS

transceivers.. The only difference between the two different

SpaceWire port types is the I/O type of the pads.

94

The major design choice for this configuration was whether

to include two FIFO ports or two SpaceWire ports. The

selection of the two additional SpaceWire ports was motivated

by the pin count of the selected package, as well as the fact

more and more processor devices have built-in SpaceWire

ports (of the with LVTTL signaling) and therefore parallel

FIFO ports would not be readily used without the need for an

FPGA device between the router and the processor. It is also

not that difficult to include SpaceWire link in FPGAs,

considering the large variety of SpaceWire IP cores available

(see discussion further down).

 The target package for the router is a simple to handle low-

pin ceramic quad flat package which is quite limiting and does

require reducing the amount of configuration pins even more

than previously mentioned to fit two FIFO ports. Choosing two

additional SpaceWire ports instead saves up to 36 pins without

reducing flexibility of the ASIC.

One of the applications of the FIFO ports is to cascade one

or more routers without any glue logic. For this purpose the

SpaceWire ports will work equally well and would in fact

simplify matters. In most cases cascading would be done on a

printed circuit board and it is well understood how to route

SpaceWire signals on such a board. The FIFO interfaces are

most useful when connecting directly to external processors

and memories. To use a SpaceWire link instead would require

the insertion of glue-logic providing a complete SpaceWire

codec which would typically be done using a FPGA which

increases design complexity considerably. It is however

anticipated that the need to interface to external processors

using parallel interfaces will be less required in the future since

most processors will be equipped with SpaceWire interfaces.

V. SPACEWIRE STANDARD REVISION 1 SUPPORT

An upcoming revision 1 of the SpaceWire standard is

planned for the near future which contains some changes

affecting the router ASIC development. Some additions result

in old devices potentially not being forward compatible. It has

to be carefully considered if and how these new features are

implemented. The final details of the updates have not been

decided yet and there is no date set for when this will be ready

so there is a considerable risk in implementing these new

features before the standard is finalized.

Fig. 2. 18x SpaceWire router ASIC overview

95

Three changes have been identified as having technical

impact. The first one is the addition of timers in routers. This

will probably be optional in the standard and not restricting the

implementation details to any larger extent. The

GRSPWROUTER IP core already contains a timer feature as

previously mentioned which makes it probable that no changes

will be needed to the core.

The second change is a modification of the link interface

FSM. Two requirements have been identified that potentially

can cause the codec to make unwanted transitions. These are

unlikely corner cases and very few if any problems have been

seen in practice. This will probably not affect backward

compatibility with old codecs and so the risk is estimated to be

very low to include these fixes in the router. Tests will be made

during validation on FPGA that no disturbances occur with

older devices.

The final and most complicated change is the addition of an

interrupt code. It uses one of the reserved control bit

combinations of time-codes and it must therefore be made sure

that it cannot interfere with the normal time-code facilities.

Existing devices might not be forward compatible with

revision 1 compliant devices due to the interrupt code. Some

issues with these new codes are still under discussion, but the

basic specification has been included in the standard. This is

indentified as the part of revision 1 causing the highest

implementation risk if included in the router ASIC. The desired

way to go is that the router is flexible enough to allow ports'

handling of the new code to be configured individually. In this

way the router can be used as a device enabling old and new

equipment to be used in the same SpaceWire network.

VI. SPACEWIRE-D SUPPORT

There is a new protocol emerging called SpaceWire-D

where D stands for deterministic. This is anticipated to be

widely used in the future to provide deterministic and low-

latency transfer of control and command information while still

preserving the high bandwidth of SpaceWire. It basically

consists of a time-slotting table replicated in each unit (node or

router) in the SpaceWire network. Therefore a router needs to

have support for SpaceWire-D if it is used in a network

utilizing that protocol.

The SpaceWire router ASIC implements the following

SpaceWire-D support..

Monitoring of received packet length has been

implemented, with the maximum packet length and enable

being programmable per port. In the case the length of a

received packet exceeds the aforementioned maximum length,

the packet will be truncated and an EEP will be inserted to the

destination port. The source port spills the incoming packet up

to and including the next EOP/EEP. The maximum length is

possible to configure up to the maximum length of an RMAP

packet thus 2
25

 bytes.

Monitoring of packet reception while receiving a Time-

Code has been implemented, enable being programmable per

port. In the case a packet is being received while a filtered

Time-Code is received as per above, the packet will be

truncated and an EEP shall be inserted (in the same way as for

packet length truncation). Note that also Distributed Interrupts

can be used for truncating packets, being programmable in the

router.

VII. SPACEWIRE PLUG-AND-PLAY SUPPORT

The SpaceWire router ASIC implements basic support for

SpaceWire Plug-and-Play, which covers device identification

and support for network discovery. The function can be

disabled by means of a configuration pin.

VIII. SPACEWIRE IN-SYSTEM TEST

A built-in self-test is provided for the verification of the

SpaceWire router and codec functionality. The SpaceWire In-

System Test (SIST) protocol provides a means for verifying

larger part of the designs' functionality without the need to

generate high speed test patterns and observe results at high

frequencies.

The internal SIST module is connected to the router via a

dedicated FIFO port. The FIFO port is one of the standard

ports of the GRSPWROUTER IP. The other side of the SIST

module is connected to the AMBA APB bus, which is only

accessible through the JTAG and UART (debug-) interfaces.

Thus is it is not possible to configure the SIST module via a

SpaceWire link.

The SIST module can generate and send SpaceWire

packets via the FIFO port. It can also receive SpaceWire

packets via the FIFO port and check there contents. The

packets are generated deterministically and can therefore also

be easily checked on reception.

The packet format is similar to the commands defined for

the RMAP protocol (ECSS-E-ST-50-52C):

 SpW Address (0 to 31 bytes)

 Logical Address (1 byte)

 Protocol ID (1 byte)

 Transaction Identifier (2 bytes) (i.e. seed)

 Data Length (3 bytes)

 Header CRC (1 byte as per ECSS-E-ST-50-52C, covering

header from Logical Address, inclusive)

 Data (0 to 16 MiB-1) (data is a pseudo-random generated

bit string based on the seed)

 Data CRC (1 byte as per ECSS-E-ST-50-52C, covering all

Data bytes)

 End-Of-Packet

Packets of up to 2
24

 bytes can be generated and checked.

Sequences of up to 2
16

 packets can be generated, or auto repeat

can be enabled. The data is generated by means of a 16-bit

wide LFSR, with a programmable polynomial. The stated of

the LFSR (a.k.a. seed) at the beginning of the data in the packet

is transmitted as part of the packet header, allowing each

packet to be checked independently. The seed can also be used

to detect dropped packets. The length of the packet data field is

sent in the packet header. The only managed parameter is the

polynomial; everything else can be derived from the packet

header.

96

Packets are automatically generated in an initiator, the

contents of a packet is deterministic. Packets are automatically

checked in a target when received, providing statistics. The

initiator and target are normally the same end-point in a

SpaceWire network, but may be different.

It is possible to combine the SIST functionality with the

internal loop-back function, or with external cables looping

back the SpaceWire signals per port or between pair of ports.

The SIST module also allows direct data read and write to

the FIFO port, as well as sending and receiving signaling codes

(time-codes and distributed interrupts).

The packet follows the "SpaceWire protocol identification -

ECSS‐E‐ST‐50‐51C" format. The SpW Address bytes

can be used for path addressing or regional local addressing in

a SpaceWire network.

The SIST functionality is protected by means of a protected

general on/off register (protection done by expected fixed

pattern in data). It is not accessible through SpaceWire RMAP

or SpaceWire PnP accesses to configuration port 0. The SIST

module can also be clock-gated to save power (default at reset)

via JTAG and UART interfaces.

IX. POWER-SAVING

The SpaceWire router ASIC incorporate the following

power saving functions:

 Disabling of unused on-chip LVDS receivers/transmitter

 Disabling of unused off-chip LVDS receivers/transmitter

or repeater devices

The existing power-down functionality provided for the

LVDS I/O cells in the DARE+ library is being utilized.

Signals for disabling the off-chip LVDS devices are shared

with the external pins provided by a General Purpose I/O Port.

It is possible to control up to 18 external LVDS devices, with

one external pin per devices. The control of the external pins is

made directly from a ports enable bit in the SpaceWire router

configuration registers.

SpaceWire ports that are not in use (i.e. disabled) in the

router are also placed in low-power mode by gating the

incoming clocks.

X. TECHNOLOGY

The 18x SpaceWire router ASIC will be manufactured in

the 180nm UMC CMOS technology, based on the DARE+

(Design against Radiation Effects) library from IMEC (BE).

The technology is radiation hard, with at least 300 krad(Si)

TID tolerance, high SEL tolerance and SEU hardened flip-

flops.

XI. PROTOTYPING

Prototypes for evaluation of the router are already available

and are based on a Xilinx Virtex 4 FPGA with an

accompanying evaluation board compatible with RASTA. The

board provides the possibility to interface both through FIFO

ports and the PCI interface depending on the configuration

(although a final selection how has been made). All features

planned for the ASIC are included and run at full-speed.

Fig. 3. Prototyping board

XII. STATUS AND CONCLUSION

The new SpaceWire router ASIC design has at the time of

writing been submitted to ASIC layout.

The first ASIC prototypes are expected to go into

production in June 2013, with validated parts being available

for potential customers in early 2014.

REFERENCES

[1] European Cooperation for Space Standardization, “Space

Engineering; SpaceWire Links, nodes, routers and neworks,”

ECSS-E-ST-50-12C, July 2008.

[2] Redant, S.; Marec, R.; Baguena, L.; Liegeon, E.; Van Thielen,

B.; Beeckman, G.; Ribeiro, P.; Fernandez-Leon, A. and Glass,

B. Radiation test results on first silicon in the DARE library,

IEEE transactions on Nuclear Science, VOL. 52, NO. 5, October

2005

97

Atmel’s New Rad-Hard Sparc V8 Processor
Embedding State-of-the-Art SpaceWire

GANRY Nicolas
Aerospace Marketing ASSP and Processors

Atmel Aerospace
Nantes, France

nicolas.ganry@atmel.com

Abstract— The AT6981 is a new generation of processing
component designed for critical spaceflight applications, which
combines a high-performance SPARC® V8 radiation hard
processor, with enough on-chip memory for many aerospace
applications and state-of-the-art SpaceWire networking
technology from STAR-Dundee. The AT6981 is implemented in
Atmel 90nm rad-hard technology, enabling at least 200 MHz
operating speed for the processor with power consumption levels
around 1W*. The device is ITAR-free being manufactured in a
commercial foundry. This paper describes this new processor
prototypes of which will be available in late 2013.

I. INTRODUCTION

Building upon the company’s thirty years of innovation in
the aerospace market, Atmel will introduce the AT6981 in
2013 a new SPARC® V8 rad-hard processor integrating
advanced SpaceWire technology [1] and a SpaceWire router
with 8 external SpaceWire ports each supporting link speeds up
to 200 Mbit/s. The AT6981 has been developed in
collaboration with STAR-Dundee based on their SpaceWire
engine IP. The AT6981 runs at 200 MHz with a target for low
power consumption around 1W*. Atmel will present this new
standard space processor during the 2013 International
SpaceWire Conference at the same time as the presentation of
the STAR-Dundee SpaceWire engine [2].

II. ATMEL’S UNRIVALLED FLIGHT HERITAGE

Over the last 16 years, Atmel has steadily built a space
microprocessor strategy based on the SPARC architecture.
With worldwide sales of over 3000 flight models featuring the
Atmel TSC695F and already over 600 flight models with the
Atmel AT697F, Atmel’s SPARC processor roadmap has an
unrivalled flight heritage. The upcoming AT6981 rad-hard
SPARC V8 processor benefits from this solid experience.

III. AT6981 SHORT DESCRIPTION

The AT6981 is based on the rad-hard LEON2FT processor,
it integrates all commonly-used space peripherals including
1553, CAN, SPI, UART, DSU and Ethernet. The device
embeds a fully-compliant IEEE754 FPU without truncation as

well as an MMU native to the SPARC processor. The SoC
integration is done in 90nm rad-hard Atmel technology,
enabling at least 200 MHz operating speed for the processor
with power consumption level around 1W*. Atmel has
leveraged its significant rad-hard experience to develop
dedicated rad-hard libraries for fabrication in a 90nm
commercial foundry, thus securing a multi-source supply chain
and insuring an ITAR-free product design. Atmel continues to
offer best-in-class power-to-performance ratios that offer more
possibilities for space applications by reducing costs, sizes and
embedded power supply.

The AT6981 embeds three SpaceWire engines allowing the
concurrent transmission of three SpaceWire packets and at the
same time concurrent reception of three SpaceWire packets.
These state-of-the-art SpaceWire engines offload the
communication tasks from the processor. They each support
the SpaceWire Remote Memory Access Protocol (RMAP) [3]
as both an Initiator and Target device and support other
protocols with a selective DMA controller. SpaceWire Plug-
and-Play [4] and SpaceWire-D [5] protocols are supported and
full time-code support is included. The embedded SpaceWire
router has 12 ports: eight external SpaceWire ports, three ports
to the SpaceWire engines and a configuration port. LVDS
drivers are included on chip for the SpaceWire interfaces. The
AT6981 benefits from the close collaboration between STAR-
Dundee and Atmel on the design to achieve an embedded
system with high processing power and excellent interfacing
capabilities.

The AT6981 will be available in 256 MQFP and in 349
LGA ceramic packages.

All embedded IPs belong to Atmel’s proprietary portfolio
dedicated to aerospace applications that includes IP such as
SpaceWire and 1553. Just as the SpaceWire IP was developed
in partnership with STAR-Dundee, the 1553 IP was developed
with Maya Technologies and has been proven in-flight in space
applications.

98

IV. AT6981 KEY FEATURES

In addition to a powerful SPARC V8 processor core with a
high level of integration and performance, the AT6981 embeds
a 1-Mbyte hardened SRAM memory with EDAC for PCB area
savings and fast access at full CPU speed. It also features
SRAM and DDR1 interfaces as external memory. The overall
power consumption of the device with embedded memory is
targeted around 2W worst case.

In order to facilitate analog-to-digital operations and
provide an even higher level of integration, the AT6981
embeds a dedicated waveform generation (PWM) unit for
analog control/command, as well as several ADC/DAC
interfaces for analog acquisition/conversion. Those functions
are really useful for engine control management and for
measurements control. PWM unit is programmable and
ADC/DAC digital interface is done in the same way as the
AT7913 device. Having this digital part integrated in the SoC
reduces the need to use external an FPGA in order to connect
analog ADC or DAC.

The AT6981 is the newest device in the Atmel SPARC V8
portfolio. Compared to the AT697F and the AT7913 RTC, the
AT6981 offers more performance with an operating speed of
200MHz and a higher level of system-on-chip integration with
embedded memory, SpaceWire router, 1553 and Ethernet.

The AT6981 is a rad-hard by design processor that will be
space-qualified and will support:

 Total dose of 300Krads (Si) according to the MIL-STD883
method 1019

• SEU error rate better than 1 E-5 error/device/day
• No Single Event Latch up below a LET threshold of 70

MeV.cm²/mg

V. AT6981 ARCHITECTURE

The architecture of the AT6981 device is illustrated in
Figure 1.

Figure 1 AT6981 Architecture

The AT6981 comprises a SPARC® V8 processor, several
banks of memory, comprehensive SpaceWire network
capability and various other interfaces. More details on the
main AT6981 features are provided in the following
subsections:

A. Processor
AT6981 CPU core is a Sparc V8 running at 200 MHz, it

uses the LEON2FT core from ESA. This core is already
embedded in several space missions with the AT697F from
ATMEL. Native MMU of the SparcV8 architecture is activated
and a powerful FPU is added which gives to AT6981 the best
processing performances on the market today. This one CPU
core device allows an easy and safe migration of the software
from AT697F without compromise performances. AT6981
benefits from all development tools available for LEON core as
it offers a standard DSU interface for trace and debug.

B. Hmatrix
The AT6981 bus architecture is unique on space market.

This device takes benefit from Atmel strong IP portfolio and
powerful architecture coming for the commercial
microcontroller business where Atmel is one of the leaders
today.

The AT6981 System on Chip is built around a HMatrix bus
which is multi AHB compliant and brings some AHB
arbitration mechanisms to support multi threading. By this well
proven Atmel technology, conflicts management for concurrent
access is becoming much easier, even completely transparent
for the CPU core running software.

For example, you can manage in parallel all those activities
without loading the main CPU core:

• Run three Space Wire 200Mbit/s transfer
• Run two 1553 communication flow
• Run two high speed CAN transfer
• Run a MAC Ethernet 100Mbit/s connection
• Run a SPI or TWI session as well

Each peripheral is connected to its own protected memory

area and can take benefit from the 200MHz x 32bits AHB bus
bandwidth without disturbing CPU internal operations. During
full speed transfer session, processor is never interrupted and
has a fully deterministic behavior to manage control of all
operations.

This architecture, which provides up to 6.4 Gbit/s
bandwidth, is ready for targeted future evolution like
SpaceFibre, Gbit Ethernet and multi-core. It will enable a
smooth transition for coming product derivatives of this high
speed SPARC® V8 architecture.

C. SpaceWire
The AT6981 includes three SpaceWire engines each of

which has dedicated RMAP target and initiator hardware
which offloads RMAP packet generation and checking from
the processor. The RMAP target can be configured to allow a
remote unit to read and write memory locations inside the
processor memory space without interrupting the host
software. The RMAP initiator facilitates access to remote
memory spaces through RMAP protocol commands and
offloads the generation of multiple transactions and the reply
packet checking from the processor.

99

From Hmatrix, a multi-channel DMA packet transmission
and reception controller is available to the processor to send
and receive data through a SpaceWire router. The DMA
channels are optimized to support high throughput of
SpaceWire packets with minimal interruption of the processor.
Generation and checking of CRC-8 and CRC-16 checksums
are supported by the DMA channels.

Packets are routed to the SpaceWire network through a
SpaceWire router with eight external SpaceWire ports. This
allows the AT6891 to connect to many peripherals and also act
as a routing device. Protocol support is provided for the
SpaceWire-D deterministic data delivery protocol [5], the
SpaceWire plug and play protocol [4], multiple time-code
counters and distributed interrupt time-codes [6].

D. Low power consumption
AT6981 is a low power consumption device with dedicated

mechanism in order to adapt the power consumption to the
level of application complexity. Those mechanisms are:

• GEN clock programmable block delivering clock for
each IPs and peripherals. Clock speed can be changed
and gated

• Dedicated reset per IPs in order to reinitialize them
locally after the clock coming ON.

E. Rad Hard by design
All internal memories have a dedicated scrubber with

internal EDAC in order to manage auto correction.
This scrubber is fully programmable on period of the

scrubbing cycle and the protected RAM array. It is an
additional value to the external EDAC capability provided with
the 1Mbytes of on chip available high speed SRAM to allow
customer own correction management.

All Memory blocks are designed in a way to never have
any adjacent bits for a same word. This technique simplifies
strongly the error management activities which allow using
only a simple EDAC for data single event protection. By this
way it’s not needed to implement an heavy TMR mechanisms
to protect register files which trigger some potential
performances limitation.

TMR mechanisms are implemented on all logic of the
design with also an SET filtering method.

Rad hard libraries on this proposed 90nm technology are
developed by Atmel in France based on all well proven
libraries from Atmel commercial products. AT6981 benefits
from the strong 30 years’ experience of Atmel France in rad
hardening techniques.

VI. DETAILED BLOCK DIAGRAM

A more detailed block diagram of the AT6981 is provided
in Figure 2.

The AHB H-Matrix is at the heart of the AT6981 device
connecting the processor, memory banks, SpaceWire engines
and other IO functions. Several internal RAM blocks are
provided to support concurrent memory accesses by the
processor and IO facilities.

The three SpaceWire engines, Ethernet, CAN and MILSTD
1553 interfaces are all connected as master devices to the H-
Matrix allowing them to read and write to the memory using
distributed DMA capability.

The lower speed peripheral devices including SPI, TWI,
UART, timers, watchdog timers, PMW, ADC interface, DAC
interface, parallel input/output and interrupts, are connected via
an APB bus and peripheral bridge to the H-Matrix.

Various forms of external memory (PROM, SRAM,
SDRAM and DDR) can be attached directly to the AT6981
devices, providing ready of expansion of the internal memory
when required.

Figure 2 Detailed Block Diagram of AT6981

100

VII. AT6981 SOFTWARE, TOOLS AND SERVICES

With the AT6981, Atmel will offer an ecosystem of
software and tools that will be used by Atmel for the full
chipset validation and qualification. This guarantees the best
starting point for development. A full package that includes a
hardware reference board with associated software drivers in
addition to a Software Development Environment (SDE) for
debug and trace will be proposed to customers. The SDE is
provided by STAR-Dundee and supports the well-known DSU
interface.

The set of embedded software drivers is the same that the
one which is provided with each Atmel component. It’s a
highly modular package which includes a hardware abstraction
layer to simplify hardware changes, limiting the impact on
software and reducing efforts for later upgrade.

Figure 3 AT6981 Delivery Package
By taking advantage of the hardware and software building

blocks available with the AT6981, our customer is able to
manage his own system design, improve targeted application
time-to-market and be compatible with many other services
that will be proposed by Atmel and partners.

VIII. AT6981 SCHEDULE

The AT6981 is in its final stages of development and first
samples will be available in Q4 2013. Flight models are
targeted to be fully space-qualified in 2014. QMLQ & QMLV
qualtity grades will be proposed for flight models. Early
development starting in Q3 2013 can be based on the
simulation model or on the FPGA set-up provided by Atmel.

IX. CONCLUSIONS

The AT6981 device is the first product of the partnership
between STAR-Dundee and Atmel, enabling integration of
state-of-the-art SpaceWire technology into Atmel products.

Providing integration of more peripherals and memory
blocks around the SPARC V8 processor core enables size,
weight and cost improvements for today’s space applications:
on-board computing, telemetry/telecommand, remote terminal
units, sensors, instruments and payloads. In addition its high
level of system integration, the AT6981 offers more powerful
processing with 200MHz and embedded fast memory to
complement the higher bandwidth capabilities of peripherals
with SpaceWire 200Mbit/s.

The AT6981 architecture based on Rad Hard 90nm is the
starting point for further evolution; evolution through higher
performance by replacing SpaceWire by a SpaceFibre IP, by
Gbit Ethernet and by adding an additional CPU and/or DSP
core, evolution through more flexibility by adding a
programmable area inside the SoC in order to allow better
customization for the targeted space applications; and
evolution through dedicated design by considering this
architecture and IP cores as a starting point for your own ASIC
design.

REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,
Nodes, Routers and Networks”, Issue 1, European Cooperation
for Space Data Standardization, July 2008.

[2] Chris McClements, Steve Parkes, Albert Ferrer and Alberto
Gonzalez Villafranca, “High performance SpaceWire
RMAP/DMA engine for the CASTOR microprocessor”, Paper
75, International SpaceWire Conference, Gothenburg, June
2013.

[3] ECSS, “SpaceWire - Remote memory access protocol”, ECSS-
E-ST-50-52C, Feb 2010.

[4] P. Mendham, S. Parkes, “SpaceWire Plug-and-play: a
Roadmap”, International SpaceWire conference, Nara, Japan,
2008.

[5] S. Parkes, Albert. Ferrer, S Mills, A Mason, “SpaceWire-D:
Deterministic data delivery with SpaceWire”, International
SpaceWire conference, Russia, 2010.

[6] Yuriy Sheynin, Sergey Gorbatchev, Liudmila Onishchenko,
“Real-Time Signalling in SpaceWire Networks”, International
SpaceWire conference, Nara, Japan, 2008.

* Under the same conditions of measurement as current AT697F devices

101

Reliability Study of Over/Under Voltage for LVDS
Physical Layer of SpaceWire

Long Paper

Jennifer Larsen
Aeroflex Colorado Springs

4350 Centennial Blvd
Colorado Springs, CO 80907

Larsen@aeroflex.com

Rob Ciccariello
Aeroflex Colorado Springs

4350 Centennial Blvd
Colorado Springs, CO 80907
Ciccariello@aeroflex.com

Abstract— The SpaceWire Standard ECSS-E-ST-50-12C calls
for a Low Voltage Differential Signaling (LVDS) physical layer
as defined in ANSI/TIA/EIA-644, Electrical Characteristics of
Low Voltage Differential Signaling Interface Circuits. Extensive
reliability studies by Aeroflex Colorado Springs catalog the
effects of operation outside the recommended operating
conditions on Aeroflex cold-spare LVDS drivers, receivers, and
SpaceWire devices built on the Aeroflex 0.25µm technology node.
These reliability studies focus on a hypothetical failure where the
LVDS I/O voltage and switching frequency exceed the
ABSOLUTE MAXIMUM RATINGS defined in the Aeroflex
Datasheet and corresponding Defense Logic Agency (DLA)
Standard Microcircuit Drawing.

This paper describes the operation and reliability effects on the
3.3V LVDS drivers, receivers, and SpaceWire devices with cold
spare buffers, focusing on current and voltage excursions during
overshoot/undershoot events on the LVDS I/O. Hot Carrier
Injection, Electromigration, and oxide wear out are also
examined.

I. LVDS OPERATION

LVDS is a method used to transmit and receive hundreds of
megabits per second over differential media using a low
voltage signal swing (~350mV). LVDS communications are
performed by a driver and a receiver. The driver accepts a
standard Complementary Metal Oxide Semiconductor
(CMOS) signal and outputs a constant current, differential,
signal. The LVDS receiver senses the differential voltage
across a 100Ω termination resistor and outputs a standard
CMOS signal equivalent to the supply voltage. The
differential aspect of LVDS allows systems to run at high data
rates, with low switching power, high noise immunity, and
relatively wide common mode range.

The LVDS driver works by using NMOS Field Effect
Transistors (FETs) to control the direction of the constant
3.5mA current source through the termination resistor. The
driver current, flowing through the 100Ω termination resistor
placed across the differential inputs of the receiver, generates
a +/-350mV I-R drop which is sensed as a logic high/low by

the receiver. The LVDS receiver has very high DC input
impedance, virtually all of the driver’s current flows, in a
loop, from the source terminal through the 100Ω termination
resistor and back into the sinking terminal. As the current flow
direction through the termination resistor changes, a logic 1 or
logic 0 state is created at the receiver output.

Figure 1. Simplified LVDS Output Driver Schematic

Faults in SpaceWire systems can be caused by many factors
including, but not limited to, system requirements, poor
termination, edge rate of the signal, environmental effects, and
human error. The three fault scenarios examined in this paper
are: undervoltage on LVDS I/O, overvoltage on LVDS I/O,
and switching frequency, above 200MHz (400Mbps)
specification of 0.25µm LVDS/SpW devices.

102

II. AEROFLEX 0.25µM LVDS AND SPACEWIRE TECHNOLOGY

NODE

The LVDS drivers and receivers used in all the devices listed
in Table 1 are very similar in structure and layout.

Table 1. Aeroflex Colorado Springs devices built on
0.25µm technology node

Aeroflex Part Number SMD Number

UT54LVDS031LV/E 5962-98651
UT54LVDS032LV/E 5962-98652
UT54LVDS032LVT 5962-04201
UT200SpWPHY01 5962-06232
UT200SpW4RTR 5962-08244

Aeroflex Colorado Springs defines “operating life” as an
average failure rate over the 15 year operating life as less than
10 FITs (i.e. 1x10-9 hr-1) total for all wear out mechanisms at
the worst case operating conditions for each mechanism. The
reliability models involve understanding the physics of failure
of the mechanisms that concern the 0.25µm CMOS
technology. These include reliability with respect to gate
dielectrics and reliability related to metallization. Other
reliability concerns, including environment, ESD, latch-up,
and radiation are considered the principally package or design
related and are discussed in particular product qualification
plans.

Gate dielectric reliability is the dominant concern for CMOS
technology. This includes breakdown and charge trapping
mechanisms such as hot carrier. Metallization concerns center
on electromigration. To calculate the combined effect of all
these concerns, a series model is used, with the fail rate for
each mechanism taken at worst case conditions.

III. UNDERVOLTAGE/UNDERSHOOT ON LVDS INPUT

(ELECTROMIGRATION)

A negative voltage on an LVDS receiver input can result in
high current due to the turn on of the input to ground ESD
protection diode. This could be caused by poor cable
connections between the driver and receiver, see figure 3.
Although Aeroflex Colorado Springs LVDS inputs are
qualified to HBM ESD class 1 (1000V), an extended time at a
voltage above the ESD diode turn on could result in damage to
the interconnect metallization between the input pad and
ground. The mechanism that causes interconnect damage is
known as Electromigration (EM). EM is caused by
momentum transfer from electrons to the metal atoms in a
conductor during current flow. Over time at stress, enough
momentum is transferred to cause metal atoms to migrate,
which can ultimately result in metal voiding (high resistance
interconnects) or buildup of metal that could result in line to
line shorting. EM is accelerated by both increased current

density and increased temperature, and follows Black’s
equation as shown in the following equation:

The subscript use refers to use conditions and the subscript
stress refers to stress conditions, T refers to temperatures, J
refers to current density, k is Boltzmann’s constant, Ea is the
activation energy, and n is the current density exponent.

Once the ESD protection diode is turned on, (~-0.5V) the
resistance of the receiver essentially drops to 0, and the
current through the ESD protection is completely driven by
the output resistance of the supply driving the voltage. For this
example, consider the case where the under voltage is supplied
by the LVDS driver, as would be the case for ringing caused
by poor cabling connections.

We assume the UT54LVDS031LV/E 3.3V quad LVDS driver
is connected to a UT54LVDS032LV/E receiver, and that
undershoots of varying voltage and duration occur. The quad
driver has an output resistance of ~300Ω in short circuit
conditions. Based on layout information on the
UT54LVDS031LV/E and electromigration test structure data
collected through technology qualification, we can use the
equation above to calculate part lifetime for a range of
undershoot voltages. Figure 2 shows estimated mean time to
failure for the receiver interconnect under a range of
undershoot voltages at 125°C.

Figure 2: Predicted Cumulative Undershoot before Fail vs.
Voltage for the UT54LVDS031LV/E LVDS inputs

A caveat to this graph is if -10V was held continuously on an
LVDS input, joule heating would cause the temperature to
rise, resulting in significant reduction of life time for the
device. Overall, however, this data shows wide margin for
undershoot in use conditions. For example assume that at
maximum frequency (200MHz) a 3V undershot were to occur
for 1ns every cycle, the chart above would predict that the
input could survive for greater than 80 years at 125C.

103

Figure 3. Impedance mismatched undershoot case.

Assuming a case where the LVDS Driver and LVDS Receiver
are poorly terminated and the cable media is impedance
mismatched, see figure 3. Based on layout and simulation
information on the UT54LVDS031LV/E a 1.0V undershoot
results in an electromigration acceleration factor of 1.57. This
acceleration factor coincides with a 1FIT max undershoot time
of 2,052,504.6 hours or a mean time to failure, MTTF, max
undershoot of 3,862,096.1 hours.

100 Ω

LVDS Driver LVDS Receiver

ROUTDIN

DOUT-

DOUT+

RIN-

RIN-

+
_

Figure 4. One time undershoot event.

Another case of an undershoot/undervoltage on the LVDS I/O
would be if there was a one-time event where a negative
voltage was driven onto the LVDS lines, see figure 4.

IV. OVERVOLTAGE/OVERSHOOT ON LVDS I/O

(OXIDE WEAR OUT)

The cold spare feature of Aeroflex LVDS inputs allows the
user to apply active input signals to the LVDS I/O with VDD
grounded. Because of this, standard ESD protection diodes
between input pad and VDD are not viable. The Aeroflex
proprietary cold spare ESD protection is designed to shunt the
current associated with a HBM event, and has passed
qualification up to 1000V. In the case of a longer duration
overshoot, the voltage at the pad is applied directly across the
input gate oxide. Breakdown of this oxide would likely result
in shorting of the input to ground and catastrophic failure.

Oxide breakdown can be split into two types, instantaneous
and long term wear out. Aeroflex does not recommend
operation above the absolute maximum for its parts, but data
shows that the gate oxide can withstand > 10V without
instantaneous breakdown. Long term wear out occurs on all
oxides placed under electric field stress. This is also known as
Time Dependent Dielectric Breakdown (TDDB). TDDB is
caused by the buildup of trapped charge in a dielectric due to
electric field stress. Over time at stress, enough trapped
charge may build up such that somewhere in the dielectric, the

local electric field exceeds the critical field for breakdown.
TDDB is accelerated by both increased electric field and
increased temperature, and follows a generalized Erying
model as shown in the equation that follows:

Where ttfuse and ttfstress are the times to failure under use and
stress conditions respectively, Tuse and Tstress are the absolute
temperatures (in °K) of the dielectric under use and stress
conditions respectively, Vuse and Vstress are the use and stress
voltages respectively that appear across the dielectric
thickness of tox, Ea is the (Arrhenius) thermal activation energy
for dielectric breakdown in the particular dielectric materials
of interest, r is a model parameter for the electric field
acceleration of dielectric breakdown for the particular process
and dielectric material of interest, and kB is Boltzmann’s
constant (8.62 x 10-5 eV/°K).

Again, since these are cold spared LVDS I/O parts, meaning
that the I/O structure is non-typical [8], the effect of an
overshoot is on the input oxide. With the supply voltage of
any of the devices listed in Table 1 set to 3.6V (maximum
recommended supply voltage) an overshoot of +1.0V is
allowed for approximately 346,106.6 hours.

V. INCREASED SWITCHING FREQUENCY

(HOT CARRIER INJECTION)

As part of this reliability study Aeroflex completed an
assessment on a device manufactured on the 0.25µm Aeroflex
technology node when there is continuous operation at 50MHz
above its 200MHz specified max switching limit.

The main reliability concern for operation above the specified
maximum operation frequency is the risk of hot carrier
ionization (HCI) resulting in increased threshold of the NMOS
transistors in the high frequency path. HCI occurs during
switching, when the transistors conduct peak drain currents
(shoot through current) and results in worst case degradation
when the gate-source voltage (VGS) is ~1/2 the drain-source
voltage (VDS). HCI is strongly dependent on transistor length,
with smaller lengths resulting in greater degradation. HCI
results in the ionization of atoms in the channel [9] which can
result in charged particles becoming trapped in the gate oxide,
which degrades transistor performance. The area of concern is
the LVDS output driver; a simple schematic is shown in
Figure 1.

The Aeroflex Colorado Springs implementation of LVDS
Drivers design uses NMOS transistors [8] as in the schematic
shown in figure 1. Review of the datasheet specifications for

104

the LVDS devices built on the 0.25µm technology node,
[4][5][6][7] using the specified 100Ω output load, show that
this circuit is designed to have a maximum differential output
voltage of ~400mV (VOD) and a maximum offset voltage
(VOS) of 1.450V. Assuming zero voltage drop across the
current source, 2.0V can be taken to be equivalent to the
maximum VDS voltage across any transistor. The specification
also defines the maximum output rise and fall time (tLHT and
tHLT) as ~600ps. Based on a part continuously running at
250MHz required frequency (equivalent to 500Mbs), the
driver will be switching ~30% of the time. Because of the
differential nature of the output, each transistor sees switching
conditions ~15% of the time. To calculate the effect of hot
carrier, Aeroflex Colorado Springs makes the conservative
assumption that worst case bias conditions (VDS at 2.0V, and
VGS at 0.5(VDS)) are held throughout the switching time.

The LVDS Drivers built on the TSMC 0.25µm process
technology use 3.3V transistors. This process has been
evaluated by Aeroflex Colorado Springs and has been
qualified to QML-V levels. [10] TSMC characterizes HCI on
discrete transistors by holding the transistors in a saturated on
state at highly accelerated drain voltages at 25ºC. Transistors
are measured at regular intervals to determine the effect on
threshold voltage and saturated current and time to fail is
defined to be the point at which saturated drain current shifts
by 10%. HCI is also worst case at cold temperatures, so
degradation at -55ºC was considered. Review of the model
predicts a degradation of ~0.1% transistor saturated current at
15 years. This is significantly less than the 10% limit, and
thus, has a negligible effect on operation. Operating Aeroflex
LVDS Drivers built on 0.25µm can maintain 250MHz
(500Mbps) continuous use without significant degradation at
15 years.

VI. CONCLUSION

Aeroflex LVDS I/O built on the 0.25µm technology node are
capable of handling a +/-1.0V over/undershoot without
compromising a 15 year mission life. The LVDS I/O can also
sustain operation at 250MHz. The results discussed are not
guaranteed by Aeroflex. Any operation outside of the
ABSOLUTE MAXIMUM RATINGS, as stated in the
datasheet and/or SMD may affect device reliability and
performance.

VI. REFERENCES

[1] Telecommunications industry Association, “Electrical

Characteristics of Low Voltage Differential Signaling
(LVDS) Interface Circuits ANSI/TIA/EIA-644”, January
30, 2001.

[2] IEEE P1355, “Standard for Heterogeneous InterConnect
(HIC) IEEE 1355-1995”, Conference Title, Location,
June 12, 1996.

[3] ESA Publications Division, “SpaceWire Standard
Document ECSS-E-ST-50-12C”, The Netherlands, July
31, 2008.

[4] Aeroflex Colorado Springs, “UT54LVDS031LV/E 3.3-
VOLT QUAD DRIVER Datasheet”, Colorado Springs,
Colorado.

[5] Aeroflex Colorado Springs, “UT54LVDS032LV/E 3.3-
VOLT QUAD RECEIVER Datasheet”, Colorado Springs,
Colorado.

[6] Aeroflex Colorado Springs, “UT200SpWPHY01
SpaceWire Physical Layer Transceiver Datasheet”,
Colorado Springs, Colorado.

[7] Aeroflex Colorado Springs, “UT200SpW4RTR
SpaceWire 4-Port Router Datasheet”, Colorado Springs,
Colorado.

[8] Aeroflex Colorado Springs, “Cold Spare Functionality of
the LVDS Family”, Application Note

[9] EDN, “Survival guide to high-speed A/D converter digital
outputs”, Jonathan Harris, 2012

[10] Aeroflex Colorado Springs, “Reliability Assessment:
TSMC .25u CMOS”

[11] Aeroflex Colorado Springs, “Theory of Operation and
VDD Fault Scenario Application Note”, Colorado
Springs, Colorado.

105

European LVDS Transceiver Development
Session: SpaceWire components, Long Paper

Fredrik Sturesson, Sandi Habinc

Aeroflex Gaisler AB

Kungsgatan 12, SE-411 19 Göteborg, Sweden

fredrik@gaisler.com, sandi@gaisler.com

Jan Wouters, Steven Redant

IMEC

Kapeldreef 75, 3001 Leuven, Belgium

jan.wouters@imec.be, steven.redant@imec.be

Jørgen Ilstad

European Space Agency

Keplerlaan 1, 2220AG Noordwijk ZH, The Netherlands

jorgen.ilstad@esa.int

Abstract— Two LVDS components are currently being

developed by Aeroflex Gaisler (SE) and imec (B) under ESA

contract 4000105762. The targeted technology is UMC 180 nm

using the DARE library from imec (B) which has been extended

and enhanced specifically for this development.

Index Terms—Component, Radiation, LVDS, SpaceWire.

I. INTRODUCTION

One of the key elements in SpaceWire communication is

the low voltage differential signaling (LVDS) [1] defined to be

the physical signal level by the SpaceWire standard [2]. LVDS

provides the ability for communication with high signal

integrity and high speed from board-to-board and equipment-

to-equipment in a spacecraft system.

Many ASICs and FPGAs implementing the SpaceWire

protocol do not provide LVDS interfaces. Hence, there is a

need for external LVDS components translating between

single-ended signals and LVDS signals both for the transmitter

and for the receiver side. Even in cases where the LVDS

interface are implemented in the ASIC/FPGAs, external stand-

alone LVDS components may be attractive to achieve higher

system robustness; a stand-alone LVDS component with higher

voltage tolerance can prevent failure propagation from outside

of the equipment via the LVDS interface into the ASIC/FPGA

which often implement the most critical functionality in a

system design.

In an ongoing development, funded by the European Space

Agency (ESA), two LVDS components are developed

addressing both these needs: one is a dual transceiver and the

other one is a 4x4 cross-point switch. Both components, the

latter when configured as a quad LVDS repeater, provide all

signals needed to host one SpaceWire channel in one single

component and package. The Dual transceiver translates

single-ended signals to LVDS signals and vice versa while the

4x4 cross-point switch provides LVDS to LVDS signals.

These functions are today available in commercial LVDS

devices, but the high reliability requirements and harsh

radiation environment in space applications have motivated us

to this new development. Critical characteristics have been

addressed, such as Single Event Transient (SET), Single Event

Upset (SEU) and Latch-up (SEL) immunity, Total Ionizing

Dose (TID) hardness, Extended Common Mode range (ECM)

and Failsafe protection of receivers, cold sparing for

redundancy purpose, high voltage and ESD tolerance and

excellent channel-to-channel timing.

This paper is organized in the following manner: In the

Product Specification section the preliminary specification of

both products is reported. The following section discusses the

main characteristics of the LVDS devices. Finally, the radiation

performance is discussed including results from simulation.

All reported results come from simulations performed on

layout level including package parasitic when applicable. Thus,

it is expected to reflect the performance of the final products.

This will be confirmed under the upcoming prototype

evaluation stage of this development.

II. PRODUCT SPECIFICATION

Both products are supplied with one single power supply of

3.3V±10%. The operational temperature ranges from -55C to

+125C.

The LVDS input signals and LVDS output signals are fully

compliant to the LVDS standard [1]. The LVDS inputs are

implemented without internal termination resistors. This allows

the user to match his termination to the actual characteristics of

his transmission line. The LVDS inputs are implemented with

active fail-safe functionality and they support an extended

common mode range of -4.0V to 5.0V.

All single-ended signals are fully compliant with the

LVTTL and LVCMOS standard [3]. In addition, the inputs

support 5V TTL input signals.

The single-ended inputs and outputs and the LVDS inputs

and outputs support cold sparing. Thus, cold redundant devices

may share the same signals as active devices.

A. Dual Transceiver

The dual transceiver is functionally equivalent to Texas

Instrument’s DS90LV049 [4] but it comes with a different

106

package and pin-out configuration. The functional diagram and

connection diagram of the dual transceiver is provided in Fig.

1. : RIN1+, RIN1-, RIN2+, and RIN2- are LVDS input signals;

DOUT1+, DOUT1-, DOUT2+, and DOUT2- are LVDS output signals;

DIN1, DIN2 EN, EN\ are single-ended input signals; and ROUT1,

ROUT2, are single-ended output signals. The AND-function of

the two enable pins (EN and EN\) allows for one single signal

of any polarity to enable or disable all LVDS and LVTTL

outputs. Thus, an inverting function of an already available

signal from e.g. an ASIC will never be needed with this

product.

The package of the dual transceiver is a hermetically sealed

16-pin dual-lead flat package with 1.27mm pitch. The package

complies with the military standard case outline drawing

CDFP3-F16 [5]. This is the most common case outline of small

pin-count devices for space applications. Thus, well-

established processes with proven high reliability can be used

for assembly to printed circuit boards (PCB).

a, b,

Fig. 1. Functional diagram (a) and connection diagram (b) of the dual

transceiver

B. 4x4 Cross-point Switch

The 4x4 Cross-point Switch will be functionally equivalent

to Texas Instrument’s SN65LVDS125A [6] however it will

come with a different package and pin-out configuration (the

design of pin-out and functionality is still preliminary). The

functional diagram and connection diagram of the dual

transceiver is provided in Fig. 2. The 4x4 mux is controlled by

eight select signals (S10-S41): two select signals per LVDS

output channel (iY/iZ) select any of the four LVDS input

channels (jA/jB) as its input. It is one enable control signal

(iDE) per each LVDS output channel.

The package is under development. It will be a hermetically

sealed 40-pin dual-lead flat package with 0.635mm pitch. By

halving the pitch dimension, this package outline will have

similar size as the dual transceiver. The preliminary outline

dimensions are 6.0mm x 14.0 mm x 2.4mm.

This package has two more pins than the SN65LVDS125A

device. The additional two pins might be used as mode select

pins mimicking the function of other LVDS devices on the

market like e.g. a quad single-ended–to-LVDS driver

(SN55LVDS31) and/or it can be used for power-down control

of unused LVDS channels.

Fig. 2. Functional diagram of the 4x4 cross-point Switch

III. KEY CHARACTERISTICS

A. Pin Configuration

The target application of the Dual transceiver is to provide

single-ended to LVDS conversion for all signals of one

SpaceWire port within one single package.

The pin-out configuration has been defined in order to best

match the SpaceWire connector standard [2]; The RX signals

are provided on one side of the package and the TX on the

other side; this is the same configuration as the SpaceWire

connector (illustrated in Fig. 3.). Another benefit with this pin-

out configuration is that a cold redundant component in an area

efficient manner can be placed on opposite side of the printed

circuit board (PCB). With the top of one of the device placed

towards the bottom of the other device placed on the opposite

side of the PCB (pin no.1 meets pin no.8 etc.). all common

signals will be shifted just one pin distance (1.27mm) away

from each others. With this configuration the common signals

can be connected with a through board via-hole and an

additional trace of at most 2mm. Thus, very short stubs will be

needed which will guarantee best possible signal quality.

The pin-configuration of the Dual transceiver is the same as

Texas Instruments’ SN65LVDS050/051devices [7]. However,

the functionality of the enable signals is different.

The pin configuration of the 4x4 Cross point switch has not

been defined yet.

107

Fig. 3. Illustration of the signal matching of the Dual Transceiver (in middle)

and the SpaceWire connector (on top). The SpaceWire RX signals, Data
and strobe (Din/Sin), are on the left side and the TX signals, Data and

Strobe (Dout/Sout), are on the right side. The converted single-ended

SpaceWire signals can be traced on the PCB under the package in the
direction away from the connector. Note that this illustration does not

show the termination resistors tp the LVDS receivers.

B. Switching rates

Both devices support 400MBps switching rates. This puts

high demands on low skew and jitter in all stages of the signal

chain.

In Fig. 4. simulation results of the LVDS input stage is

provided demonstrating a well-defined eye diagram over the

full operational range.

The skew and jitter contribution from the LVDS output

stage are comparable benign but the single-ended LVTTL

outputs provides more challenges. With single-ended signals,

any difference in rising and falling characteristics will consume

on the available skew and jitter budget. In Fig. 5 simulation

results of the single-ended output stage are provided

demonstrating rising and falling signals crossing each other at

1.6V while the mid-point of input switch levels for LVTTL

compatible inputs are 1.4V (VIH = 2.0V – VIL=0.8V) [3]. The

actual switch point of any LVTTL input is not specified by the

standard [3]. It may vary: between devices types, with

temperature, voltage supply and input slope rate and between

rising and falling edges. All these factors will define the overall

skew of the interface and hence the achievable data rate. We

will provide IBIS models in order to support PCB designers in

optimizing their interface to our products.

In interfaces using more than one signal, like e.g.

SpaceWire using a data and a strobe signal [2], the skew

between the signals (channel-to-channel skew) will affect the

maximum achievable data rate. The best channel-to-channel

skew is achieved by putting all channels within the same

device; in one device both the temperature and the voltage

parameters of the eye diagram in Fig. 4. are identical and the

contribution from process variations are minimized. We have

simulated the channel-to-channel skew with Monte Carlo

simulations within one device between two LVDS-to-single-

ended channels, two single-ended-to-LVDS channels and two

LVDS-to-LVDS channels: all pairs having a channel-to-

channel skew below 250ps adding to the skew and jitter of the

single channels alone.

Fig. 4. Simulation result of LVDS input stage over all process, voltage and

temperature corners. Input signal is a 100mV differential arbitrary 400
Mbps data signal.

Fig. 5. Simulation result of the single-ended output with a 15pF capacitive

load at slow process and temperature corner with 3.0V, 3.3V and 3.6V
supply voltage. An arbitrary 400 Mbps data signal was applied to an

internal node before the output stage.

108

C. ESD performance

ESD is one of the major threats to the overall reliability of

an electronic system. Before assembly, ESD damages may

induce latent defects to an electronic device, a damage that

later after being mounted into an electronic equipment may

escalate causing a catastrophic failure on system level. After

assembly, most terminals of an electronic device are well

protected to ESD damage but terminals directly connected the

external interface of the equipment are still at danger. This is

the reason that we have put extra design efforts to protect all

LVDS signals against ESD. Both LVDS inputs and outputs are

designed to withstand 8kV human body model (HBM) ESD.

All other terminals are protected to withstand 3kV HBM ESD.

D. Over voltage protection

A major concern when designing high reliability systems

are failure propagation. This could be a typical scenario: a

DC/DC converter fails on an equipment (A) leading to an

overvoltage condition in this equipment: the overvoltage

propagates through the supply to the input or output signals of

an interface device in this equipment; one of its input or output

signal is connected to a interface device in another equipment

(B); its input or output signal cannot withstand the overvoltage

and propagates the overvoltage originating from equipment A

further into equipment B.

 One effective protection against this failure propagation

scenario is to provide high voltage tolerance of all terminals on

interfacing devices: a high voltage tolerance on the supply

terminal of the interface device in equipment A can block the

overvoltage propagating to its input and output signals. If not

blocked instead a high voltage tolerance of the input and output

terminals on the interface device in equipment B can block the

overvoltage propagating to its supply. The absolute maximum

voltage ratings of the products are provided in TABLE I. The

voltage tolerance of our products exceeds the tolerance of most

other LVDS devices thus by using our products the reliability

with respect to failure propagation in a system will improve.

TABLE I. ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Min Max Unit

VDD Voltage supply Range -0.3 4.6 V

VIN Single-ended input voltage range -0.3 6.0 V

VIN_LVDS LVDS input voltage range -5.0 6.0 V

VOUT Single-ended output voltage range -0.3 4.6 V

VOUT_LVDS LVDS output voltage range -0.3 4.6 V

IV. RADIATION PERFORMANCE

Our products are manufactured in UMC’s 180nm

commercial CMOS technology. No changes to the process

have been performed in order to increase the TID hardness,

SEL immunity or SEU performance. Instead, the products are

developed with imec’s DARE (Design against Radiation

Effects) library. Functionalities not already available in the

library have been added using the DARE design methodology,

using ELT and guarding. The DARE solution has previous

heritage for both digital and analogue designs with proven

good radiation performance [8,9]; pure digital circuits have

been shown to be good to at least 1Mrad(Si) and analogue

designs exceed 100kRad(Si). SEL has never been recorded in

any design based on the DARE concept

Since the products contain no memory elements, SEU

hardening is not applicable, but SET hardening is. SET

hardening has been part of the design flow from smallest

design-block level and upwards in the design hierarchy. SET

pulses have been injected on each node in the design

simulating a heavy ion hit while the effect on the output of the

circuit has been assessed. Where needed hardening by means

of SET filtering has been implemented.

Other LVDS devices have been radiation tested for Single

event effects (SEE) showing numerous different effects on the

differential output signal [10]: timing error of a transition,

extended zero differential output voltage, bit state inversion (0-

to-1 or 1-to-0), and transients on the common mode voltage

level. These results have motivated us doing extensive SET

simulations addressing these reported effects. In all

simulations, SET pulses have been injected corresponding to a

heavy ion injection with a LET of 60 MeV-cm
2
/mg.

We have simulated SETs in the LVDS receiver stage. Both

with a static input signal and dynamic switching input signals,

we recorded events where the state of the receiver output signal

toggles (bit state inversion). The critical nodes have been

located, but SET hardening of the receiver stage is a trade-off

between SET robustness and its speed performance. For these

nodes we have favoured the speed performance. The worst

case recorded bit state inversion was 3.2ns long induced with a

SET injection corresponding to a heavy ion hit with a LET of

60 MeV-cm
2
/mg. For lower LETs the duration time of the

inversion decreases. At a LET below 7 MeV-cm
2
/mg no events

were recorded. We have measured the total area of the

sensitive nodes in order to assess the total SET cross section

and then estimated the expected SET rate in a geostationary

orbit using the CREME96 tool [11]. The expected SET rate for

bit inversions between 0.7ns and 3.2ns is below 2x10
-5

events/day. One SpaceWire link requires four LVDS receivers,

thus the SET rate of the link would be 8x10
-5

 events/day. In

table II, the expected SET rate is transferred to bit error rate per

different data rates assuming each SET will cause a bit error.

This SET induced bit error rate is compared to the maximum

overall bit error rate of 1x10
-12

 required for the SpaceWire

standard [2] demonstrating an adequate margin for all data

rates.

109

TABLE II. SET INDUCED BIT ERROR RATE (BER) PER SPACEWIRE

INTERFACE

Data Rate SET induced BER

Per second Per day errors per bit
Ratio versus a

BER of 1x10
-12

10 Mbps 8.64x10+11 bits/day 9.3x10-17 9x10-5

100 Mbps 8.64x10+12 bits/day 9.3 x10-18 9x10-6

200 Mbps 1.73x10+13 bits/day 4.6 x10-18 5x10-6

400 Mbps 3.46x10+13 bits/day 2.3 x10-18 2x10-6

In simulation of the LVDS driver stage, no event with bit

inversion or zero differential voltage output has never been

recorded. However, we have recorded disturbances on the

differential voltage and the common mode output voltage. In

Fig. 6. the worst recorded common mode SET is reported.

From top: the 1
st
 plot shows the common mode voltage, the 2

nd

plot shows the differential voltage and the 3
rd

 and the 4
th
 show

the voltage on the two differential lines separately. The SET

amplitude of the common mode voltage exceeds the LVDS

standard [1] (1.125V to 1.375V) while the differential

disturbances are well above the LVDS standard (>±100mV).

Whether or not a LVDS receiver can reject a common mode

disturbance like this depends on its characteristics. In theory,

only common mode disturbances from the LVDS driver

exceeding the input common mode range can be recorded

erroneously. 0V to 2.4V is the standard [1] common mode

range of a LVDS receiver. Thus, in theory the disturbance

reported in Fig. 6. will be rejected. Our receiver with -4V to 5V

common mode range provides even more margin. In Fig. 7 all

SET events in the LVDS driver are simulated together with our

LVDS receiver (no SETs injected in the receiver). From the

top: the 1
st
 plot shows the cumulated eye diagram of all SETs

in the driver stage and the 2
nd

 and 3
rd

 plots show the rising and

falling transition, respectively, of the receiver stage output

signal. The results in Fig. 7 includes among other events the

common mode event reported in Fig. 6. In conclusion, the final

outcome of all SETs in the LVDS driver stage are disturbances

that by the receiver stage are recorded as tiny timing errors on

the transitions with at most 0.250ns. The simulation results can

be compared with the SEE results of timing error of a transition

reported by R.Koga [10] for heavy ions in the range of 0.9

MeV-cm2/mg to 90 MeV-cm
2
/mg. For all tested LVDS

devices, timing errors of 2ns and more was reported. The LET

threshold was around 10 MeV-cm
2
/mg with a saturation cross

section around 1x10
-4

 cm
2
/device. We have recorded timing

errors one order of magnitude smaller at a significant higher

LET. Thus, we are confident that the LVDS driver stage will

perform outstanding compared to the LVDS devices tested by

R.Koga [10].

Fig. 6. Worst case recorded common mode disturbance in SET simulation on

LVDS driver stage.

Fig. 7. Cumulated SET simulation result of LVDS driver stage with LVDS

receiver stage connected to its output.

110

We also simulated the LVDS driver stage together with its

internal supporting circuits like e.g. the current generator and

the voltage band-gap circuit. Here we identified a node in the

current generator circuit causing a timing error of almost one

nanosecond (see Fig. 8.). We measured the area of this node. It

is smaller than the area of the sensitive nodes in the receiver.

We repeated the simulation with SET injections corresponding

to a LET of 7 MeV-cm
2
/mg. No events were recorded. Thus,

the expected SEE rate is less than the one expected for one

receiver (2x10
-5

 events/day geostationary orbit).

We have also simulated SETs in the single-ended input and

output stages and all the internal signal paths with no critical

SETs recorded.

Fig. 8. Cumulated SET simulation result of LVDS driver stage and its

supporting circuits with LVDS receiver stage connected to its output.

V. CONCLUSION

In this paper we presented two LVDS products being

developed with the target to serve the need of SpaceWire

communication in space applications. We have presented its

key features and strengths.

This development has now completed the first design stage.

We sent the first prototype to wafer manufacturing in March

2013. We expect them ready end of May. This prototype

implements the functionality of the Dual transceiver as

presented herein. Radiation tests for single event effects and

total ionizing dose, ESD tests and electrical characterization

will be performed on this prototype. Moreover, new potential

features like power-down capabilities will be evaluated. In the

next stage, the final designs of the Dual transceiver and the 4x4

cross point will be finalized and manufactured. The final

products will be qualified to the ESCC standard for

hermitically sealed monolithic circuits [12] with a targeted

product release in 2014. This is a fully European development,

thus no U.S export restrictions rules will apply to these

products.

REFERENCES

[1] Telecommunications Industry Association, “TIA/EIA Standard;

Electrical Characteristics of Low Voltage Differential Signaling

(LVDS) Interface Circuits,” ANSI/TIA/EIA-644-A-2001,

January 2001.

[2] European Cooperation for Space Standardization, “Space

Engineering; SpaceWire Links, nodes, routers and neworks,”

ECSS-E-ST-50-12C, July 2008.

[3] JEDEC Standard, Interface Standard for Nominal 3 V/3.3 V

Supply Digital Integrated Circuits, JESD8-C. June 2006.

[4] DS90LV049 Datasheet, Texas Instruments

[5] Military standard, Electronic Component Case Outlines, MIL-

STD-1835D, 1 June 2004.

[6] SN65LVDS125A Datasheet, Texas Instruments

[7] SN65LVDS050/051 Datasheet, Texas Instruments

[8] Redant, S.; Van Thielen, B.; Dupont, S.; Baguena, L.; Liegeon,

E.; Marec, R.; Fernandez-Leon, A. and Glass, B. HIT based flip-

flops in the DARE library. In: 14th Biennial Single Event

Effects Symposium - SEE. 2004. (27-29 April 2004; Manhattan

Beach, CA, USA.) (CD-ROM proceedings)

[9] Redant, S.; Marec, R.; Baguena, L.; Liegeon, E.; Van Thielen,

B.; Beeckman, G.; Ribeiro, P.; Fernandez-Leon, A. and Glass,

B. Radiation test results on first silicon in the DARE library,

IEEE transactions on Nuclear Science, VOL. 52, NO. 5, October

2005

[10] R. KOGA, J. George, S. Bielat, and P Yu, “Single Event

Sensitivity of High-Speed Differential Signaling Devices to

Heavy Ions and Protons,” Radiation Effects Datashop (REDW),

2011 IEEE.

[11] A. J Tylka et al, Chen, B. Mulgrew, and P. M. Grant,

“CREME96: A Revision of the Cosmic Ray Effects on Micro-

Electronics Code,” IEEE Trans. Nucl. Sci., vol. 44, pp. 2150–

2160, Dec. 1997.

[12] European Space Component Coordination, “Integrated Circuits,

Monolithic, Hermetically Sealed,” ESCC Generic Specification

No. 9000, Issue 6, September 2009.

.

111

Radiation-Tested Extended Common Mode LVDS
Components

SpaceWire Components, Short Paper

Volodymyr Burkhay, André Rocke
TELEFUNKEN Semiconductors GmbH & Co. KG

Vahrenwalder Str. 247, D-30179 Hannover, Germany
volodymyr.burkhay@telefunkensemi.com,

andre.rocke@telefunkensemi.com

César Boatella Polo, Gianluca Furano, Farid Guettache,
Jørgen Ilstad, Giorgio Magistrati

European Space Agency
Keplerlaan 1, NL-2201 AZ Noordwijk ZH, The Netherlands

cesar.boatella.polo@esa.int, gianluca.furano@esa.int,
farid.guettache@esa.int, jorgen.ilstad@esa.int,

giorgio.magistrati@esa.int

Abstract—Extended Common Mode LVDS components from
TELEFUNKEN Semiconductors are being tested for their
radiation hardness. The collected test results are introduced and
discussed; the results which are not yet available for the time
being will be presented during the conference.

Index Terms—LVDS, extended common mode, SpaceWire
component, SOI, radiation test, TID, SEE.

I. INTRODUCTION

LVDS translator IC components are widely used for
SpaceWire (SpW) applications and are absolutely essential for
aerospace equipment manufacturers. However none of the
European IC manufacturers introduced such radiation hard
components to the market until now. On the other hand
extensive demand on radiation hard LVDS components
suitable for extended common mode applications at high
communication speed arose [1]. Those would help solving
some currently existing robustness issues.

TELEFUNKEN Semiconductors is the first European IC
supplier who developed components for extended common
mode LVDS applications (see Fig. 1.), which are currently
being tested for their radiation hardness by ESA.

- 7V

LVDS

TI

Ext.
Com.
Mode
LVDS

RS-485

Ext.
Com.
Mode
LVDS

2.4V

5V

12V

0 V

- 4V

Telefunken

- 7V

LVDS

TI

Ext.
Com.
Mode
LVDS

RS-485

Ext.
Com.
Mode
LVDS

2.4V

5V

12V

0 V

- 4V

Telefunken

Fig. 1. Extended Common Mode LVDS

The radiation testing started with a high dose-rate Total
Ionizing Dose (TID) test on unbiased components followed by
Single Event Effects (SEE) tests and low dose-rate TID test on
biased components.

II. TESTED COMPONENTS

The extended common mode capable LVDS components
developed by TELEFUNKEN Semiconductors comprise
LVDS receivers, drivers and splitters manufactured using
Silicon-On-Insulator (SOI) technology TFSMART2.

Generally SOI technologies are known to mitigate SEE due
to much smaller volume of charge collecting silicon compared
to bulk devices [2]. If the SOI devices are fully isolated, as this
is the case in TFSMART2, they are immune to latch-up thus no
single event latch-up can occur. Additionally TFSMART2
features body ties for each device type, which due to charge
diversion phenomena in SOI technology enhances the SEE
immunity [2]. Combining bipolar and 3.3V CMOS logic
devices having 0.35µm minimum feature size with high
voltage DMOS devices up to 100V on the same die, this BCD
IC manufacturing technology offers a high potential for
aerospace applications [3]. Besides latch-up it is also
inherently resistant to such parasitic effects as substrate leakage
and others thanks to SOI, which improves the performance and
makes it suitable for high temperature range.

The extended common mode capable LVDS components
have been designed for the combination of the RS-485 receiver
input voltage range and high-speed performance and efficiency
of LVDS, providing robust but also fast communication
channels. Those ICs translate the LVDS signals to 3.3V
CMOS/TTL and vice versa with max provided data rate of
400Mbps and higher. The max data rate of such translators is
limited by the CMOS I/O circuits, thus the best test vehicle for
the data rate performance demonstration of LVDS circuits is a
fully differential LVDS repeater. Such repeater comprising the
same input as LVDS receiver and the same outputs as LVDS
driver ICs shows significantly higher max data rate, which
exceeds 800Mbps. The full DC common mode rejection range

112

mailto:volodymyr.burkhay@telefunkensemi.com
mailto:andre.rocke@telefunkensemi.com
mailto:cesar.boatella.polo@esa.int
mailto:gianluca.furano@esa.int
mailto:farid.guettache@esa.int
mailto:jorgen.ilstad@esa.int
mailto:giorgio.magistrati@esa.int

of the 1 to 4 repeater TF90LVDS104 at 1Gbps data rate is
shown on the Fig. 2. as eye diagrams measured using PRBS23
input signal pattern with 200mV differential magnitude.

Fig. 2. Highest speed LVDS eye diagrams over common mode

From the extended common mode capable TELEFUNKEN
Semiconductors LVDS components two component types have
been selected for radiation testing: the LVDS receiver
TF90LVD{S, T}032 [4] and the complementary LVDS driver
TF90LVDS031 [5]. All described radiation tests are performed
on these two component types.

III. RADIATION TESTS

A. Total Ionizing Dose Test

This test has been performed at the ESTEC 60Co facility
using a high dose-rate of 4.5krad/h [3].

The ICs of each of both component types have been
divided into 6 groups: 5 irradiated groups and one control
group; each irradiated group contained 5 ICs. The 5 groups of
both components have been irradiated to the total dose of
5krad, 10krad, 20krad, 40krad and 100krad respectively and
the parameter drifts have been measured. (There was a
shipping period of 2 days between irradiation and post-
radiation measurements.) Then the ICs annealed 7 days at
room temperature and 5 hours at the temperature of 100°C,
subsequent measurements followed.

The test results are shown in Fig. 3. The drifts of all
examined parameters are shown relative to their pre-radiation
values. The data points “5krad” to “100krad” are calculated
from the mean values of the 5 different groups of ICs irradiated
to the corresponding total dose. The data points “after room
temperature anneal” and “after hot temperature anneal” belong
to the group of ICs irradiated to 100krad total dose.

TF90LVDS031

-2%

0%

2%

4%

6%

8%

10%

12%

pr
e

ra
di

at
io

n

5k
ra

d

10
kr

ad

20
kr

ad

40
kr

ad

10
0k

ra
d

af
te

r r
oo

m
te

m
pe

ra
tu

re
an

ne
al

af
te

r h
ot

te
m

pe
ra

tu
re

an
ne

al

d
ri

ft

High-impedance output current

Differential output voltage

Steady-state output cm voltage

Output short circuit current

Power supply current (disabled)

Power supply current (loaded)

VICM=12V
1Gbps

VICM=1.2V
1Gbps

TF90LVDT032

-1%

0%

1%

2%

3%

4%

5%

pr
e

ra
di

at
io

n

5k
ra

d

10
kr

ad

20
kr

ad

40
kr

ad

10
0k

ra
d

af
te

r r
oo

m
te

m
pe

ra
tu

re
an

ne
al

af
te

r h
ot

te
m

pe
ra

tu
re

an
ne

al

d
ri

ft

Output short circuit current

LVDS input termination resistor

LVDS input current @ -7 V

LVDS input current @ +12 V

Power supply current (static)

Power supply current (disabled)

VICM=-7V

1Gbps
Fig. 3. High dose-rate unbiased TID test results

The shown test results are looking plausible, since the
observable drift trend is constant through the total dose steps.
The data points near 0% might be more influenced by
measurement tolerances. The highest parameter drift is 10%
whereas the majority of parameters doesn’t show measureable
drifts. The TF90LVDS031 parameters “Differential output
voltage” and “Steady-state output common mode voltage”
show low drifts. They indicate that the voltage reference circuit
was not significantly impacted by the radiation. The “Output
short circuit current” of TF90LVDS031 shows that the drift of
the current reference circuit might be approximately 3%. The
TF90LVDS031 parameter “High-impedance output current”
has wide tolerances. It shows 10% drift at 100krad total dose
which might indicate some degree of degradation in gate oxide
properties.

Finally, all tested parts keep their complete functionality
after irradiation to the given TID radiation doses, room
temperature annealing and accelerated ageing. No critical drifts
or specification limit violations have been observed.

B. Single Event Effects Test

SEE heavy ions test and low dose-rate TID test on biased
components are planned to be performed in week 19/2013; the
results will be presented at the conference. The SEE test will be
conduct in respect of ESA guideline: Single Event Effects Test
Method and Guidelines ESCC Basic Specification No. 25100.

113

The purpose of single test for heavy ions test is to
determine the sensitivity of Single Events Phenomena (SEL,
SEU and SET for this application) against LET of incident ions
and extract the cross section saturation and LET threshold for
calculation and simulation of SEE in orbit.

The test will be performed on two or three different pairs
(driver-receiver pair) of component samples with the case lid
removed, the two samples in a pair will be irradiated separately
and the not irradiated sample will be a part of the test
equipment for the DUT. Every component will be tested for
SEL/SEU/SET. The DUT will be a part of SpW communica-
tion channel and the behavior will be observed using Link
Analyzer and Digital Signal Oscilloscope (see Fig. 4.). The
test equipment used in this configuration is able to capture
failures causing data corruption and display accurately the
behavior of the SpW link during these events. The digital
signal oscilloscope captures accurately SET behavior of the
devices, being both common and differential mode distortions
to the LVDS signal, as well as transients on the CMOS logic
outputs of the LVDS receiver.

Fig. 4. DUT under functional test in ESTEC Avionics Lab

The components will tentatively be tested with the ions
shown in the following table:

The components will be irradiated at the flux of about

5*103
 ions/cm2/s up to a total fluence of 5*106 ions/cm2 or 200

SEE events for each irradiation run. The test flow is shown in
the Fig. 5.

The components will be tested at high temperature +70°C
(first pair) and at room temperature for the second and the third
pair. The SEE test campaign will be performed with the
support of MAPRAD srl (Perugia, Italy) at the LNS lab of
Catania (Italy).

SEE tests performed on a Point-of-Load converter IC
manufactured in the same technology TFSMART2 showed no
fails [6], which suggests good results also for current SEE test.
During the Conference all available radiation test results will
be presented.

Fig. 5. Radiation Test Flow

IV. CONCLUSION

After performing a high dose-rate TID test up to 100krad
on unbiased extended common mode LVDS components from
TELEFUNKEN Semiconductors promising results were
obtained. After the TID exposure none of the component
specifications were violated and all tested parts kept their
complete functionality.

SEE heavy ions test and low dose-rate TID test on biased
components will follow soon. During the conference all
available radiation test results will be presented.

We are looking forward to obtain good results from the
described radiation tests. Afterwards the high-quality European
components will be made available on the space market and
further components for extended common mode LVDS
application will be developed.

REFERENCES

[1] J. Ilstad, “ESA’s Requirements for future LVDS devices”,
LVDS Application Workshop, Noordwijk, June 2011

[2] A. Samaras, “JUPITER Mission and Strong Environment”
Radiation Specification for System conception, JUICE Mission,
CNES, July 2012

[3] V. Burkhay, G. Ilicali, A. Rocke, “Radiation Test of
TFSMART2 Technology using Extended Common Mode
LVDS and DC-DC Converter Components”, 4th International
Workshop on Analogue and Mixed Signal Integrated Circuits
for Space Applications, Noordwijk, August 2012

114

[4] TELEFUNKEN Semiconductors, “TF90LVDS032 /
TF90LVDT032 Quad LVDS Line Receivers with Extended
Common Mode” Datasheet, April 2012,
http://www.tfproducts.com/dwh/ds/if/ecmlvds/tf90lvds032.pdf

[5] TELEFUNKEN Semiconductors, “TF90LVDS031 Quad LVDS
Line Driver” Datasheet, October 2011,
http://www.tfproducts.com/dwh/ds/if/ecmlvds/tf90lvds031.pdf

[6] G. Magistrati, “Laser Beam Test and SEE Test Report of
Telefunken TF6002” , ESA unclassified - for official use,
February 2013

115

http://www.tfproducts.com/dwh/ds/if/ecmlvds/tf90lvds032.pdf
http://www.tfproducts.com/dwh/ds/if/ecmlvds/tf90lvds031.pdf

Components 2 (Long)

116

New DSP based IP, Devices and Systems for Space
Applications featuring SpW / SpFi Interfaces

SpaceWire Components – Long Paper

R. Trautner
TEC-EDP, ESA/ESTEC

Keplerlaan 1, 2200AG Noordwijk,
The Netherlands

Roland.Trautner@esa.int

Abstract—Digital Signal Processors (DSPs) are important
components for many types of space systems such as
instruments, payload data processors, and platform
subsystems. As the only existing European DSP (TSC21020)
is becoming obsolete, ESA is pursuing the development of
new DSP devices, related IP, and system designs for space
applications. In this paper, we provide an overview of DSP
related developments supported by ESA, with relevant
information on the integration of SpW and SpFi interfaces and
related system aspects such as bandwidth constraints and
utilization of specific features. The baseline architectures of
future DSP ASICs are presented, and the ESA roadmap for
Digital Signal Processing is summarized.

Index Terms— Digital Signal Processing, SpaceWire, SpaceFibre,
SpW, SpFi.

I. INTRODUCTION
Digital Signal Processors are based on architectures that

make them particularly suitable for applications such as
payload data processing, real time control loops, and similar
applications where digital data needs to be processed at high
speed and low power consumption. The expected obsolescence
of the only European DSP, but also its outdated design and
performance, create a problematic gap in terms of power
efficient processing capability for many application areas. The
development of a new DSP has been delayed by the lack of
available funding. As a result, equipment developers are often
forced to use backup solutions involving FPGAs or dedicated
Application Specific Integrated Circuits (ASICs). However,
these come with associated disadvantages such as high power
consumption, lower reliability, long development time, or high
cost. At an ESA–industry round table held in 2007 [1], a
number of DSP technology development routes have been
defined. These have been addressed via a number of different
R&D contracts, leading to the development of technologies and
architectures that can bridge the gap until a new, high
performance, radiation hardened DSP component is available.
The development routes include processor boards based on
Commercial Off The Shelf (COTS) DSPs, development of

radiation hardened DSP IP cores for future ASIC developments
including prototype chip developments, and preparatory
activities supporting the future development of a European
Next Generation Space DSP (NGDSP). These activities are
presented in the following chapters.

II. COTS BASED DSP BOARDS
The use of commercial components for space applications

is an option that may allow to achieve higher performance,
lower power, and smaller footprint and volume than would be
possible by using only space qualified components. In general,
the use of commercial components does not lead to lower cost;
in most cases the additional cost of qualification more than
compensates for the lower cost of component procurement.
However, the current lack of a space qualified high
performance DSP component has led to significant efforts in
the development of processor boards based on commercial
DSPs. These boards need to provide protection mechanisms for
mitigation of radiation induced processing errors. Among the
DSPs available on commercial markets, the TMS320C6727
available from TI® has been found to be particularly suitable
due to its good performance and availability as a QML-V
component. It is latchup immune and sufficiently tolerant to
Total Ionising Dose (TID). However, the component is
sensitive to Single Event Effects (SEE) and must therefore be
protected by suitable radiation mitigation techniques in order to
achieve an availability that is sufficient for space applications.

A. Hi-P COTS based Computer
This activity is part of a broader development effort that

includes the development of highly reliable (Hi-R), highly
available (Hi-V) and high performance (Hi-P) COTS based
computers. The Hi-P development (“ High Performance COTS
Based Computer Step 2” , ESTEC contract nr. 4000105087) is
based on the aforementioned TI® DSP, with radiation
mitigation techniques implemented in a combination of
hardware and software. A key element of this activity, which is
performed by Astrium (F) in collaboration with CGS (I), is an
architecture that combines a high reliability control element
(“SmartIO”) with a scalable number of DSP based processing

117

mailto:Roland.Trautner@esa.int

modules (PMs), supporting the tailoring of reliability,
application performance and latency according to the user and
application requirements. Depending on the number of
available PMs, task duplication in time (each processing task
repeated at least once) or duplication / triplication in space
(task executed on multiple PMs in parallel) with subsequent
voting and possible re-calculation can be chosen.

Fig. 1. Hi-P CBC modular architecture

The Hi-P system architecture is shown in Fig. 1, while a

candidate architecture for the processing module is depicted in
Fig. 2. For very high bandwidth, input data (for example
originating from a payload such as a radar) can be routed to the
processing modules via a separate switch matrix, which allows
to avoid a bandwidth bottleneck in the SmartIo which is
typically based on standard General Purpose Processor (GPP).

Fig. 2. Hi-P PM candidate architecture

Sensitive elements of the PM architecture, including all

space standard interfaces, are implemented in rad-hard FPGA
or ASIC technology, and support fast data verification via
checksum calculation as well as monitoring of the COTS DSP.

The PMs are expected to provide 1 or 2 SpW interfaces
(with RMAP target functionality) as well as 1 or 2 SpFi links
based on TI’s TLK2711 serializer / de-serializer circuits. The
final number of implemented interfaces will depend on
available FPGA resources. While the speed of the FPGA
allows adequate performance for the SpW interfaces, the SpFi
links may run at lower than typical speed which will be
optimized during the PM detailed design phase.

For a flight application the FPGA may be replaced by a
dedicated ASIC, allowing both higher speed and lower power
consumption in addition to higher reliability. In order to assess
the system performance, a number of performance benchmarks
[2] will be implemented. The results will allow direct

performance comparisons with other platforms. It is expected
that the activity will be concluded in Q1 2014. The target
Technology Readiness Level (TRL) is 5, and TRL 6 for critical
technologies.

B. HPPDSP
This activity is a second development based on the same

COTS DSP, but with a different technical baseline, and with a
specific set of requirements derived from studies of future
science missions. Low mass and very low power consumption
are among the driving design requirements. The architecture is
based on a dual DSP concept with FPGA based monitoring of
task execution and data consistency . The development is
performed by Astrium UK (“High Processing Performance
Digital Signal Processor”, ESA Contract 1-6182, 2009)
supported by University of Dundee (UK). It includes the
development of a TRL 4 processor breadboard as well as
implementation of demonstration software including ESA’s
NGDSP benchmarks [2]. Also here, both SpW and SpFi
interfaces are integrated. Additional information is available in
[3]. The end of the activity is expected in the 2nd half of 2013.

III. RAD-HARD FIXED POINT DSP AND NOC ELEMENTS
While the development of a space qualified floating-point

DSP has been hampered by funding constraints, some
significant work has been performed on fixed point DSP IP
cores and related Network-on-Chip (NoC) technology. This
included FPGA breadboarding, design radiation hardening and
prototype chip development. In addition, fine-grained
massively parallel architectures are also being investigated.

A. Massively Parallel Processor Breadboard
This development activity (“Massively Parallel Processor

Breadboarding Study”, ESA contract nr. 21986, 2008-2012)
was performed by RECORE Systems b.v. (NL). It has
succeeded in the development of a NoC based system that
combines two fixed point VLIW Xentium™ DSP cores with a
LEON2 controller [4] . The FPGA based design includes
features such as SpW including RMAP protocol support,
CCSDS timers, ADC / DAC interfaces, and on-chip as well as
off-chip memories. The basic architecture of the developed
system is depicted in Fig. 3.

Fig. 3. MPPB architecture

All elements requiring high bandwidth connectivity are

connected to the 32-bit wide NoC. Due to the chosen number of

DSP
TMS320C67XX

PCI
Target

IF
HPI

SDRAM
Bank 1

High
Speed
Serial

IFs

Non
Volatile

EDAC
+

Auto
check

SRAM

EDAC
+

Auto
scrubbing

EMIF

WatchDog
+

Check
Functions

High Speed Section – Low Fault Tolerance
Local Safe Memory - Low Speed Section

FPGA

SDRAM
Bank 2

EMIF
Internal

Bus
IF

EDAC

118

network lanes and routers, multiple high data rate transfers can
be handled concurrently without congestion. The MPPB NoC
architecture is shown in Fig. 4.

Fig. 4. MPPB NoC architecture

The Xentium™ DSP cores support up to 4 MACs per clock

cycle for 16 bit data, and up to 2 MACs per clock cycle for 32
bit data words.

In the FPGA implementation which provides a system clock
of 50 MHz the speed of SpW interfaces is limited to 100 Mbps.
In an ASIC implementation the full SpW speed can be
achieved. It should be noted that the NoC architecture, which
provides 32bit bi-directional connections between routers and
operates at full system clock, provides very high bandwidth for
connected data sources and sinks. This architecture is therefore
a good candidate for future designs aiming at high bandwidth
applications. The MPPB study has been completed in 2012, and
final presentation materials are available via [5].

B. DARE+ Application ASIC
The successful MPPB activity has opened the door to the

development of multi-core high performance processor ASICs
based on NoC and VLIW fixed point DSPs. However, a key
step towards this goal is the radiation hardening of the DSP IP
and NoC elements such as routers, network bridges, DMA,
memory tiles, and relevant interface IP.

The DARE technology [6], a rad-hard ASIC library based
on a commercial (non-space qualified) 180nm ASIC
manufacturing process (UMC) has been developed by IMEC
(BE) under ESA contract since 1999. Following the basic
library development and its evaluation by means of test
vehicles, a subsequent activity called DARE+ (“DARE plus –
ASICs for Extreme Radiation Hardness and Harsh
Environments”, contract Nr. 4000104087) was started for
fixing identified issues and for the development of additional
library elements. Part of this activity is the design,
manufacturing and test of an application ASIC (called
XentiumDARE, or XD). It includes key parts of the MPPB IP
(DSP core, NoC routers, NoC bridge, SpW RMAP–NoC
interface, on-chip memory tile, and others). All architectural

elements have been radiation hardened either via ASIC library
elements or via architectural changes such as triplication and
insertion of EDACs. Programming and debugging is possible
via either SpW RMAP or UART. Due to chip size constraints
the memory tile also serves as DSP instruction cache which
would be kept separate in a flight ASIC implementation. The
Application ASIC architecture is depicted in Fig. 5.

Fig. 5. DARE+ Application ASIC architecture

The SpW I/F with RMAP target functionality is directly

mapped to the NoC, which provides an internal bandwidth of
3.2 Gbps (bi-directional) at a a target system clock of 100MHz.
Data transfers are supported via DMA. Due to the lack of High
Speed Serial Link (HSSL) IP in DARE, SpW is expected to
remain the main standard high speed interface for future
DARE180 based ASIC developments.

C. High Performance Data Processor
This activity (“High Performance Data Processor”, ESA

contract nr. 4000102909) is performed by ISD (Greece) and
Astrium (Germany) [7]. It is based on a proposal from
industry, and aims at the development of a processor prototype
that is based on scalable reconfigurable fixed point processing
array technology from PACT (Germany). Fig. 4 shows the
basic architecture of the envisaged prototype chip.

Fig. 6. HPDP prototype chip architecture

In this architecture, a large reconfigurable processing core

capable of handling high bandwidth data streams is supported

119

by a number of additional processing elements including
DMAs, memory and stream I/O interfaces. The chip design is
aiming mainly at telecom applications. A set of test
applications (various DVB-S processing steps such as
encoders/decoders, PSK modulators/demodulators, simple FFT
and filter routines) will be demonstrated. SpaceWire interfaces
are used for the control links to a platform’s data handling
system, while payload data streams are routed via separate
interfaces with a total bandwidth comparable to that of a SpFi
link. The prototype ASIC development, which is based on a
commercial 65nm technology [8], has suffered some delays;
results from this activity are now expected around 2015.

IV. NEAR TERM DSP ASIC PROJECTS
In addition to the activities described in the last paragraphs,

the preparations for the development of new, performant DSP
ASICs have continued. Based on funding from different
sources such as the Core Technology Program (CTP) of ESA’s
Science Directorate and the European Component Initiative
(ECI4) development steps for both fixed point and floating
point DSP ASICs will be implemented in the near future.

A. Scalable Sensor Data Processor
This activity, which is expected to start in 2013 and deliver

prototype ASICs by 2015, will integrate the results of MPPB,
DARE+ application ASIC, MPPB assessment results, and
other work into an ASIC development that aims at a
commercial product that may be available around the 2016
timeframe. The baseline architecture is very similar to MPPB
and includes a LEON2 and two Xentium™ DSPs connected

via a NoC. The target for system clock is 100 MHz. The SSDP
design exploits the mixed signal capabilities of the DARE
technology by integrating both fast and slow ADCs as well as
multiplexers (MUX) and sensor signal conditioning circuits.

Additional IPs such as Pulse Width Modulation (PWM)
units and standard peripherals are integrated in order to create a
versatile chip which is highly suitable for applications such as
payload data processing, instrument control, and platform
subsystems that include sensor data processing functions.

A functional diagram is shown in Fig. 7. In the upper half it
shows the NoC subsystem with associated DSPs, fast
interfaces, and bridges to external components. The lower half
consists essentially of a standard LEON2 system with
AHB/APB buses and typical peripherals. A particular feature is
the housekeeping (HK) data acquisition ADC and MUX
connected to the AHB bus which is managed by the LEON.
The final design will be based on consolidated user
requirements and architectural tradeoffs.

It is expected that RMAP enabled SpW links will be the
key digital interfaces of this ASIC, providing typical speeds of
200 Mbps. A parallel interface to external ADC/DAC
components that also supports data streaming among multiple
SSDP chips is also foreseen. It will provide data rates close to
~1 Gbit/sec. Additional interfaces will include standard
peripherals such as UARTs and parallel I/Os.

The SSDP development may be accompanied by additional
developments for software and processor boards depending on
available funding and the needs of the early user community.

Fig. 7. SSDP DARE+ Application ASIC functional diagram

120

B. Next Generation Floating Point DSP
The development of a radiation hard high performance

Floating Point DSP that can replace the outdated TSC21020
and that allows more reliable and power efficient solutions than
the COTS DSPs described in II. remains the goal of the main
DSP development line.

In a previous TRP activity (“European DSP Tradeoff and
Definition Study”, ESA contract nr. 420002645, 2008-2012)
performed by Astrium (F/UK/GE) with support from ISD
(GR), a number of candidate commercial DSP IPs were
evaluated. The initial assessment included availability as an IP,
performance of the DSP core, and capabilities and user
friendliness of the Software Development Environment (SDE).

In a following step, a primary candidate and a backup
solution were investigated in detail, including an assessment of
the migration to available (ATMEL 180nm) and near future
(STM 65nm) rad-hard ASIC technologies. The assessment
also addressed required modifications of the architectures for
radiation hardening, addition of space specific features, and
compatibility with space qualified peripheral components.

Three commercial DSPs were evaluated:

• ATMEL DIOPSIS 940HF
• Analog Devices ADSP-21469
• Texas Instruments TMS320C6727B

For the TMS320C6727B, the manufacturer was not

inclined to license the design for an ASIC development.
However, as the component is already available as a latchup
insensitive component (and used in several COTS based
computer developments) the performance evaluation and SDE
assessment was continued. For the other candidates IP
licensing is possible and the detailed assessment was

performed. The ADI DSP was found to be the superior device
in terms of both performance and SDE quality. The ATMEL
device was kept as a backup.

The analysis of achievable performances revealed that only
the STM 65nm process would allow to achieve the
performance goal of at least 1 GFLOP. It also provides the
added benefit of HSSL IP for the implementation of SpFi. The
migration to the rad-hard ASIC library as well as architectural
changes required for radiation hardening (which includes
adding EDACs for internal and external memories) will reduce
the maximum clock frequency of the rad-hard DSP below that
achieved by commercial devices. A clock frequency in the
range of 200 MHz is expected based on the initial analysis.

In addition to the integration of EDACs and other means
for radiation hardening, some significant design changes will
be introduced to adapt the architecture to the needs of space
applications. The most important additions will be SpW and
SpFi interfaces and an interface to external suitably qualified
memories (DDR2 or DDR3 in addition to SRAM and ROM).
On the other hand, some IPs that are part of the commercial
DSP design such as audio processor and some accelerators that
are of no or limited use for space applications may be removed.

In an initial assumption for the NGDSP ASIC architecture
shown in Fig. 5, 4 SpW links are assumed which allows
connections to redundant data sources and data sinks in a
typical spacecraft architecture. The supported data rate is 200
Mbps or higher. For the implementation of SpFi links the
DSP’s internal 32 bit peripheral bus will impose limitations on
achievable bandwidth. Depending on the core clock frequency,
the peripheral bus, which is running at ½ of the core clock, will
provide bandwidth not exceeding 3.2 – 4 Gbps. It is therefore
possible that the number of SpFi IPs will be limited to 2, with 4
external interfaces implemented in order to provide redundant
links as for the SpW interfaces.

Fig. 8. Draft NGDSP ASIC architecture

121

All architectural changes need to take into account possible
implications on the SDE, as one key development objective is
to keep modifications transparent for the SDE wherever
possible. The next step in the development of the NGDSP
ASIC will be a feasibility study which is expected to include
synthesis tests using the DSM 65nm rad hard library and
corresponding toolchain. Other tasks, like partial FPGA
prototyping including IP integration tests, SDE tests etc. may
be included as well. This activity is expected to start not later
than 2nd half of 2013.

V. ESA ROADMAP FOR DIGITAL SIGNAL PROCESSING
All the activities introduced in previous paragraphs are part

of the ESA roadmap for Digital Signal Processing. This
roadmap, which is based on the identified needs of European
industry and other stakeholders, but also includes activities
proposed by industry and enabled by direct national funding, is
periodically adjusted in order to reflect the realities of
technology evolution, availability of funding, identified
synergies, and progress of ongoing activities. Fig. 9 shows an
overview of the presented activities and their interdependences.
Additional activities may soon appear in support of the
presented core activities after the down selection of ESA TRP
proposals for the 2014/2015 timeframe. The complete
roadmap, which includes additional activities not presented
here due to status, limited relevance for this paper, or paper
volume restrictions, is available and frequently updated on
ESA’s On-board Data Processing Website [5].

VI. SUMMARY
European industry and other stakeholders have an urgent

need for technologies that support and enable reliable digital
signal processing for space applications at high performance
and power efficiency. As existing components are outdated and

will soon become obsolete, powerful new technologies based
on COTS components as well as rad-hard ASICs are being
developed. Radiation hard fixed point DSP IP for ASIC
developments is now commercially available; COTS based
DSP boards are expected to be ready for adoption by projects
in 2014, while new DSP ASICs are expected to be available as
prototypes in 2015 and 2016 and as flight models in 2016 and
2017 for SSDP and NGDSP, respectively. Evaluation boards
and associated software are expected to become available at the
same time as ASIC prototypes.

REFERENCES
[1] R. Trautner, “ Next Generation Processor for On-board Payload

Data Processing Application – ESA Round Table Synthesis” ,
TEC-EDP/2007.35/RT, 2007. The document is available via [5].

[2] R. Trautner, “Next Generation Space Digital Signal Processor
Software Benchmark” , TEC-EDP/2008.18/RT, 2008. The
document is available via [5].

[3] Bruce Yu, Chris McClements, Pete Scott, David Dillon, Steve
Parkes, “High Processing Power Digital Signal Processor with
SpaceWire and SpaceFibre Interfaces”, 2013 SpaceWire
Conference, Goteborg, 2013.

[4] K. Walters et al., Multicore SoC for On-board Payload Signal
Processing, Adaptive Hardware and Systems Conference, San
Diego, USA, 2011.

[5] ESA On-board Data Processing Website,
http://www.esa.int/TEC/OBDP/

[6] S. Redant, et. al., “The Design Against Radiation Effects
(DARE) Library”, 5th RADECS Workshop. Madrid, Spain,
2004.

[7] M. Syed, High Performance Data Processor, Adaptive Hardware
and Systems Conference, Noordwijk, The Netherlands, 2008.

[8] C. Papadas, Prototyping the HPDP Chip on STM 65nm Process,
DASIA, Malta, 2011.

Fig. 9. Presented Activities: Schedule and Interdependence

122

A Radiation Tolerant SpaceFibre Interface Device
SpaceWire Component, Long Paper

Steve Parkes
1
, Albert Ferrer

2
, Alberto Gonzalez

2
, Chris McClements

2
, Ran Ginosar

3
, Tuvia Liran

3
, Dov Alon

3
,

Michael Goldberg
3
, Gal Sokolov

4
, Gennady Burdo

4
, Nimrod Blatt

4
, Paul Rastetter

5
, Milos Krstic

6
, Alberto Crescenzio

7

1
Space Technology Centre, 166 Nethergate, University of Dundee, Dundee, DD1 4EE, Scotland, UK

2
STAR-Dundee, STAR House, 166 Nethergate, Dundee, DD1 4EE, Scotland, UK

3
Ramon-Chips Ltd., 104 Galil Street, Nofit 36001, Israel

4
ACE-IC, Caesarea, Israel

5
EADS Astrium GmbH, Munich, Germany

6
IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany

7
Synergie CAD Instruments S.R.L., Italy

 Email: sparkes@computing.dundee.ac.uk

Abstract— The Very High-Speed Serial Interface

(VHiSSI) device aims to provide a versatile SpaceFibre

interface device in a small package. The device can act as a

parallel interface device providing several modes of

operation, or it can act as a SpaceWire to SpaceFibre

bridge.

This paper describes the VHiSSI chip in detail, outlines

the applications it can be used for, and summarises the

status of the VHiSSi project.

Index Terms—SpaceWire, SpaceFibre, networks, spacecraft

onboard processing

I. INTRODUCTION

Space-based Earth observation and scientific

instrumentation currently under development will push the

limits of on-board data-handling technology. In the past Mil-

Std 1553 and proprietary data-links were used to get instrument

data from the instruments to the on-board mass memory unit

and to the down-link telemetry system. Over the past decade

the proprietary data links have been replaced with a standard

networking technology designed for use on-board spacecraft:

SpaceWire. While SpaceWire is currently being used to fulfil

the on-board data-handling requirements of many missions,

there are some very high data-rate instruments which are

beyond its capabilities.

Several future space-based instruments, for example

synthetic aperture radar (SAR) and hyper-spectral imagers, will

be capable of producing data at data rates of several Gbits/s.

New downlink telemetry techniques (laser and Ka-band

communications) will be able to provide much higher

downlink capacity than previously possible. High speed

memory technologies will be able to serve multiple high data

rate instruments and stream data to ground on demand. To

support the growing need for onboard communications

network bandwidth, technologies able to support multi-Gbits/s

data transfer have been developed, e.g. Channel Link and,

Wizard Link. Unfortunately these are all restricted USA

devices resulting in a critical European dependency.

ESA has been developing a standard multi-Gbits/s network

technology called SpaceFibre [1] [2] [3] [4]. SpaceFibre

provides multi-Gbits/s data rates over fibre-optic and electrical

cable. It provides a coherent quality of service mechanism able

to support bandwidth reserved, scheduled and priority based

qualities of service. It provides extensive fault detection,

isolation and recovery (FDIR) capabilities, including a link

level retry function that recovers from errors and resends data

transparent to the user application. SpaceFibre uses the same

packet format as SpaceWire [5] making it easy to bridge

existing SpaceWire devices into a SpaceFibre network.

The VHiSSI project is a European Union Framework 7

research project which will integrate a complete SpaceFibre

protocol engine, together with the physical layer interfaces, in a

radiation tolerant chip manufactured by a European foundry. It

will provide a complete SpaceFibre solution in a single chip.

The VHiSSI research programme aims to create very high-

speed data-interface technology which is a critical component

technology for future spacecraft payloads, particularly

telecommunications and Earth observation payloads where

multi-Gbits/s data-rates are urgently needed. A complete

solution to very high-speed data networking onboard spacecraft

will be provided, levering research on SpaceFibre, using a

European fabrication facility, and providing a non-dependent

technology.

The VHiSSI research programme will:

 Provide multi-Gbit/s serial data-link technology,

essential for future spacecraft onboard data-handling

systems.

123

 Lever prior and concurrent research on the emerging

SpaceFibre standard, to provide a complete multi-

Gbit/s serial technology for spacecraft onboard data-

links and networks, including fault detection, isolation

and recovery (FDIR) and quality of service (QoS).

 Provide a versatile chip architecture, which can be

adapted and configured to support multiple

applications.

 Provide the critical clock-recovery mechanism on

existing European chip technology.

 Use a European semiconductor fabrication facility,

enhancing and developing its capabilities for radiation

tolerant chip design and production with a radiation

tolerant library.

 Provide a non-dependent technology (ITAR free),

allowing unrestricted use on European spacecraft and

substantial export opportunities - an important

capability for Europe.

This paper describes the work carried out by University of

Dundee and STAR-Dundee on this project and summarises the

current state of the project. The team working on this project

comprises engineers from:

 University of Dundee who are leading the project,

and who are responsible for project management

and the VHiSSI device architecture and

specification.

 Astrium GmbH who are responsible for gathering

and requirements and use cases for the VHiSSI

device.

 STAR-Dundee Ltd who are responsible for

designing the digital part of the VHiSSI chip in

register-transfer level (RTL) VHDL code.

 ACE-IC who are responsible for the design of the

SerDes and CML transceivers.

 Ramon Chips who are responsible for the

radiation tolerant library for the IHP chip

manufacturing process and low level design of the

VHiSSI device.

 IHP who are responsible for manufacturing the

VHiSSI device and digital/static test of the chip.

 SCI who are responsible for supporting the high

performance/analogue testing of the experimental

VHiSSI chip.

II. VHISSI CHIP ARCHITECTURE

The overall architectural block diagram of the VHiSSI chip

is illustrated in Figure 1.

SpaceWire
Bridge

FIFO & DMT
Interface

IO
Switch
Matrix

Mode
Switch
Matrix

SpaceFibre
CODEC

JTAG

CNF[3:0]

SpaceWire
& Digital IO

JTAG VHiSSI Chip

SpaceFibre
Nominal

SpaceFibre
Redundant

SerDes

SerDes

……

…

VC0

VCA

VCB

VCJ

Figure 1 VHiSSI Overall Architecture

There are five main functions within the VHiSSI chip:

 SpaceWire Bridge

 FIFO, DMA, Memory and Transaction Interface

 SpaceFibre Interface

 SerDes

 IO Switch Matrix

 Mode Switch Matrix

The SpaceWire Bridge provides a bridge between

SpaceWire and SpaceFibre with up to 11 SpaceWire interfaces

being available. The SpaceWire Bridge includes a SpaceWire

router which allows routing between SpaceWire ports and

Virtual Channel (VC) buffers of the two SpaceFibre interfaces.

Configuration of the VHiSSI chip can be carried out over any

SpaceWire interface connected to the embedded SpaceWire

router or over VC0 or VCA of the SpaceFibre interface. The

124

SpaceWire Bridge is connected to the IO Switch Matrix and to

the Mode Switch Matrix.

The FIFO and DMA, Memory and Transaction (DMT)

Interface provides various types of parallel interface into the

VHiSSI chip for sending and receiving data over the

SpaceFibre interfaces. The various parallel interface functions

have been designed with specific application scenarios in mind

and between them are able to operate with many types of local

host system, including FPGAs and processors. The parallel

interface is also designed to use a small number of pins, so that

the VHiSSI chip can fit into a small (100 pin) package. The

FIFO mode provides a direct parallel interface to two

SpaceFibre virtual channels. The memory type interface

provides a 32-bit bus interface for accessing VHiSSI registers

or VC buffers. It is a multiplexed address/data bus, with the

VHiSSI device providing an internal address latch/counter to

hold the register/VC buffer address. The transaction interface is

similar to the memory interface, but aims to simplify software

interfacing. A single address line is used to distinguish

commands and status information from data. A command is

written to the VHiSSI device to specify the transaction that is

about to take place. For data transfer to/from a VC buffer, a

read of status information provides the status of the VC buffer

identified in the command. The data transfer can then take

place in a burst transfer the maximum size of which is

determined by the VC buffer status information. The DMA

interface puts the VHiSSI chip in control of data transfers.

When there is data ready to transfer, an internal DMA

controller in the VHiSSI device requests control of the external

data bus. Once granted it then affects the data transfer. An

external address latch/counter is required, which may be

implemented in an FPGA. The FIFO and DMT interface is

connected to the IO Switch Matrix and to the Mode Switch

Matrix. On reset the IO pins and connections to the VC buffers

from the FIFO and DMT interface and SpaceWire Bridge are

determined and set by these two switch matrices.

The SpaceFibre Interface has 11 virtual channels. VC 0 is

intended primarily for VHiSSI device and local system

configuration and monitoring and is connected to the

embedded SpaceWire router. The other VCs have

programmable VC numbers and so are referred to by letters.

VCA is connected to the embedded SpaceWire router. The

other VCs are either connected to the SpaceWire router,

directly to a SpaceWire interface, or to the parallel interface,

depending on the mode of operation. Each VC supports full

SpaceFibre QoS which can be configured independently for

each VC. VC0 and VCA are directly connected to the

embedded SpaceWire router. The other SpaceFibre VC buffers

are connected to the Mode Switch Matrix which connects them

to either the SpaceWire Bridge or the parallel interface. The

other side of the SpaceFibre interface is connected via a

multiplexer to either the nominal or redundant SerDes and

CML transceiver.

The SerDes converts parallel data words from the

SpaceFibre interface into a serial bit stream and vice versa. On

the receive side the bit clock is recovered from the serial bit

stream by the SerDes. The SerDes includes integral CML

transceivers.

The IO Switch Matrix connects either the SpaceWire

LVDS, SpaceWire LVTTL or parallel interface signals from

the FIFO and DMT interface to the digital IO pins of the

VHiSSI chip. Configuration is static and determined on exit

from device reset, i.e. on the rising edge of the RSTN signal.

The Mode Switch Matrix connects either the SpaceWire

Bridge or FIFO and DMT interface (parallel interface) to the

VC buffers of the two SpaceFibre interfaces. Configuration is

static and determined on exit from device reset, i.e. on the

rising edge of the RSTN signal.

In addition to these major functions the VHiSSI chip

includes a JTAG test port and some other device test modes.

III. VHISSI CHIP APPLICATIONS

In this section several applications of the VHiSSI device

are considered

A. High Data-Rate Instrument Interface

SpaceFibre offers substantially higher data rates than

SpaceWire to support high data-rate instruments. Connection

of a high data-rate instrument to a mass memory unit via

SpaceFibre is illustrated in Figure 2.

Instrument 2
InterfaceSpW Control/HK

Data Output

Local Instrument

Mass
Memory
Interface SpW Control/HK

Data Input/Output

Mass Memory

SpaceFibre

Figure 2 High Data-Rate Instrument Connected To

Mass Memory

To provide data at high-speed from a local instrument to

the SpaceFibre interface a parallel interface is required. To

operate with current space qualified FPGAs this interface has

to be 32 bits wide, which requires a 62.5 MHz interface clock

(32-bits x 62.5 MHz = 2 Gbits/s, which after 8B/10B encoding

is 2.5 Gbits/s signalling rate).

The simplest type of interface is a FIFO type interface,

which is straightforward to connect to an FPGA. For high data

rate transfer from an instrument it is only necessary to write

data to an output VC buffer in the SpaceFibre interface. A

slower speed interface, e.g. SpaceWire, would be useful for

controlling and reading housekeeping information from the

instrument.

If the instrument includes an embedded processor it may be

preferable to use a memory type interface to write and read

data from the SpaceFibre VC buffers in the SpaceFibre

interface. This interface can then also be used to access the

configuration, control and status registers inside the SpaceFibre

interface. In this case it is the responsibility of the instrument to

handle the transfer of data to the SpaceFibre interface.

A DMA controller included in the SpaceFibre interface

transfers responsibility for data transfer from the instrument

controller to the SpaceFibre interface. This may save some

important processing power within the instrument controller.

125

The VHiSSI device is able to provide a SpaceFibre

interface for high data rate instruments using a FIFO, memory

or DMA type interface to an FPGA or processor. This interface

is designed to be able to operate a clock speeds achievable by

flight qualified FPGAs while sustaining 2 Gbits/s data

transfers. It also is designed to minimise the number of pins

required for the interface.

B. SpaceWire to SpaceFibre Bridge

SpaceWire has been used extensively to provide a standard

interface to various instruments. To connect these instruments

into a SpaceFibre based data-handling network a SpaceWire to

SpaceFibre Bridge is required.

SpaceWire
To

SpaceFibre
Bridge

SpaceWire
Instrument

SpaceWire
Instrument

SpaceWire
Instrument

SpaceWire
Instrument

SpaceWire
To

SpaceFibre
Bridge

SpaceWire
Equipment

SpaceWire
Equipment

SpaceWire
Equipment

SpaceWire
Equipment

SpaceFibre

SpaceWire SpaceWire

Figure 3 SpaceWire to SpaceFibre Bridge

Figure 3 shows a SpaceWire to SpaceFibre Bridge being

used to multiplex several SpaceWire links over a single

SpaceFibre link. In this particular example four instruments

with SpaceWire interfaces are connected to some other

SpaceWire enabled equipment. Bridging between SpaceWire

and SpaceFibre is straightforward since both protocols use the

same packet format.

The VHiSSI chip can operate as a SpaceWire to SpaceFibre

bridge with either LVDS or LVTTL SpaceWire interfaces and

includes an internal SpaceWire router.

C. Mass Memory Interface

A mass memory requires several SpaceFibre interface

connections to support several high data-rate instruments and

instruments with SpaceWire interfaces. This is illustrated in

Figure 4.

Instrument 2
InterfaceSpW Control/HK

Data Output

SpaceWire
To

SpaceFibre
Bridge

SpaceWire
Instrument

SpaceWire
Instrument

SpaceWire
Instrument

SpaceWire
Instrument

SpW Control/HK

Data Output

SpW Control/HK

Data Output

Local Instruments

Remote Instruments

Local Instrument

Instrument 1
InterfaceSpW Control/HK

Data Output

Local Instrument

Mass
Memory
Interface

Data Bus
To Memory

Mass Memory Unit

Mass
Memory
Interface

Figure 4 Mass Memory Interface

Two high data-rate instruments are shown, one with a

single SpaceFibre link and the other requiring two SpaceFibre

links to support data rates of 4 Gbits/s. Several SpaceWire

instruments are also connected to the mass memory via a

SpaceWire to SpaceFibre Bridge.

The Mass Memory unit provides four SpaceFibre interfaces

connected to a common bus or network for accessing the

memory modules that are to store the data.

The VHiSSI chip can provide all the SpaceFibre interfaces

required in the example network of Figure 3: high-speed

instrument interfaces, SpaceWire to SpaceFibre bridge and the

interface to the mass memory unit.

D. Control Processor

Configuration and control information can be sent over a

SpaceFibre network using individual virtual channels or a

virtual network. A SpaceFibre router allows a control processor

to access all the instruments and other equipment on the

network as illustrated in Figure 5.

126

Instrument 2
InterfaceSpW Control/HK

Data Output

SpaceWire
To

SpaceFibre
Bridge

SpaceWire
Instrument

SpaceWire
Instrument

SpaceWire
Instrument

SpaceWire
Instrument

SpW Control/HK

Data Output

SpW Control/HK

Data Output

Local Instruments

Remote Instruments

Local Instrument

SpaceFibre
Router

Instrument 1
InterfaceSpW Control/HK

Data Output

Local Instrument

Mass
Memory
Interface

Data Bus
To Memory

Mass Memory Unit

Mass
Memory
Interface

Downlink
Telemetry
Interface SpW Control/HK

Data Output

Downlink Telemetry

Control
Processor
Interface SpW Control/HK

Data Input/Output

Control Processor

Figure 5 Control Processor on SpaceFibre Network

Figure 5 shows a complete SpaceFibre based on-board

data-handling system. A SpaceFibre router is used to

interconnect the various units. A control processor is connected

to this router. It is able to send configuration, control and status

request commands to all of the other units on the network.

Typically a virtual network would be used to manage this

control and status information, where one virtual channel in

each unit is dedicated to control/status and each of them is

given the same virtual channel number, e.g. VC0. The control

processor then sends SpaceWire packets containing commands

over VC0 to another unit. This unit responds over VC0. Since

the control processor is the master of the VC0 virtual network,

there is no undesirable contention between SpaceWire packets

on VC0. This approach leaves all the other virtual channels

available for data transfer.

The SpaceWire instruments do not support virtual channels,

so control/status packets and data packets have to be

multiplexed over the SpaceWire links. The SpaceWire to

SpaceFibre Bridge must be able to support this multiplexing of

SpaceWire packets containing control information, status or

instrument data. This requires a SpaceWire router which could

be provided within the SpaceWire to SpaceFibre Bridge.

Normally configuration, control and housekeeping requests

require small packets and should therefore not have a major

impact on data transfer over the single SpaceWire link from

instrument to the SpaceWire router in the SpaceWire to

SpaceFibre Bridge.

The VHiSSI device together with a SpaceFibre router

device can provide all the SpaceFibre network functionality

needed for onboard data-handling architectures like that of

Figure 5.

IV. STATUS OF VHISSI PROJECT

A comprehensive set of requirements for the experimental

VHiSSI chip have been gathered from the European spacecraft

engineering community by Astrium GmbH, focusing on a

small device which could be used to provide very high-speed

data-links on-board a spacecraft. A versatile chip interface has

been designed by University of Dundee which covers many

potential applications while keeping the number of pins

required on the chip to a minimum. The architectural level

design of the experimental VHiSSI chip and its interface

definition have been shaped, reviewed and polished and

detailed design of this chip is currently underway by STAR-

Dundee Ltd.

A critical part of the VHiSSI project is the radiation tolerant

serialiser/deserialiser, clock-data recovery circuitry and high-

speed serial driver/receiver technology. This is a demanding

design activity due to the speed of the interface and the

required radiation tolerance. A design has been created by

ACE-IC ready for testing.

The use of the IHP chip foundry required a complete

radiation tolerant component library to be designed. This has

been carried out by Ramon Chips and includes logic gates, IO,

LVDS IO, and memory cells. A test chip called RADIC5 has

been designed and implemented which includes the critical

circuitry designed by ACE-IC and library test components

from Ramon Chips. This test chip is currently under test by

Synergie-CAD and IHP. The results of this testing will feed

into updated component design by ACE-IC and Ramon Chips

which will be incorporated into the experimental VHiSSI chip.

The layout of the RADIC5 test chip is shown in Figure 6.

Figure 6 RADIC5 Test Chip

A radiation test board for the RADIC5 is currently being

designed and will be used to support the radiation testing of the

SerDes and other components on the chip.

An FPGA board is also being designed to support the

functional validation and system level validation of the VHiSSI

chip design prior to manufacture of the VHiSSI ASIC device.

This FPGA board will also be used to provide test signals for

functional testing of the VHiSSI ASIC device once it has been

manufactured.

The next steps are to complete testing of the test chip, to

finalise the design of the experimental VHiSSI chip, to

manufacture this chip, and to test it.

127

V. CONCLUSIONS

SpaceFibre is a powerful, multi-Gbits/s networking

technology for use on board spacecraft which has QoS and

FDIR capabilities built into the hardware. The VHiSSI project

is an EU Framework 7 project that is designing an

experimental SpaceFibre chip. The VHiSSI chip is

implemented in a small 100 pin package but provides complete

SpaceFibre interface and SpaceWire to SpaceFibre bridge

functionality. This chip is designed to cover the various

SpaceFibre network interface requirements envisaged for

different onboard systems, including SpaceWire bridging, high

data-rate instrument interfacing, and mass memory unit

interfacing. An initial test chip (RADIC5) has been produced to

test the critical radiation tolerant SerDes technology and the

radiation tolerant library components. The RADIC5 chip is

currently under test. The experimental VHiSSI chip will be

ready for testing during 2014.

ACKNOWLEDGMENT

The research leading to these results has received funding

the European Space Agency under ESA contract numbers

4000102641 and from the European Union Seventh

Framework Programme (FP7/2007-2013) under grant

agreement n° 284389. We would also like to thank Martin

Suess the ESA project manager for the SpaceFibre related

activities.

REFERENCES

[1] S. Parkes, A. Ferrer, A. Gonzalez, & C. McClements,

“SpaceFibre Standard Draft E1”, University of Dundee, 28th

September 2012.

[2] S. Parkes, A. Ferrer, A. Gonzalez, & C. McClements,

“SpaceFibre: Multiple Gbits/s Network Technology with QoS,

FDIR and SpaceWire Packet Transfer Capabilities”,

International SpaceWire Conference, Gothenburg, June 2013.

[3] S. Parkes, “Never Mind the Quality, Feel the Bandwidth:

Quality of Service Drivers for Future Onboard Communication

Networks”, paper no. IAC-10.B2.6.6, 61st International

Astronautical Congress, Prague 2010.

[4] S. Parkes, C. McClements and M. Suess, “SpaceFibre”,

International SpaceWire Conference, St Petersburg, Russia,

2010, ISBN 978-0-9557196-2-2, pp 41-45.

[5] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,

Nodes, Routers and Networks”, Issue 1, European Cooperation

for Space Data Standardization, July 2008.

128

Onboard Equipment & Software (Short)

129

Prototype of Onboard Mass Storage Device

Based on SpaceWire and SpaceFibre Interfaces
SpaceWire Onboard Equipment and Software, Short Paper

Viacheslav Grishin, Petr Eremeev, Sergey Gorbunov

JSC “NII “Submicron”

Zelenograd, Moscow, Russian Federation

grishin@se.zgrad.ru, epm@se.zgrad.ru, aser3000@ya.ru

Tatiana Solokhina, Alexander Glushkov, Ilya

Alekseev, Leonid Menshenin, Jaroslav Petrichkovich

“ELVEES” RnD Center

Zelenograd, Moscow, Russian Federation

tanya@elvees.com

Yury Sheynin, Elena Suvorova

St.Petersburg University of Aerospace Instrumentation

St.Petersburg, Russian Federation

sheynin@aanet.ru

Bernard Berne

3D Plus

Buc, France

bberne@3d-plus.com

Abstract—In this article the mass storage device prototype for

the onboard computing system of a new generation space

platform is considered. Its application, structure, information

interfaces and etc. are presented. Use of the high-speed

SpaceFibre and SpaceWire interfaces is offered.

Index Terms—Mass Storage Device, SpaceWire, SpaceFibre,

NAND-Flash, Memory Controller.

I. INTRODUCTION

Onboard control systems of existing spacecrafts, as a rule,

are built on the base of the separate systems controlled by the

digital computer, and are integrated in a single network by

means of the system level interface (usually it is MIL-STD-

1553). JSC «NII «Submicron» is to develop a perspective

onboard informational computing system (OICS) based on the

SpaceWire and SpaceFibre network technologies [1], [2] for

the new generation space satellites.

The onboard mass storage device (OMSD) is one of the

elements of developed OICS. It is intended for non-volatile

storage of digital information from Earth observation

equipment.

Existing highly reliable specialized storage devices of

leading world manufacturers are based on the NAND-flash

memory (e.g. “TCS”, USA; “Galleon Embedded”, Norway)

[3], [4]. This trend is justified primarily by the absence of

rotating mechanical parts, as in the classic hard disk drives.

This causes their increased reliability and service life.

Typically, the volume of target information and its

recording (or reading) rate to a drive have special requirements

to communication interface bandwidth. Thus baud rate can be

up to several Gb / s per channel and transmission line length of

up to 10 meters and more.

Typically, onboard specialized storage devices are made for

multi-channel connectivity of multiple sources of information.

It is caused by limitations of both the dimensions and weight

parameters and energy consumption.

The most common used in solid state drives interface is

SATA 2 (3Gb/s), SATA 3 (6Gb/s), PCI-Express (4 Gb/s),

Fiber Channel (up to 10 Gbit/s) [5].

The most appropriate is the idea of application a specialized

gigabit unified digital interface for use in the storage devices

for space applications. The aim is to provide unification of

cross-platform compatibility of equipment used in various

projects in different countries (including in the framework of

international cooperation), as well as reducing development

time and debugging the finished product.

To solve these problems the most promising interfaces are

SpaceWire and SpaceFibre. They are specially designed for use

in the on-board equipment of spacecraft. These interfaces allow

to work in a wide speed range from several Mbit/s up to several

Gbit/s and cover a wide range of solved problems on board [6].

II. DESCRIPTION

The structure of the OMSD and the OICS as a whole

suggests applying of SpaceWire and SpaceFibre high-speed

interfaces as a communication transmission medium of

instructions and data. The SpaceFibre interface will be used for

communication of those elements of OICS where data

transmission rates reach several Gb/s per channel. The

SpaceWire interface is used as the common unified

environment for transmission of commands and interaction

between all subsystems of OICS.

Structurally the OMSD consists of storage modules (from 2

to 15 modules) and two switch modules (Fig. 1).

Storage modules are intended for reception of input

information on two channels of the high speed SpaceFibre

interface and it’s saving in NAND-Flash memory. Switch

modules are intended for information transfer between storage

130

modules and for formation of an output flow to Earth via a high

speed radiofrequency line.

Basic elements of the storage modules are the memory

controller (MC) and NAND-Flash memory. Radiation-tolerant

chip MCT-03D is implemented as a "system on chip" based on

CPU IP-core with MIPS32 architecture, developed by

"ELVEES" RnD center.

Preliminary MCT-03D microprocessor main

characteristics:

• Central Processor Unit (CPU):
- Architecture – MIPS32 compatible;
- 16 KB data and 16 KB instruction cache with direct

mapped capability;
- Memory management unit (MMU): with TLB and

Fixed Mapped;
- Multiplier and Divider;
- FPU ANSI/IEEE Standard 754-1985, “IEEE

Standard for Binary Floating-Point Arithmetic.”,
Single and Double precision;

- JTAG IEEE 1149.1 On Chip Debug Unit;
- 128 KB RAM;
- five external interrupt, NMI.

• External Memory Port (MPORT):
- Data bus – 32 bit, Address bus – 24 bit;
- Built-in controller SRAM, NOR Flash, NAND

Flash, SDRAM;
- Program configuration type and size blocks of

memory;
- separate data buses for both system memory and

NAND-Flash controllers;
- Program configuration wait cycle of SRAM;
- supporting up to 16 banks of NAND-Flash memory;
- parallel simultaneous writing to four banks (four

channels) of NAND-Flash memory;
- technical speed of one NAND-Flash Memory

Interface channel no less than 33 МB/s;.

• Peripheral units:

- Two duplex SpaceWire (ECSS-E-50-12С) ports*,
from 2 up to 400 Мbod each with built-in the chip
LVDS transceivers;

- Four duplex GigaSpaceWire (SpaceFibre or
SpaceWire-RT for future upgrades) ports*, from 5
Mbod up to 1.25-2,5 Gbod each with built-in the
chip CML - compatible transceivers;

- Two Multifunctional Buffed Serial Ports (MFBSP):
SPI, I2S, LPORT, GPIO support;

- Two 4-channels DMA. Flyby mode data transfer
(ADSP-TS201);

• Interrupt controller;
- Two UART (16550);
- Two 32-bit interval timers;
- 32-bit Watch Dog timer.

• Additional features:
- “Radiation Tolerant” 120MHz ASIC for space

applications (CMOS, “RadHard by design”
process);

- several built-in the chip PLL;
- Internal and external memory Error correction:

single error correction and double error detection by
the Hamming code;

- Power saving Modes;
- Development and debugging tools: МСStudio-3М;
- C, C + + compiler;
- OS LINUX 2.6.36 and RTOS uOS support.

• Package: CQFP-240;

• ASIC status: experimental IC will be implemented by
ELVEES in 2013-2014.

Test samples (prototype) of the МСТ-03D chip (Fig. 2)

without built-in silicon 4-channels gigabit router (МСТ-03P

with one gigabit port) are designed for 0.18 µm design rules

and manufactured at the Russian factory [7].

NAND-Flash memory is based on modules commercially

available from 3D PLUS [8]. The OMSD consisting at 15

storage modules has total capacity up to 1 Tbytes.

III. MAIN CHALLENGES

The main tasks in the development of storage device are

managing the distribution of stored information, ensuring its

integrity during transmission and storage.

The problem of data distribution occurs due to the limited

memory amount of a single memory module and multi-channel

structure of the storage device as a whole, with all its channels

operating independently of each other. This problem can be

solved by sharing of switching modules and a common file

system of storage device. The task of switching modules will

include the management of information flows redistribution

among storage modules in accordance with the file table (i.e.

issuing commands to memory controllers). The task of the

memory controller is sending/receiving the information and

data exchange with NAND-flash modules (i.e. the

transformation of logical addresses in the files table to

corresponding physical memory addresses in a specific storage

module).

* ELVEES & SUAI IP - cores design

SpF1

SpW1

SpW0

SpF0

SpFi+1

SpFi

SpF1

SpF0

•••

MC

SpF SpW

NAND-Flash

Bank0

ROM BRAM

NAND-Flash

Bank7 FOT

FOT
Storage module 1

Storage modules 2 - 14

SpF29

SpF28

•••

MC

SpF SpW

NAND-Flash

Bank0

ROM BRAM

NAND-Flash

Bank7
FOT

FOT
Storage module 15

SpaceFibre

switch

SpaceWire

switch

FOT

to

Radioline

Switch module 0

Switch module 1

to Control

System

ONFI

ONFI

Fig. 1. The structure of the OMSD.

131

Fig. 3. View of the 3D storage module.

Ensuring the integrity of stored information during

transmission (or reading) will be made by using the mechanism

of jamfree coding. This may be a Reed-Solomon code, which

allows to identify and correct multiple errors in blocks of

information. This justified by the fact that the NAND-flash

memory cell are subject to wear and damage during operation.

This could affect the reliability of a previously recorded

original information. Also heavy charged particles may affect

the state of memory cells. Studies show that the algorithmic

processing reduces the chance of error in the decoded

information to values almost comparable with the use of

specialized radiation-tolerant memory. Ensuring the integrity of

information in the memory controller is through the use of

radiation-tolerant MCT-03D processor and the Hamming code

protected RAM. To ensure even wear of all memory blocks in

memory module, the memory controller will implement their

alternation when writing or erasing, and detect bad blocks.

Replacing bad blocks with the new ones will come from

reserve, which have already been laid by the manufacturer of

flash-memory chips in production.

Memory controller will also implement a special

accelerated procedure that verify the array of NAND-flash after

power-on or after the filing of a special command to the

memory controller. Full storage device efficiency (keeping the

rate of information exchange) at failure to 25% of the total

number of NAND-flash physical blocks is expected to achieve.

Procedures of memory blocks alternating and exchange will

take place automatically, providing storage reliable operation

with maintaining the required amount of flash-memory. For

algorithms and IP-blocks development of these procedures the

participation of the St. Petersburg University of Aerospace

Instrumentation (SUAI) is involved.

Separate microprocessor’s housing CQFP-240 takes a lot of

space on a board, in size comparable to two memory modules.

Therefore a further step in the development of the developed

OMSD we see in increasing of its elements integration, in

particular, the establishment of “memory controller - NAND-

flash” microassembly (Fig. 3).

This will significantly reduce the size of the storage module

by integrating the microprocessor’s die to the NAND-flash

memory module, which will be achieved through the use of 3D

PLUS State-of-the Art stacking technology [9].

IV. 3D PLUS STACKING TECHNOLOGIES

3D PLUS State-of-the Art stacking technologies for SiP

(System In Package) allow us to bring the best standard

semiconductor devices and technologies in one single highly

miniaturized package. The maximum dimension of the 3D

microassembly will be 35 mm x 35 mm x 11 mm (L x l x h)

(Fig.4).

The electronic parts in the stack of the microassembly will

be the MCT-03D in bare die developed by ELVEES RnD

center, 64 GByte NAND-flash already Space Qualified from

3D PLUS, some glue logic and the passive components

(resistors and capacitors).

A System-In-Package (SiP) consists of a number of

dissimilar integrated circuits enclosed in a single highly

miniaturized package. The SiP performs all or most of the

functions of an electronic system, and, it can contain several

silicon components (bare die or package) and passive

components.

Key features:

• very small form factor and low profile (more than 80%

reductions in size and weight + up-system and in

service induced benefits);

• heterogeneous systems : ability to merge different die,

package technologies (flip-chip, FBGA, SOT,

SOP,….) and form factors;

• improved reliability: space qualified stacking

technology, fewer connectors and solder-joints, rugged

Fig. 4. Application of "memory controller - NAND-flash»

microassembly.

Fig. 2. МСТ-03P with one gigabit port – the test sample of the

МСТ-03D chip without built-in silicon 4-channels gigabit router.

132

Fig. 5. FLOW 2 SiP Process Flow Chart

to extremely harsh environments;

• improved performance: improved speed and signal

integrity (less parasitic elements);

• improved flexibility: modular design enables low-cost

system changes, reduce PWB application routing

complexity;

• proven “first time right” design and development

methodology;

• recognized turn-key design, manufacturing and test.

The Flex Process– SiP Stack (Heterogeneous components

and mixed technology stacks) technology flow of 3D PLUS are

selected for the design of the microassembly.

This patented process has the unique capability to stack n-

High any heterogeneous active, passive, Opto-electronics and

MEMS/MOEMS devices in a single highly miniaturized

package and with almost no limit for the merging of

heterogeneous technologies (standard non modified Die or

packages with different sizes).

This 3D technology is based on the stacking of electronic

components (chips, commercial packages, sensors) placed on a

film layer generally 35mm wide, and so called flex. This

solution allows testing and screening the components of each

layer before stacking. This is the key feature for building ‘n’-

High stacks with a very good yield. The flex are then stacked

vertically and connected together thanks to a vertical

interconnection technique.

This technology allows gaining a factor of at least 10 on

weight and volume of the components comparing to existing

solutions. This is the most efficient technology for building

complex System-In-Packages (SiPs). It enables achieving a

combination that cannot be realized with monolithic System-

on-Chip (SoC) approaches, and it has a lower development cost

and a faster time to market. This capability domain is

referenced as FLOW 2 (Fig. 5) and is qualified by European

Space Agency (ESA) for Space applications.

3D PLUS has been Capability Approved by European

Space Agency (ESA) for the manufacturing of 3D stacked

modules.

3D PLUS is qualified as category 1 Manufacturer, the

highest qualification level that can be achieved in the ESA

specification ECSS-Q-ST-60-05C.

V. CONCLUSION

There are plans to develop transmission rates of serial I/O

duplex SpaceFibre transceivers up to 2.5 Gb/s and 6.25 Gb/s

per channel. It is planned to provide an opportunity to work on

copper cable with a 50 ohms characteristic impedance and via

fiber-optic transceivers (FOT on Fig.1). Further extension the

volume of storage device up to 4 Tbytes is under consideration.

REFERENCES

[1] SpaceWire website, http://www.spacewire.esa.int.

[2] Steve Parkes, Albert Ferrer, Alberto Gonzalez, Chris McClements,
SpaceFibre Standard, Draft D, University of Dundee, 2012.

[3] Telecommunication Systems (TCS), “Solid State Drives Overwiev”,
http://www.telecomsys.com/products/Space-and-Component-
Technology/solid-state-drives/solid-state-drives_overview.aspx.

[4] Galleon Embedded Computing, “Product Overview, Rugged Data
Recorders”, http://www.galleonembedded.com/datarecorders.html.

[5] Storage Reviews, “SSD interfaces”,
http://www.storagereview.com/ssd_interfaces.

[6] Y. Sheynin, T. Solohina and J. Petrichkovich, “SpaceWire technology
for parallel systems and on-board distributed complexes”,
Electronics:Science, Technology, Business, vol. 5, pp. 64-75, 2006.

[7] MCT-xx Radiation Tolerant Microprocessor Data Sheet, ELVEES RnD
center, 2013.

[8] 3D PLUS, “Radiation Tolerant Memory, FLASH NAND Product
Overview”, http://www.3d-plus.com/product.php?type=1&fm=20.

[9] 3D PLUS “System-In-Packages, System-in-Packages (SiP) Product
Overview”, http://www.3d-plus.com/product.php?type=6.

133

BepiColombo Solid State Mass Memory employing
SpaceWire

Session: SpaceWire Onboard Equipment and Software

Short Paper

Michele De Meo, Giovanni Saldi,
Guido Rosani

TAS-I
Gorgonzola (MI), Italy

michele.demeo@thalesaleniaspace.com,
giovanni.saldi@thalesaleniaspace.com,
guido.rosani@thalesaleniaspace.com

Wahida Gasti, Jeff Noyes,
James Windsor

ESA/ESTEC
Noordwijk, The Netherlands

 Wahida.Gasti@esa.int,
Jeff.Noyes@esa.int,

James.Windsor@esa.int

Joachim.Poeckentrup,
Reinhard.Eilenberger
EADS Astrium GmbH

Friedrichschafen, Germany
Joachim.Poeckentrup@astrium.eads.net,
Reinhard.Eilenberger@astrium.eads.net

Abstract — In the frame of the BepiColombo (BC) programme,
TAS-I Mila no has developed a Solid State Mass Memory unit
(BC-SSMM), embedding a SpW network, based on 10 AT7910E
SpW router ASICs, connecting 3 internal SpW nodes (Memory,
Supervisor A and Supervisor B) to the external ones (9 P/L
Instruments, 2 Transfer Frame Generators, On-Board
Computer, EGSE). The BC-SSMM behaves as the data exchange
centre for the other avionic units of the platform, all interfaced
through SpW links (nom. and red.). It implements the RMAP
protocol (ECSS-E-ST-50-52C) for router configuration and
monitoring, the CCSDS packet transfer protocol (ECSS-E-ST-
50-53C) for storage and retrieval of CCSDS packets and a
mission specific protocol supporting the exchange of multiple
CCSDS packets as cargo of a single SpW packet. The
BepiColombo platform is the first flying programme using SpW
standard also for the C&C link with the OBC, traditionally based
on other mature standards (e.g. Mil 1553 stdbus). Time code
distribution supports On Board Time (OBT) synchronisation,
replacing the harness needed to distribute dedicated pulse
signals. BC gives the opportunity to test the compliance of the
AT7910E SpW router ASIC with the ECSS-E-ST-50-12C and to
identify important and handy improvements. It also allows to
verify the performances of the SpW network, in term of
collisions, stalling, routing latency and throughput, in relation to
the policy used for logical address mapping and other network
configurable features management (timeouts, autostart…etc.).
The SpW network is the support to all the higher layer functions
implemented inside the BC-SSMM (e.g. PUS services as per
ECSS-E-70-41A). A lack inside ECSS-E-ST-50-12C about
connectors is finally highlighted.

I. SCENARIO

The typical application scenario for the BC-SSMM is a
multi-instrument/payload satellite where several independent
Users provide data, organized in CCSDS source packets, to be
stored on-board into files (named packet stores – PS) and then
retrieved, according to the storage and retrieval criteria
defined in the Packet Utilization Standard (ECSS-E-70-41A).
The BC-SSMM features SpW I/Fs with 9 Payload Instruments

(P/L), the On-Board Computer (OBC) and 2 Telemetry
Format Generators (TFG), plus an EGSE SpW I/F to support
spacecraft assembly integration and test (AIT) on Ground.

The I/O SpW data links and their cross-strap philosophy
are shown in Fig. 1. Each P/L, OBC and TFGs can
independently operate with either its nominal or redundant
SpW I/F at a rate between 10 and 100 Mbps, though in
BepiColombo most of these I/Fs run at 10Mbps.

The SSMM exchanges, through these SpW I/Fs, CCSDS
packets that can either be TC (from OBC to SSMM, or from
OBC to P/Ls through SSMM), or TM (from P/Ls and OBC to
SSMM, or from SSMM to TFGs and OBC). Each TM or TC
is transferred as cargo of a SpW packet as per ECSS-E-ST-50-
53C.

X-Band
&

Ka-Band
TFGs

A

X-Band
&

Ka-Band
TFGs

B

PM
A

PM
B

O
B

C

SpW

SpW

SpW

SpW

SpW

SpW

SpW

SpW S
S

M
M

IN
 I

/F
 A

IN
 I

/F
 B

O
U

T
 I

/F
 B

O
B

C
 I

/F
 B

O
U

T
 I

/F
 A

O
B

C
 I

/F
 A

PL 2

PL 3

PL 4

PL 5

PL 6

PL 7

PL 1

PL 8

PL 9

SpW

SpW

P
A

Y
L

O
A

D
s

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

Fig. 1. BC-SSMM SpW links input/output cross-strap philosophy

134

An exception is represented by non-science CCSDS packets,
already collected by the OBC but addressing Ground; many of
these CCSDS packets become the cargo of a SpW packet sent
from OBC to the Supervisor (SUP). These packets carry in
their header a protocol identifier=240, specifically used for the
BepiColombo application (as per ECSS-E-ST-50-51C).
Another exception is represented by the TM packets towards
TFGs, each embedded as cargo of a single SpW packet with
only one destination address octet used to represent the down-
link Virtual Channel it is transmitted to.

II. ARCHITECTURE

The SSMM features a self-redundant and Single Point
Failure (SPF) free architecture, shown in Fig. 2, consisting of:

• Supervisor modules A/B (managing all the BC SSMM
operations) each embedding a Supervisor SpW node
and a SpW router

• Memory Array of 3 Memory Modules (MM) as
required by mission capacity (384 Gbit EOL) and
reliability

• Input modules A/B (managing data storage)
• Output modules A/B (managing data retrieval)
• SUP DC/DC Converter modules A/B each supplying

the associated (A or B) Supervisor module
• MEM&IO DC/DC Converter modules A/B supplying

(through an SPF free OR) the MMs and the I/O
modules.

Redundant functions A and B are housed on separate
PCBs. Any combination of “A” and “B” functions is possible
except for the Supervisor Module and SUP DC/DC Converter
Module; for these last only the A-A or B-B combinations are
possible. Any single failure can affect an I/O router of the
cross-strap, or the “A” or “B” part of an internal function; the
failure remains isolated inside the affected function or router.
After recovery of the first failure the SSMM is still fully
operational.

Each Input module embeds 3 SpW routers and 1 Write
Controller FPGA (WRC-FPGA - ACTEL RTAX2000) which
handles storage of the incoming CCSDS packets into the
destination PSs inside the MMs. Each Output module embeds
1 SpW router and 1 Read Controller FPGA (RDC-FPGA -
ACTEL RTAX2000) which handles retrieval of the outgoing
CCSDS packets from the source PSs inside the MMs. From
SpW viewpoint the 3 MMs and the 2 I/O modules (without the
8 SpW routers) act as a single SpW node, linked to the parallel
ports of the associated 8 SpW routers.

Each Supervisor Module hosts a processor core
(ERC32uP, PROM, EEPROM, RAM) running the application
software (SW), 1 SpW router and 1 FPGA (OBT&C&C-
FPGA - ACTEL RTAX2000), buffering I/O data to/from the
SpW network. From SpW viewpoint the processor core and
the OBT&C&C-FPGA act as a single SpW node, called the
supervisor node, linked to the parallel ports of the associated
SpW router.

Therefore the SSMM embeds 3 SpW nodes (supervisor A,
supervisor B, and the combined MM & I/O modules) and 10
SpW routers, interfacing the 12 external SpW nodes (plus the

EGSE) and providing internal routing paths to allow packet
switching between any couple of internal and external nodes.

1

2

3 4 7 5

68

9

10

LEGENDA:

SpW ROUTER

SpW NODE

SpW Link
SpW Link (x-trapping only)
SpW Router Internal Parallel Port
SpW mdm connector
Internal MMs I/O Parallel Data Link
other external connector

PCB

J09 J11 J10 J12

J02J03J04J01

P
P

L
 2

A

OR

P
P

L
 1

A

S
P

V
 O

N
/O

F
F
 A

 R

S
P

V
 O

N
/O

F
F
 A

 N

POWER
SUPPLY
MODULE

A

VAVSPV A

SPV
DC/DC

MEM&IO
DC/DC

OR

D
C

/D
C

 M
o

n
it

o
rs

 A

Int. MEM&IO A
ON/OFF A&B

6E
6F

J36J37J38J35

J14

J13

J24

J25

J26

J27

J28

J29

J30

J31

J32

J33

J34

J23

J22

J21

J20

J19

J18

J17

J16

J15

J05 J07 J06 J08

PS
Player

&

3x2
Switch
Matrix

192 Gbit
Memory
Module

#1

192 Gbit
Memory
Module

#3 (back-up)

192 Gbit
Memory
Module

#2

INPUT/OUTPUT MODULE
A

P/L I/F 1 N

P/L I/F 9 N

P/L I/F 8 N

P/L I/F 7 N

P/L I/F 6 N

P/L I/F 5 N

P/L I/F 4 N

P/L I/F 3 N

P/L I/F 2 N

X-Band TFG I/F N

Ka-Band TFG I/F N

O
B

C
 I

/F
 A

 R

O
B

C
 I

/F
 A

 N

E
G

S
E

 I
/F

 A

R1

R3

R2

R4

R5

INPUT/OUTPUT MODULE
B

P/L I/F 1 R

P/L I/F 3 R

P/L I/F 2 R

X-Band TFG I/F R

Ka-Band TFG I/F R

O
B

C
 I

/F
 B

 R

O
B

C
 I

/F
 B

 N

E
G

S
E

 I
/F

 B

R1

R3

R2

R4

R5

1

2

34 7 5

68

9

10

9

10

6 4 5

1
3

2

1

2

3 4 5

67
9

10

1

2

34 6 5

87

9

10

1

2

3 4 6 5

87
9

10

1

2

3 4 5

67
9

10

1

2

34 7 5

68

9

10

9

10

64 5

1
3

2

5

2

1

3
4

8 6 7

5

2

1

3
4

8 6 7

9 10

9 10

P/L I/F 6 R

P/L I/F 5 R

P/L I/F 4 R

Input Data
Cross-Strap

Output Data
Cross-Strap

P
P

L
 2

B

OR

P
P

L
 1

B

S
P

V
 O

N
/O

F
F
 B

 R

S
P

V
 O

N
/O

F
F
 B

 N

POWER
SUPPLY
MODULE

B

VBVSPV B

SPV
DC/DC

MEM&IO
DC/DC

OR

PS
Player

&

3x2
Switch
Matrix

0
1

0
1

D
C

/D
C

 M
o

n
it

o
rs

 B

Internal
MEM&IO B

ON/OFF A&B

J
-T

a
g

 &
 U

a
rt

 &
G

P
IO

 &
 T

e
s

t
A

J
-T

a
g

 &
 U

a
rt

 &
G

P
IO

 &
 T

e
s
t

B

P/L I/F 9 R

P/L I/F 8 R

P/L I/F 7 R

6C
6D

W
R

C
 F

P
G

A
 -

 B

MEMORY SpW NODE

SUP A SpW NODE

OBT and C&C
FPGA

SUP. MODULE A

PROCESSOR
&

MEMORY

SUP B
SpW NODE

PROCESSOR
&

MEMORY

OBT and C&C
FPGA

SUP A SpW ROUTER

SUP B
SpW ROUTER

1+1
OUT SpW
ROUTERs

3+3
IN SpW

ROUTERs

W
R

C
 F

P
G

A
 -

 A

R
D

C
 F

P
G

A
 -

 A
R

D
C

 F
P

G
A

 -
 B

SUP. MODULE B

Fig. 2. BC-SSMM block diagram.

Each of the 3 internal nodes is separately supplied; one
supervisor node behaves as master and supervises all the
memory node operation, while the other supervisor can be
activated in service mode only and doesn’t interact with the
memory node and with the master one; the memory array can
therefore save the stored data and file system data even when
the master supervisor is switched-off.

The WRC-FPGA of the BC-SSMM splits incoming
CCSDS packets (of 4112 bytes max) in segments before
recording, while the RDC-FPGA reassembles outgoing
CCSDS packets after segments retrieval (128 bytes/segment
max.).

Storage and Retrieval of packets occurs in a wormhole
fashion through the WRC/RDC-FPGA, from/to a SpW link,
to/from the PSs of the Memory Array; therefore the 9 users
and the 2 TFGs can concurrently and randomly access the

135

same memory module without latencies, via small temporary
buffers inside the WRC and RDC-FPGA. This ensures that the
max I/O throughput can be achieved under any random traffic
condition even when all the I/O accesses are concentrated onto
one MM of the Memory Array.

Therefore the I/O module relieves the SW running on the
operational supervisor from any overhead due to
storage/retrieval of packets into/from (the PSs of) the Memory
Array. Dynamic SW intervention is limited to allocation of
memory areas needed for the ongoing storage/retrieval
operations (typically assignment of sectors to be written/read
for each involved PS). The Application SW higher layer
functions implement the data storage according to PUS service
15 and the data retrieval according to PUS service 13 and 15.
Data storage is done routing each packet to a PS according to
its application process identifier (APID). An exception is the
storage of P/L non-science packets which is done into a single
cache PS according to the logical address; the same applies for
the storage into the PS used as destination of a copy operation.

Figure 3 shows the open BC-SSMM, while Fig. 4 shows
the actual BC-SSMM PFM.

Fig. 3. BC-SSMM PFM open box view

Fig. 4. BC-SSMM Proto Flight Model.

The BC-SSMM consists of 9 boards, plugging into a
passive motherboard as follows:

• 1 board for each MM � 3 boards
• 1 board housing 1 I/O module (A/B) � 2 boards
• 1 board housing 1 (A/B) Supervisor module � 2

boards
• 1 board housing 1 SUP DC/DC Conv. and 1 MM&IO

DC/DC Conv. � 2 boards.

III. THE BC-SSMM SPW NETWORK

A. Topology & Mapping

The network topology is the best compromise satisfying
the user requirements in terms of performances (i.e. overall
data throughput=~60Mbps, latency<10ms) and budgets
(mass<12Kg; power consumption<60W; dimension LxWxH=
340x282x251mm; reliability=0,994 over 7,5 years). It is not
based on a common scheme (e.g. tree, ring, star, grid based tor
etc), but has the purpose to ensure that each SpW node (P/Ls,
OBC, TFGs and the 3 internal ones) can operate its I/O data
without suffering the I/O operations of the other nodes;
indeed, in the BepiColombo scenario, the BC-SSMM can
simultaneously sustains the following packet flows:

• Science TM packets from 9 P/Ls to memory
• TC packets from OBC to 9 P/Ls
• P/L non-science TM packets from 9 P/Ls to memory

(these include event packets, acknowledge (ACK)
packets to Ground telecommands and ACK packets to
OBC telecommands; they are all accumulated into a
cache PS for later sorting)

• Non-science TM packets from memory to OBC (these
are the event and ACK packets of the previous point;
OBC sorts its own packets and assembles multiple TM
packets (4112-byte) for Ground into single SpW
packets sent to the master supervisor, which then
disassembles them and sends the elementary non-
science TM packets to memory for later down-link

• Multiple non-science packets from OBC to the master
supervisor (these include the ACK to Ground
telecommands of the previous point to be stored and
later down-linked)

• Non-Science TM packets from master supervisor to
memory (obtained after disassembling SpW packets of
the previous point, each carrying multiple CCSDS
packets re-transmitted by the OBC)

• TC packets from OBC to SUP A
• TC packets from OBC to SUP B
• SSMM TM packets from SUP A to OBC
• SSMM TM packets from SUP B to OBC
• TM packets from memory to master supervisor (to be

assembled by application SW into 4112-byte packets
named File Data Units - FDU- as per PUS service 13)

• TM packets from master supervisor to memory (4112-
byte FDUs as at the previous point)

136

• TM packets (i.e. 4112-byte FDUs of the previous
point) from memory to the TFG supporting PUS
service 13

• TM packets from memory to the TFG supporting PUS
service 15

• TM packets from memory to memory (copy
operations)

Since most of the packet flows reach the memory node, it
provides six input ports to sink up to 6 packets at a time from
the network (i.e. from 12 source nodes via the input routers).
Conversely two output ports are sufficient to retrieve up to 2
packets at a time from memory and forward towards the
network (i.e. towards 5 destination nodes via the output
routers). Other internal SpW links interconnect the 10 internal
SpW routers, to provide routing paths to any packet flow.

Each packet flow is point to point exchanged between a
couple of SpW nodes. Though the assignment of more than
one logical address per node is unusual, each internal node of
the SSMM is associated to as many SpW logical addresses as
the number of packet flows it is reached by; this allows the
identification of the sender and of the packet type in the
receiving node.

The assignment of logical addresses (reflected into the
routing tables of the routers crossed by the corresponding
packet flow) is such that each packet follows the shortest path
to reach its destination, minimising collisions with other
packets.

Each packet flow can follow more than one routing path
from the same source node to the same destination node. The
number of possible routing paths depends on:

• the internal redundancy configuration (A or B
functions)

• the external (nom or red) SpW I/Fs used by each P/L,
by each TFG and by the OBC

• the SpW routers of the I/O cross-strapping which may
be all operating, or 1 of them failed (8 cases).

After detection of an internal failure (affecting any A or B
function, or a SpW router of the I/O cross-strapping), the BC-
SSMM application SW re-programs the routing tables of the
active SpW routers to reallocate all packet flows in the new
degraded configuration. Routing tables programming is
performed by the master supervisor through command/reply
RMAP packets (as per ECSS-E-ST-50-52C) exchanged with
each target router, using path addressing. Alternative routing
paths from supervisor to each target router are available for
RMAP packets too, to cope with possible failure of any
intermediate router.

B. Collisions & Latency

Each SpW node (the BC-SSMM internal 3, the 9 P/Ls and
the OBC), generates packets asynchronously with respect to
the other nodes and therefore collisions may occur.
Nevertheless the additional wait time due to a collision is well
tolerated by each SpW node since it cannot take more than the
transfer time of the longest CCSDS packet (4,1164ms for
4112-byte on a 10Mbps SpW link without null characters).
The transfer time is guaranteed by the properly sized TX and

RX buffer equipping each source and destination node of the
BC platform; for the SSMM internal nodes:

• the memory node directly sinks/sources any
incoming/outgoing packet into/from the addressed PS

• each supervisor node does the same via 5KB rx/tx
buffers read and written by the application SW

Therefore in case two longest packets generated by node A
and node B, addressing the same node C, collide at an output
port of a router, the unlucky packet has to wait 4,1164ms max.
for the output port to become free. This complies with the
latency required for the BC platform (<10ms from P/L to
memory).

The selected asynchronous approach saves the
implementation of a synchronization process spread over all
network nodes (e.g. assigning precise time slots to each source
node) to prevent collision of packets at any router output port.

Inside the SSMM, before the first failure of a router or of a
FPGA, up to 4 packets may collide onto 2 output ports of an
input router (configured in group adaptive routing mode); the
last 2 packets shall wait until the first 2 packets free the 2
output ports. Latency is here to be intended as the wait time
for the SpW routing path to become free from the source node
up to the destination node. Once the routing path is free, then
the packet can be forwarded according to the signalling rate of
the slowest crossed link. Therefore the actual transfer time of
a packet through the SSMM is the sum of the latency and of
the transfer time of a packet through a free routing path.

With the purpose to minimise collisions, the non science
packets from the 9 P/Ls to the OBC are stored into a cache PS
of the SSMM and then forwarded to the OBC rather than
being wormhole routed towards the OBC. In the former case
the memory node sinks 6 packets at a time and the collision of
9 packets onto six output ports allows the 3 unlucky P/Ls pay
a 1x wait time (<=4,1164ms); in the latter case the OBC
would sink 1 packet at a time and P/Ls would pay up to 8x
wait time. Therefore the selected store&forward scheme,
though complex, prevents that a P/L experiences an excessive
wait time before transmission of a packet, i.e. the risk to loose
internally generated data due to overflow of its TX buffer.

C. Stalling

Once the routing path from source node to destination
node is free, additional wait time would be due to the source
or destination which, in case of failure, causes a packet to stall
on its routing path. Stalling propagates to all the packet flows
sharing 1 or more SpW links of their routing path with that of
the stalled packet, as established by network topology and
logical address mapping.

The SSMM, no matter as source or destination, by design
prevents any stalling unless an internal router or node is
affected by a permanent failure (hopefully unlikely), however
recovered via the foreseen switch-over procedure.
Nevertheless the SSMM is equipped to handle and report to
the OBC stalling due to the P/Ls. The SSMM doesn’t handle
stalling due to the OBC (and the TFGs it embeds), but it
doesn’t hang up and resumes any halted operation as soon as

137

the OBC (i.e. the highest hierarchical level of the BC
platform) will recover the stalling; in particular:

• stalling of a TM packet from a P/L towards the
Memory Array, due to the P/L, is supported by a
timeout mechanism which, causing a temporary
disconnection of the P/L SpW link, sets free the path
towards the Memory Array for the other P/L packets
colliding onto an output port of the same input router.
The stalled packet is then received, after the link
disconnection, in a truncated shape (EEP terminated)
and stored into the Memory Array. The event is
reported to the OBC and normal operation immediately
restarts.

• stalling of a TC packet from OBC towards a P/L:
• if caused by the destination P/L (i.e. the P/L sinks

no more data), is supported by the timeout
mechanism of the input routers, configured in
“Watchdog Timer” mode, which flushes
automatically the stalled packet; then an event is
reported to the OBC. After packet removal the
OBC can forward a subsequent TC packet either
to the SSMM or to the P/Ls.

• if caused by the source OBC (i.e. the OBC sources
no more data), can be recovered only by the OBC.
If a copy operation (memory to memory) is
running in background, then it stalls too together
with all the other retrieval operations from
Memory to TFGs, to OBC (non-science packets)
and to master supervisor (packets for FDUs
assembly). Though the timeout mechanism of the
input router truncates (with an EEP) the TC packet
forwarded to the P/L, no timeout mechanism is
configured in the supervisor router and output
routers to ensure consistency of the ongoing
operations, which are immediately resumed as
soon as the OBC will remove the stalled packet.

• stalling of a TC packet from OBC to SSMM, due to
the source OBC, can be recovered only by the OBC.
The stalling has no effect on other packet flows, since
it affects only the SpW link between the SSMM and
the OBC.

• Stalling of a TM packet towards the OBC, due to the
destination OBC, halts the ACK TM from Supervisor
to OBC, together with all the other retrieval operations
from Memory towards TFGs, OBC (non-science
packets), master supervisor (packets for FDUs
assembly) and Memory (copy). No timeout mechanism
is implemented to ensure consistency of the ongoing
operations which are immediately resumed as soon as
the OBC will remove the stalled packet.

• Stalling of a TM packet from Memory Array to the
TFG supporting service 13 Virtual Channel (VC), due
to the destination TFG, halts the background operation
inside the SSMM (i.e. file copy and FDU assembly).
As the TFGs are part of the OBC, it is up the OBC to
remove the stalled packet (e.g. by disconnecting the
TFG link)

• Stalling of a TM packet from Memory Array to the
TFG supporting service 15 VC, due to the destination
TFG, halts the non-science packets from the Memory
Array to OBC. As the TFGs are part of the OBC, it is
up the OBC to remove the stalled packet (e.g. by
disconnecting the TFG link).

In all cases stalling due to OBC or TFGs doesn’t affect
storage of science packets. Conversely if the OBC stalls for
more than ~3sec while sinking non science packets retrieved
from the cache PS, this last may overflow and subsequent
non-science packets generated by the P/Ls are discarded (but
no stalling on any P/L SpW link occurs).

D. Throughput

The average input net data rate (=stored bit/sec) from the 9
P/Ls is expected to be ~50Mbps. The SpW signalling rate is
set at 10 Mbps for 8 P/Ls and 100Mbps for 1 P/L. Since the
input module multiplexes the 9 P/L SpW links onto the 6
parallel ports of the active WRC-FPGA, it is able to sink 6
packets at a time, 5 at 10mbps and 1 at 100Mbps, equivalent
to a peak net input data rate of 120Mbps which can be
continuously sustained from the input SpW links up to the
SDRAM ICs of the addressed MMs.

The average output net data rate (=retrieved bit/sec) is
limited by the actual sink rate of each destination node. It is
expected to be ~1,5Mbps towards the 2 TFGs, as limited by
the down-link RF bandwidth. The SpW signalling rate is set at
10 Mbps for both TFG SpW links; the available net output
data rate towards the 2 TFG SpW links (16Mbps) is never
reached (except at TFGs’ reset when their input buffers are
still empty).

Therefore the SSMM throughput on the retrieval path
provides a large margin with respect to 1,5Mbps; this margin
is used to retrieve packets in background towards the internal
memory (for copy), towards the master supervisor (for FDU
assembly as per PUS service 13) and towards the OBC (for
non-science packets). The available net retrieval data rate
towards internal destination nodes is 16Mbps and is fixed by
the single internal SpW link from the output router to the
supervisor router running at 20 Mbps (as it occurs for all the
internal SpW links).

The retrieval of packets for background operation (copy
and FDU assembly as per PUS service 13), is interleaved
(through the same RDC-FPGA output port linked to an input
parallel port of the output router) with the retrieval of 4112-
byte FDUs towards the TFG supporting service 13. The
retrieval of an FDU takes from 47ms to 82ms (when the bit
rate of the TFG supporting PUS service 13 varies from 700 to
400 Kbps); this is not critical for the background operations
which lock their average retrieval rate at 2x the TFG rate,
though transferring each packet at 16Mbps (without null
characters).

The retrieval of non science packets from the cache PS
towards the OBC (flow controlled at 57 pkt/250msec to
prevent problems with the OBC central SW) occurs at 8Mbps
(i.e. the OBC net sink rate) with high priority through the
other RDC-FPGA output port shared with the packets towards

138

the TFG supporting service 15. The throughput on the 10
Mbps SpW link between SSMM and OBC is limited by the
capability to sink/source packets of the application SW
running in both units. SSMM stand-alone test with all the
SSMM SpW links running at a 100Mbps SpW signalling rate
has been successfully performed.

IV. AT7910E SPW ROUTER ASIC EXPERIENCE

The SpW Router has demonstrated to be a well conceived
and robust design. The BC-SSMM, exploiting its routing
capabilities, features now performances (mass, power
consumption, reliability….) which could have been never
reached with alternative state of the art devices. The
application SW of the BC-SSMM doesn’t suffer any overhead
due to the routing of packets to/from P/Ls and towards TFGs,
since it handles only the SpW packets sunk /sourced by the
master supervisor SpW node.

Nevertheless the experience of TAS-I Milano has
highlighted few minor problems solved with a work-around
and few nice to have improvements which would have
simplified the BC-SSMM development; in particular:

• a true data sheet of the device is still missing, though
this lack is partially compensated by the user manual

• the initial signalling rate of a SpW output port may not
be 10Mbps, unless 10 Mbps is initialized inside the
corresponding port control register

• the following features, though useless for applications
with stand-alone remote routers, would be welcome for
any unit embedding routers controlled by a host
microprocessor:
• a dedicated interrupt pin, asserted each time an

error is sensed on a router port (with mask
capability)

• possibility to read/write from/into any internal
register without any RMAP packet exchange (e.g.
via a host interface obtained by combining the
current Status Interface and Time-code Interface)

• option to automatically append the CRC octets to
each RMAP packet injected into the parallel port
and addressed to the same router or to other
routers of the same SpW network.

V. SPW STD CONNECTOR

The ECSS-E-ST-50-12C doesn’t deal with SpW cables
linking two SpW nodes placed in two locations “A” and “B”,
physically separated by an intermediate barrier “C” as it
occurs for:

• a unit in a thermal-vacuum chamber linked to an
external test equipment during AIT on Ground

• two units of the same satellite platform with a wall in
between.

A SpW link like this consists of three main sections:
• the cable from “A” to the left side of “C”
• the wiring through “C”
• the cable from the right side of “C” to “B”

The 9-contact micro-miniature D-type (MDM) connector
is not suitable for both sides of “C” since in case the 4 shields
of the twisted pairs would be tight to pin 3 of the MDM
connector (on each side of “C”), the signal grounds of the
SpW nodes “A” and “B” would be shorted together through
the link. This contrasts with figure 5-3 in chapter 5.4 of the
ECSS-E-ST-50-12C std.

With the purpose to maintain separation of the 4 inner
shields, still matching the 100 Ohm cable impedance also
through the intermediate barrier (the shield of each twisted
pair has been tight to 8 or 9 contacts around the 2 contacts of
the associated differential signal), TAS-I Milano developed a
specific SpW cable, terminated on one side with a 9-contact
MDM connector and on the opposite side with a 44-contact
high density connector, as shown in Fig. 4.

Din Din
-

+

-

+

Length=1,5m

Dout SHD44

Dout SHD43

Dout SHD42

Sout SHD41

Sout SHD40

Sout SHD39

Sout SHD38

Sin SHD37

36

35

34

Din SHD33

Din SHD32

Din SHD31

Sin SHD

Sin SHD

Sin SHD

Dout SHD30

Dout +29

Dout -28

Dout SHD27

Sout +26

Sout -25

Sout SHD24

23

22

21

20

Din SHD19

Din -18

Din +17

Sin SHD

Sin -

Sin +

Dout SHD14

Dout SHD13

Dout SHD12

Sout SHD11

Sout SHD10

Sout SHD9

Sout SHD8

Sin SHD7

6

5

4

Din SHD3

Din SHD2

Din SHD1

Sin SHD

Sin SHD

Sin SHD

Din SHD16

15

HDD44S connector
(socket face view)
pin names refer to

BC-SSMM
 internal signals

MDM9P connector
(plug face view)

pin names refer to
BC-SSMM

internal signals

Din +

Sin+

Dout&Sout SHD

Sout -

Dout -

Din - 6

Sin - 7

Sout + 8

Dout + 9

1

2

3

4

5

Low impedance bound
from outer braid to connector shell

of BC-SSMM side

outer
braid

Four 100 Ohm twisted shielded pairs inside an outer braid
(The 4 inner shields are isolated from one another)

Low impedance bound
from outer braid to connector shell

only on int. TV bracket side

+ +

Dout Dout
-

+

-

+

Sout Sout
- -

Sin Sin
-

+

-

+

outer
braid

Fig. 5. BC-SSMM specific SpW cable for Thermal Vacuum Chamber.

The BC-SSMM tests in the TV chamber have been
successfully performed up to 100Mbps using two cables like
this (1,5m + 5m) for each SpW link connecting the internal
SSMM to its external test equipment.

VI. CONCLUSION

The use of the SpW standard is becoming widespread over
many programmes, though often limited to the implementation
of point to point interconnections replacing alternative
solutions (e.g. RS-422, Mil1553-std…..etc.). Conversely the
BC-SSMM is the first representative implementation of an
actual SpW network with routers and nodes fitting the purposes
of the ECSS-E-ST-50-12C. The flexibility of a design based on
a SpW network, is confirmed by the immediate reuse of the
BC-SSMM in Solar Orbiter, applying little adjustments to
house one more instrument and to map additional packet flows.
The SSMM internal SpW network is also suitable to implement
additional services like the CCSDS File Delivery Protocol
(already implemented as customization of PUS Service 13 and
15).

139

Networks & Protocols (Short)

140

Deterministic Scheduling of SpaceWire Data Streams
Networks and Protocols, Short Paper

Dmitry Raszhivin, Yuriy Sheynin, Alexey Abramov
St.Petersburg University of Aerospace Instrumentation

Saint-Petersburg, Russia
dmitry.raszhivin@guap.ru

Abstract—The topology of an onboard computer network
is determined by the physical location of nodes (sensors,
computer modules, databases, etc). Data flows in network
are determined by a sender and receiver pair (or set of
receivers in case of multicasting). A packet flow could be
organized through a number of intermediate switches.
Time division multiple access allows several users to share
the same channel by dividing their channel access time
into different time slots. Operation of a network is
managed by a schedule that defines which node is allowed
to initiate a transmission at any particular time. This table
shall be compiled on the one hand to prevent conflicts in
the network resources usage, and on the other hand to
utilize the resources as the highest level as possible. The
aim of the work presented in this paper is to develop a
method of finding the best routes for all data flows in a
network and compiling an optimal schedule table, which
guarantees deterministic data transmission.

Index Terms— SpaceWire-D, Scheduling

I. INTRODUCTION

Nowadays time-scheduled protocols over SpaceWire [1]
(SpaceWire-D [2], SpaceWire-T [3]) are actively discussed and
developed. These protocols can be developed as a network
service running at existing SpaceWire equipment [8].
Deterministic data delivery with predictable characteristics is
achieved by using time-division multiplexing, that is managed
by a schedule table. SpaceWire-D provides several types of
schedule table, but does not offer any algorithm of constructing
such a tables. By routing data streams through one or another
path using different intermediate switches different scheduling
tables with discrepant characteristics would be obtained.

II. GRAPH COLORING APPROACH TO SOLVE SCHEDULING TASK

In the graph theory, graph coloring is a procedure of the
assignment of labels traditionally called "colors" to the
elements of the graph, in such a way that no two adjacent
vertices share the same color [5]. The chromatic number of a

graph G is the smallest number of colors K needed to correctly
color all the vertices of G, i.e. the smallest value of k possible
to obtain a k-coloring.

Scheduling task can be referred to vertex coloring task.

Consider n data flows N
iiJ)1(}{ − and competition

matrix }{ ijmM ≡ , where ijm is equal to one if iJ competes

with jJ , and to zero otherwise. Representing every flow iJ

with node iA and connect with undirected edge ije nodes iA

and jA if 1=ijm , schedule table making task can be

considered as a coloring task for graph G witch consist of

nodes N
iiAGV)1(}{)(−≡ and edges }{)(ijeGE ≡ . Minimal

value of time-slots, required for deterministic schedule
organization, is equal to the chromatic number)(Gk of a

graph G [6].

Examine a the network shown in Fig. 1. This network
consists of five nodes and includes five data flows defined in
table I.

Fig. 1 Example network

141

TABLE I. CORRESPONDENCE BETWEEN FLOWS AND NODES

Flow Source Destination

1X a b

2X a c

3X a d

4X b d

5X c e

A competition matrix for this data flows is presented in table

II. In this example flow 1X competes with flows 2X and

4X , flow 2X competes with flows 1X and 5X etc.

TABLE II. SAMPLE OF COMPETITION MATRIX

 X1 X2 X3 X4 X5
X1 * 1 0 1 0
X2 1 * 0 0 1
X3 0 0 * 1 0
X4 1 0 1 * 1
X5 0 1 0 1 *

This competition matrix can be interpreted as adjacency
matrix for a new graph H. The result of coloring procedure for
this graph H is shown in Fig. 2. For given example coloring is
absolutely trivial and chromatic number is two. The network

resources are allocated for data flows 1X , 3X and 5X in

first time-slot and for data flows 2X and 4X in the second

time-slot.

Fig. 2 Competition matrix colored graph

III. COLORING

During our work we studied and developed several
algorithms for graph coloring.

A. Greedy coloring

A greedy coloring is a coloring of the vertices of a graph
formed by a greedy algorithm that considers the vertices of
the graph in sequence and assigns to each vertex an available
color. Generally, greedy colorings do not use the minimum
number of possible colors, however they have been deployed
in mathematics as a technique for proving other results about
colorings as well as in computer science as a heuristic to find
colorings with few colors.

B. Liquid scheduling

The capacity of a network can be called as its liquid
throughput. The liquid throughput corresponds to the flow of a
liquid in an equivalent network of pipes. E. Gabrielyan and
R.D. Hersch [7] proposed to schedule the data flows of a
network in accordance with a schedule yielding the liquid
throughput. Such a schedule called liquid schedule takes into
account the underlying network topology and ensures an
optimal utilization of all bottleneck links. In order to build a
liquid schedule the traffic is partitioned into time slots
comprising mutually non-congesting flows which keep all
bottleneck links busy during all time slots. The search for
mutually non-congesting flows utilizing all bottleneck links is
of exponential complexity. An efficient algorithm presented in
[7] traverses the search space non-redundantly and limits the
search to only those sets of flows, which are non-congesting
and use all bottleneck links.

C. Heuristic coloring with QoS requirements

Time division of a bandwidth guarantees deterministic
delays, but it is very important to predict throughput as well as
transmission delays. Greedy coloring and liquid scheduling
don't take in mind any throughput requirements for data flows,
so we developed an algorithm that builds scheduling table
based on several QoS requirements. Several steps are
performed to reduce a search tree of the NP-complete brute-
force problem:
1. Find all possible routes for all data flows. Different routes
can use different switches and channels.

,...,, 321 iiii RRRX =

2. Group non-congesting routes with close transmission times
(Fig. 3)

,...,, 131 kji RRRG =α

Fig. 3 Grouping routes

This grouping consists of two stages:
• Calculating transmission time for all data flows through all
routes with formula above:

),,max()(0
1

1
0

N

N

i
iiii

N

i i

i btbtLTbTbtm
c

d
t K×+++×+= ∑∑

=
−

=

ω

where: N is the number of transit channels, id is the length

of channel i , ic is the propagation speed of transmission

medium of channel i , im is size of buffer in switch i , iTω

is the processing time in switch i , iTb is the blocking time in

142

switch i , L is the length of packet in bits, and bt is the one

bit transmission time in channel i . iTb considered to be zero

at SpaceWire-D.
• Calculating normalized transmission time for all data flows
through all routes:

)max(1

'

N

i
i t

t
t

K

=

where '
it - normalized transmission time for route i .

• Calculating normalized average transmission time for all
data flows:

2

)1(
1 1

''

−×

−
=
∑ ∑= +=

NN

tt
T

N

i

N

ij ji

average

• Creating groups, using breadth-first search. Resulting
groups must not compete one with other and satisfy next
condition:

averageji Ttt ≤− ''

3. Form a schedule table from a set of groups, using one group
as one time-slot. Breadth-first or depth-first search are used to
find acceptable for all QoS requirements schedule table.

Fig. 4 Schedule table creating

IV. SOFTWARE

A software tool "Network TDMA Scheduler" implements
the algorithms described above. It has GUI (Fig. 5) and allows
compiling schedule table and predicting time characteristics of
the obtained schedule.

The workflow consists of the following steps:
1. Creating a network with one of several ways:

• drawing with build-in primitives,
• loading from a XML file,
• using build-in network generator with several

topologies: star, tree or ring.
2. Defining data flows with one of several ways:

• choosing by hands,
• loading from XML file,
• using build-in random generator.

3. Calculating a network schedule with one of the
coloring algorithms.

4. Computing characteristics of the obtained schedule.

Fig. 5 Network TDMA Scheduler interface

All schedule tables, compiled with the algorithms
examined above, have some characteristics that affect network
performance. The time-slot length, the number of time-slots in
the epoch, and the number of data flows transmitted during
one time-slot are related to the schedule table characteristics.
A packet transfer delay and the aggregate throughput are
related to the network characteristics.

The aggregate network throughput can be calculated as
following:

∑
=

×
=

k

i

ii

E

tL
s

0

)(

where: k is the number of streams, t is the number of

time-slots assigned to the stream i , E is the epoch length in
sec.

Build-in network generator allows creating networks with
star, tree or ring topologies. Automated tool permits compute
different network characteristics on dynamic topologies. Fig. 6
shows growth of aggregate throughput on dynamically scaling
ring network. At first step the network consists of 4 switches,
8 nodes and 4 data flows between nodes. At every new step
one switch, two nodes and two data flows are added to the
network. Aggregate throughput of the network at each step is
shown at Fig. 6, Fig. 7 shows number of time-slots (lower
values are the best).

143

Fig. 6 Aggregate throughput of network

Fig. 7 Number of Time-Slots

Liquid schedule gives results close to results by heuristic
coloring as it is seen above, but it is important to remember

that such QoS requirements as throughput and latency can be
guaranteed only by heuristic coloring.

V. CONCLUSION

In the paper the task of deterministic data transmission
with guaranteed delivery time in SpaceWire network was
studied, methods of scheduling tables construction for
networks with time division multiplexing were reviewed.
Algorithms of compiling such tables were proposed. A
software tool "Network TDMA Scheduler" implements the
algorithms described above. It allows compiling schedule
table and predicting time characteristics of the obtained
schedule. All schedule tables, compiled with the algorithms
examined above, have some characteristics that affect network
performance. The time-slot length, the number of time-slots in
the epoch, and the number of data flows transmitted during
one time-slot are related to the schedule table characteristics.
These characteristics were studied for several networks with
standard topologies, advantages and disadvantages of
algorithms were discovered.

REFERENCES

[1] ECSS, "SpaceWire - Links, nodes, routers and networks",
ECSS-E-ST-50-12C, July 2008

[2] S.Parkes, A. Ferrer "SpaceWire-D: Deterministic Data Delivery
with SpaceWire", Proceedings of the 3rd International
SpaceWire Conference, St. Petersburg, 2010

[3] S.M. Parkes, A. Ferrer-Florit, "SpaceWire-T Initial Protocol
Definition", Draft 3.1, August 2009.

[4] "Remote Memory Access Protocol", ECSS-E-50-11, Draft E,
December 2005.

[5] N. Christofides. Graph Theory - an Algorithmic Approach.
Academic Press 1975.

[6] Marx, Daniel (2004), "Graph colorings problems and their
applications in scheduling", Periodica Polytechnica, Electrical
Engineering, 48, pp. 11-16

[7] E. Gabrielyan and R.D. Hersch, "Efficient Liquid Schedule
Search Strategies for Collective Communications", ReCALL,
2004, pp. 760-766.

[8] Liudmila Koblyakova, Yuriy Sheynin, Dmitry Raszhivin. Real-
time signaling in networked embedded systems. International
SpaceWire Conference, St.Petersburg 2010. Conference
Proceedings. ISBN: 978-0-9557196-2-2, p 385-388

144

A network Device driver Framework for SpaceWire

Session: SpaceWire Network and Protocols, Short Paper

Qiang Wan, Baokang Zhao, Bo Liu, Chunqing Wu

School of Computer Science

National University of Defense Technology

Changsha, Hunan, CHINA

wanqiang @nudt.edu.cn

bkzhao @nudt.edu.cn

Abstract—SpaceWire is becoming more and more popular in

space applications due to its technical advantages, including

reliability, low power and fault protection, etc. SpaceWire

networks also provide an efficient approach to connect on board

equipments and function units. Yet, comparing with widely

deployed terrestrial network protocols such as Ethernet, it is

difficult to develop software for SpaceWire buses since it is

relatively a new type of network. Therefore, it will be very useful

if the SpaceWire interfaces can be regarded as common network

interfaces.

Towards this end, in this paper, we propose vSpWNet, a new

network device driver framework to build virtual SpaceWire

Network Interfaces. vSpWNet consists of several routines,

including the SpaceWire hardware access encapsulation

functions, Network frame packaging and unpacking functions,

packets encoding and decoding functions, etc.

We have integrated our proposed vSpWNet into the protocol

stack of VxWorks. Experimental results show that, our proposed

vSpWNet platform performs well in a real OBC board.

Moreover, our vSpWNet approach can be ported into other

Operation Systems, including RTEMS, eCOS, etc.

Keywords— SpaceWire, vSpWNet, VxWorks.

I. INTRODUCTION

SpaceWire
[1,2]

 is a spacecraft communication network

based in part on the IEEE 1355 standard of communications. It

is coordinated by the European Space Agency (ESA) in

collaboration with international space agencies including

NASA, JAXA and RKA. Within a SpaceWire network the

nodes are connected through low-cost, low-latency, full-duplex,

point-to-point serial links and packet switching wormhole

routing routers. SpaceWire covers two (physical and data-link)

of the seven layers of the OSI model for communications.

Yet, comparing with the widely deployed terrestrial

network interfaces such as Ethernet
[9]

, there are very few

software for SpaceWire buses since it is relatively a new type

of bus standard
[6,7]

. Therefore, it will be very useful if the

SpaceWire interfaces can be used as a common network

interface.

In this paper, we are the first to propose an idea of

vSpWNet, a new network device driver framework to build

virtual SpaceWire Network Interfaces. It can package the

SpaceWire buses, simulate SpaceWire buses as Ethernet

interfaces. We named this new network device driver

framework vSpWNet. In the premise of availability, vSpWNet

can be ported into other operation system easily, including

RTEMS, eCOS and so on.

The implementations of vSpWNet can greatly enhance its

practicality. Most of the applications based on Ethernet

interfaces can works on vSpWNet directly. Then, a lot of time

and energy resources can be saved.

The problems we need to solve can be summarized as

follows,

a) How to package the SpaceWire and simulate it as

Ethernet interfaces, since SpaceWire buses and

Ehternet interfaces are quite different.

b) How to make vSpWNet can be ported into other

operation system easily, since protocol layer interfaces

are different on different operation system.

The rest of this paper is organized as follows. in section II,

the vSpWNet is proposed. The design of vSpWNet is

represented in section III. We describe the implementations of

vSpWNet in section IV. And the test result is shown in section

V. Finally, we conclude in section VI.

II. OUR PROPOSED VSPWNET FRAMEWORK

SpaceWire is becoming more and more popular in space

applications due to its technical advantages, including

reliability, low power and fault protection, etc
[3]

. However,

comparing with the widely deployed terrestrial network

protocols such as Ethernet, it is difficult to develop software

for SpaceWire buses since it is relatively a new type of

network interface while Ethernet network interfaces are already

very mature. If we develop all the application over again, it

surely will consume huge resource. Taking all these into

consideration, we propose vSpWNet.

vSpWNet is short for virtual SpaceWire network. Fig 1

shows the position of vSpWNet in OSI
[10]

 model. The

vSpWNet covers Datalink layer and Physical layer. The

physical interface is SpaceWire buses and the Datalink layer

mainly is SpaceWire driver framework.

By means of vSpWNet, we can use Ethernet in space. That

way we can not only take advantage of SpaceWire’s reliability,

145

low power, and fault protection but also Ethernet’s large

amount of mature application software.

Physical

DataLink

Network

Transport

Session

Presentation

Application

vSpWNet

Device

Driver

SpaceWire

Protocol

Fig. 1. vSpWNet’s structure

So our main work is the design and implement of vSpWNet.

III. THE DESIGN AND IMPLEMENTION OF VSPWNET

In this section, we describe the design and implementation

of vSpWNet.

First, we should decide the main structure of vSpWNet.

Generally, the device driver and network layer connect directly

as shown on Fig 2.

Physical

Layer

Device

Driver

Network

Layer

Fig. 2. Physical layer, device driver and network layer

This is the traditional structure. But it is hard to be ported

into other operating system. So we add a Vsp layer between the

device driver and network layer. The new structure is shown in

Fig 3.

Device

Driver
Vsp Layer NetworkPhysical

Fig. 3. the structure of vSpWNet

The Vsp layer contains the SpaceWire hardware access

encapsulation functions, Network frame packaging and

unpacking functions, packets encoding and decoding functions.

The work models of Vsp layer is shown in Fig 4.

The SpaceWire buses receive the electric signal and

convert it into data
[4,5]

. Then the device driver commits the

packages to the Vsp layer. Vsp layer dispose the packages and

commit them to the network layer.

And the sending packet procedure is just the reverse.

Fig 5 shows the main function interfaces of the Vsp layer.

Consumer

Process

Consumer

Process

Consumer

Process

Consumer

Process

TCP UDP

IGMPIPICMP

IP IP IP

Vsp

Layer

NETWORK

TRANSPORT

APP

DATALINK

Fig. 4. The work models of Vsp

stackShutdownRtn()

stackRcvRtn()

stackError()

stackTxRestartRtn()

endLoad()

endUnload()

endSend()

endTxRestartRtn()

endMCastAddrDel()

endMCastAddrGet()

endPollSend()

endMCastAddrAdd()

endPollReceive()

endIoctl()

endStart()

endStop()

VspBind()

VspUnBind()

VspDevLoad()

VspDevUnload()

VspReceive()

VspError()

VspSend()

VspTxRestartRtn()

VspMCastAddrDel()

VspMCastAddrGet()

VspPollSend()

VspMCastAddrAdd()

VspPollReceive()

VspIoctl()

Protocol Layer Device DriverVsp Layer

Fig. 5. the main function interfaces of the Vsp layer

There are 14 important function interfaces as follows:

 VspBind()：bind a network device;

 VspUnBind()：Unbind a network device;

 VspDevLoad()：Load a network device drive to the

operation system;

 VspDevUnload()：Unload a network device from the

operation system;

 VspReceive()：the receive data function;

 VspError()：return error to the upper layer;

 VspSend()：the send data function;

 VspTxRestartRtn()：restart the network device；

 VspMCastAddrDel()：delete the multicast address;

 VspMCastAddrGet()：get the multicast address;

 VspPollSend()：the polling send function;

 VspMCastAddrAdd()：add the multicast address;

 VspPollReceive()：the polling receive function;

146

 VspIoctl()：Device settings.

The Vsp layer separates the network layer and the datalink

layer and improves the portability of vSpWNet.

IV. THE EXPERIMENT OF VSPWNET

We verify feasibility of vSpWNet by experiments and test

the transmission speed and reliability.

The experiment is based on VxWorks 5.5
[9]

 operation

system. VxWorks is a real-time embedded operating system

developed by WindRiver Company.

The MUX layer in VxWorks can be mapped to our Vsp

layer. Fig 6 shows the position of MUX in OSI model.

Application Layer

Protocol Layer

（TCP/IP）

Socket Layer

（BSD socket）

Vsp Layer

（MUX）

Datalink Layer

（SpaceWire driver）

Physical LayerPhysical Layer

Fig. 6. The position of MUX

Having to MUX layer, we can develop the network device

driver easily. Our SpaceWire driver is based on MUX layer

and its important functions are listed as follows:

a) Device Loading Function: sysEtherEndLoad

Device Loading Function is the entrance of every

network device drivers. Fig 7 shows the flow chart of

sysEtherEndLoad:

Initialize

the data

structure

Initialize

the buffer

Register

the device

driver in

VxWorks

Initialize

the

SpaceWire

Fig. 7. The flow chart of sysEtherEndLoad

b) Device Unloading Function: SPWUnload

SPWUnload releases all the data structure and

unloading the device from VxWorks.

c) Device Start Function: SPWStart

SPWStart sets SpaceWire buses in work mode. It

always calls function sysIntConnect to register

interrupt in VxWorks. Fig 8 shows the flow chart of

SPWStart:

Register

interrupt in

VxWorks

Set the

Interrupt

Pin of CPU

Enable the

interrupt of

SpaceWire

Fig. 8. the flow chart of SPWStart

d) Sending Package Function: SPWSend

When there are packages to send, MUX will call

SPWSend. Fig 8 shows the flow chart of SPWSend:

Get the

packages

from

VxWorks

Get the

packages

from

VxWorks

Check the

interrupt

register

Clear the

interrupt

register

Wait

Write the

sending

buffer

Sending interrupt: 0

Sending interrupt: 1

Sending interrupt: 1

Enable

transmissio

n

Fig. 9. The flow chart of SPWSend

e) Interrupt Handler Function: SPWInt

When there is an interrupt, MUX will call SPWInt to

handle the interrupt. Fig 10 shows the flow chart of

SPWInt:

There comes

an interrupt

Disable the

interrupt

Enable

interrupt

Commit the

package to

VxWorks

Call

SPWHandle

RcvInt

Fig. 10. The flow chart of SPWInt

f) Receiving Interrupt Handler Function:

SPWHandleRcvInt()

This Function can handle the receiving interrupt. Fig

11 shows the flow chart of SPWHandleRcvInt:

Chect the first

two bytes of the

packet, get the

packet lenth

Get the starting

address of the

packet in the

buffer from

register

Start to get data

from buffer

Set the new start

address of the

next packet in

the register

Fig. 11. The flow chart of SPWHandleRcvInt

V. THE RESULT OF THE EXPERIMENT

Before testing, we should build the VxWorks Boot Image

which integrates the vSpWNet driver. Then we burn it into the

target board. The test scenario is shown in figure 12:

After the image loading successfully, we start to test the

vSpWNet. The experiment shows that it works well. From the

test results, we proved the feasibility of vSpWNet and it can

meet most of the application transmission requirements.

147

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the advantages and disadvantages

of SpaceWire buses systematically. Then we came up with the

idea of vSpWNet and proposed the concept of Vsp layer to

improve the portability of vSpWNet. Finally, we designed and

have implemented it based on VxWorks embedded operation

system.

From experiments results, it proved that our vSpWNet can

meet the actual requirements properly. Most of the applications

based on TCP/IP protocol work well on vSpWNet. So

SpaceWire will be more easy to use. Moreover, our vSpWNet

approach can be ported into other Operation Systems,

including RTEMS, eCOS, etc.

In the future, we will improve our vSpWNet to make it

work more efficiently.

Testing PC:
Windows XP
Tornado 2.2

Target Board A:
SPARC CPU

VxWorks 5.5
SpaceWire

UART

Testing PC:
Windows XP
Tornado 2.2

Target Board B:
SPARC CPU

VxWorks 5.5
SpaceWire

UART

SpaceWire

Fig. 12. Test Scenario

ACKNOWLEDGEMENT

The work described in this paper is partially supported by

the grants of the National Basic Research Program of China

(973 project) under Grant No.2009CB320503, 2012CB315906;

the project of National Science Foundation of China under

grant No. 61070199, 61103189, 61103194, 61103182,

61202488, 61272482; the National High Technology Research

and Development Program of China (863 Program) No.

2011AA01A103, 2012AA01A506, the Research Fund for the

Doctoral Program of Higher Education of China under Grant

No. 20114307110006, 20124307120032, the program for

Changjiang Scholars and Innovative Research Team in

University (No.IRT1012), Science and Technology Innovative

Research Team in Higher Educational Institutions of Hunan

Province(“network technology”); and Hunan Province Natural

Science Foundation of China (11JJ7003).

REFERENCES

[1] http://en.m.wikipedia.org/wiki/SpaceWire.

[2] Glenn Rakow, Richard Schnurr, Steve Parkes, SpaceWire
Protocol ID: What does It Means to You, Aerospace
Conference, 2006. IEEE. 2006, 24(6):3~4.

[3] Sandra G. Dykes, Buddy Walls, Mark A. Jonhson,
KristianPersson. A Non-Broadcast Address Resolution
Protocol for SpaceWire Network. Aerospace Conference.
Washington DC, ACM Press, 2006:4~5.

[4] TukkaHowkola, Sari Lppanen, Modeling the SpaceWire
Architecture with Lyra. Proceedings of the Fifth
International Conference on Application of Concurrency
to System Design, Los Angeles, 2004. New York,
IEEECOMPUTER SOCIETY, 2004:10~11.

[5] R. Marshall, W. Berger, C.Rodgers, Reconfigurable
Processing Susysterms in Spaceborne Application. IEEE
Aerospace Conference Proceedings, Big Sky, Montana,
2004. New York, IEEE CPOMPUTER SOCIETY,
2004:5~6.

[6] S.M.Parks, SpaceWire a satellite on board data handing
network. Aircraft Engineering and Aerospace Technology,
2001.

[7] Dr SM Parkes, SpaceWire: SERIAL POINT-POINT
LINKS, University of Dundee, 2000.

[8] WindRiver, VxWorks Network Programmers' Guide,
1999.

[9] Steven Vaughan-Nichols, The Birth and Rise of Ethernet:
A History, 2012.

[10] Douglas E. Comer, Internetworking with TCP/IP-
Principles, Protocols and Architecture, 2006.

[11] WindRiver, VxWorks Programmers' Guide, 1999.

148

Toolset for SpaceWire Networks Design and

Configuration
Session: SpaceWire networks and protocols

Short Paper

Alexey Syschikov, Elena Suvorova, Yuriy Sheynin, Boris Sedov, Nadezhda Matveeva, Dmitry Raszhivin
Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, Russian Federation

{alexey.syschikov, suvorova, sheynin, boris.sedov, n.matveeva, dmitry.raszhivin}@guap.ru

Abstract— SpaceWire networks design and configuration is a

complicated design problem that includes a set of different tasks

to be solved: terminal nodes selection, workload tasks mapping,

logical channels definition, interconnection topology design and

switches selection, configuration space settings and routing table

generation, etc. In design one should take into account many

characteristics and requirements: terminal nodes performance

for workload, channels latency and throughput, communication

system capacity to cover logical channels requirements, etc.

Every design step and the whole network should also fit into

other user and technological constraints: area, mass, power

consumption, heating also.

Design tasks are complicated; some of them are NP-hard.

“Manual” design of SpaceWire networks with dozens of nodes

becomes very complicated, time-consuming and has high

probability of design errors and misses.

To deal with the problem a through design flow for SpaceWire

Networks Design and Configuration has been developed. Toolset

includes network architecture design tool, communication

structure forming tool and tool that forms logical structure and

routing information. All these tools are highly automated and

produce results corresponding to the defined user requirements

and technological constraints. Network modeling tool is also

provided for simulation of network functioning and collection of

network statistics for investigation purposes.

IndexTerms— SpaceWire network, automated design, design

space exploration, SpaceWire configuration

I. INTRODUCTION

A network synthesis problem for systems with dozens and

hundreds of nodes in general case is NP-hard. Nowadays in a

number of network synthesis methodics affordable

computation complexity is reached due to significant

constraints in the problem statement only.

Some input parameters for SpaceWire network generation

are determined at the architecture stage on the base of tasks

parameters. Tasks should be allocated to nodes. The network

should transmit data packets between source and destination

terminal nodes with required throughput and timing

parameters.

In system level design a network should be generated of

devices (routers) from a system components library. The

system components library can include different types of

routers with various number of ports, mass, power, timing

parameters.

The network should also meet user requirements in total

equipment mass and power, in fault tolerance, considers

specific requirements based on spatial placement of nodes.

Network synthesis methodic, such as based on Stainer three

synthesis [1,2,3,4] and other classical methodics for wireless

networks synthesis [1,5,6], do not deal with these constraints

and can’t be used for SpaceWire networks synthesis.

Development of a SpaceWire network structure

correspondingly to architecture and others user’s requirements

are supported by the suggested methodology and developed

tools.

II. ARCHITECTURE

The system design techniques and supporting software are

based on the design space exploration methodology. This

approach is productive and is widely used in modern R&D. For

example, communication architectures with big number of

channels generate exponentially growing number of possible

mappings of logical channels to the communication paths in

the physical structure of the communication network. It makes

impossible a straightforward exhaustive exploration of

variants. Interrelation between possible mappings and

communication protocols characteristics increases complexity

of actions in design space exploration.

The proposed instrument is an automated tool for the

design of SpaceWire networks.

The methodology of a network structure design includes

four main stages:

 Analysis of the workload for the network to be design;

 Synthesis of the network architecture, including the

terminal nodes and logical channels;

 Synthesis of the communication system, including

switches and physical channels.

 Synthesis of the Logical Network structure and

correspondent setting in nodes and switches.

Design of SpaceWire network architecture is performed

from a given set of basic system components from a network

system components library according to user-defined network

characteristics.

During forming of the SpaceWire network architecture it is

necessary to verify the possibility of allocation of computation

workload to the particular library of system components. To

149

achieve this, the allocation of computing workload to

synthesized architecture should be done.

Formed structure should correspond to the user

requirements: performance, throughput, command transmit

delay, signal of real time transmit delay, failure tolerance of the

network, etc.

The problem is solved with a restricted search.

Methodology generates a set of possible solutions, which

includes alternative problem solutions. Search is restricted by

using a number of criteria for discarding not satisfying

solutions at each stage.

The assignment problem for the network synthesis has a

task graph G as the input data.

 , where

N –set of graph vertexes, which are computation tasks,

E – set of graph edges.

Additionally we define the overall throughput of the

network input/output ports in each direction (for input and for

output).

 ∑ .

Task graph vertexes are mapped to the system library

components and a set of possible solutions is formed. At this

stage the job is to define the number of nodes of each type and

allocate task graph vertexes to the SpaceWire network nodes

(end nodes). The total network characteristics should not

override the user-defined constraints.

The allocation of the task graph vertexes on the network

nodes is represented by the

 () where

k –total number of nodes in the task graph;

 –node of the task graph allocated to the node nb of the

network.

The function for allocation of a task graph vertex to the

network node is:

 () () .
The function of a network node allocation that defines

which task graph vertexes are allocate to this network node:

 () ⋃ () ()

Formula for the total weight of the SpaceWire network is:

 ∑

k – the total number of nodes in the network;

 – thei-the node of the network.

To limit the search space we apply the criteria:

1. The total weight of the SpaceWire network limit.

2. The limit of the throughput of output logical channels

of the network node.

The required output logical channels throughput is:

 ∑

 – node of the network.

The criterium is:

 ∑

3. The limit of the throughput of input logical channels

of the network node.

The required input logical channels throughput is:

 ∑

 – node of the SpaceWire network.

The criterium is:

 ∑

4. The limit of the requirement to the network node

memory.

 ∑

 ()

5. The limit of the requirement to network node

computation resource (processor).

 ∑

 ()

In the process of possible solutions building the best ones

are selected with the complex set of minimization parameters.

1. Total requirement for the network throughput.

 ∑

2. Maximum requirements for the throughput of network

node input ports.

(
)

3. Maximum requirements for the throughput of network

node output ports.

(
)

As a result we get the architecture of a SpaceWire network

that is based on the computing/communication workload

requirements and satisfy the user-defined constraints.

150

III. SPACEWIRE NETWORK SYNTHESIS

We use decomposition of a system to subsytems.

Decomposition is used for support of spatial constraints and

specific timing constraints (jitter) for some tasks. It helps also

to decrease algorithm complexity.

A. Spatial constrains

Technology constraints related to spatial placement of

terminal nodes and specific of cable-laying typically are

relevant for a spacecraft. Certain groups of devices should be

placed locally due to their functionality (sensors, locator) or

structural reasons. Typically quantity of cables that connect

such group with other parts of the network is strongly

constrained.

The methodic takes into account this type of user

constraints. User can specify such groups of nodes as clusters.

Our tools generate subnetwork structure for each cluster

independently (routers of one subnetworks are not used in

others) and with constrained (required) quantity of

interconnections to other network parts.

B. Specific timing constraints

We use network structure patterns in our methodic for

specific timing constraints support.

SpaceWire networks are often used for data transmission

from sensors to computer or from computer to visualization or

telecommunication subsystems. Not only packet delivery time

but jitter is important for these applications also. Therefore an

appropriate network structure for such subsystems is

symmetric (that is important for jitter parameter) tree.

The tool generates symmetric trees of routers from the

system components library that meet mass and power

constraints. Adaptive routing can be used for simultaneous

throughput utilization of some links, which directly connects

two devices (e.g. in fat trees).

Such subsystems can include up to 90% of terminal nodes.

Therefore this approach also allows to essentially decreasing

the computation complexity of the algorithm.

At a lower layer of the tree our tool could generate daisy

chains of nodes (if nodes supports this functionality), to

decrease hardware cost of the network.

The tool automatically selects subgraphs in a logical

interconnection graph, for which tree based subnetworks could

be generated.

Others typical for a SpaceWire networks structures are used

for distributed computing. In the tasks graph such structures are

usually represented by subgraphs with peer to peer connections

between tasks. Typical requirement is equal data transmission

time between all components of a distributed computing

platform.

A designer should select subgraphs that correspond to

distributed computing in a logical interconnections graph

because rules of such subgraphs detection strongly depends on

the tasks that are processed in system.

A good structure for such network fragments corresponds

to bipartite graphs is Banyan network [7,8,9]. Banyan networks

provide path with equal length between all nodes from one set

of nodes from a bipartite set to another set.

In our methodic Irregular Banyan subnetworks are built of

routers. The Banyan subnetwork generation algorithm can use

the adaptive routing to utilise total throughput of some links

that directly connect a pair of devices (nodes, routers) and

takes into account requirement of connections with other parts

of the SpaceWire network.

Subnetworks for logical interconnections subgraphs with

peer-to-peer interconnections are generated as Banyan

networks also.

A Banyan network in this case should connect not only

nodes from different sets but nodes from one set with same

timing parameters of interconnections also. We use coupled

Banyan networks in what in the left half of the network we

append interconnections mirrored interconnections of the right

half; in the right half we append interconnections mirrored

interconnections of the left half.

Example of such a network is represented in Fig.1. Black

lines correspond to interconnections between nodes from

different sets, gray lines correspond to interconnections

between nodes from one set.

Fig.1 Example of doubled banyan network

IV. SYNTHESIS OF LOGICAL NETWORK STRUCTURE

Synthesis of a logical network structure includes mapping

of logical channels (created at the architecture synthesis stage)

to physical paths (in the basic variant of network structure) and

generation of configuration settings for all terminal nodes and

routers in the network structure.

In the developed algorithm, which maps logical channels to

physical paths, logical channels could be mapped not only to

shortest paths, by to others paths that correspond to throughput

and timing constraints. Usage of the adaptive routing for

throughput is also considered.

Further generation of configuration parameters for terminal

nodes and routers (routing tables’ content, adaptive routing

mode, and link transmission rate) is performed.

Link transmission rate is configured correspondingly to

required throughput and packet transmission time. Adaptive

routing could be configured for pairs of nodes or routers that

are directly connected via some links (for throughput).

Logical addresses of the terminal nodes should be defined

before the routing table content generation. Our tools assign a

logical address to every application (task) in a terminal node.

If the quantity of addresses is more than 224, then the

regional addressing is used. Regions (or groups of regions)

correspond to subgraphs that are extracted in the logical

interconnection graph structure.

151

Routing tables’ content is generated after logical and

regional address assignment, in correspondence to mapping of

logical channels to physical paths.

V. FAULT TOLERANCE SUPPORT

Hardware redundancy is used for providing fault tolerance.

Fault tolerance support is realized by to hardware replication

(routers and links replication). We suggest two types of

redundancy policy: path replication based and dynamic path

reconfiguration.

A. Path replication based redundancy

If tolerance to N-1 faults is need, the whole SpaceWire

network structure should include N independent paths between

source and destination terminal nodes. The whole network

structure (Fig.2) includes N copies of the basic structure

(configurations of corresponding routers in all replicas are

identical). Every terminal node is connected to all replicas of

the basic network structure. Source terminal nodes should send

copies of every packet to all replicas of the basic structure.

Destination terminal nodes should correctly interpret data

flows with proper and faulty copies of received packets.

This redundancy policy is recommended for systems with

strong requirements to packet delivery reliability and real time

constraints.

Hardware cost of buffering scheme in terminal nodes is

essential for this redundancy policy.

Tn1

Tn2

R1

R2 R3
Tn3

Tn4

Tn5
R1

R2 R3

(0)

(1)

Fig.2 Example of a path replication based network structure (N=2)

If fault tolerance is required, at the first stage our tools

generate a basic network structure and logical configuration for

it and next this network structure is expanded for fault

tolerance.

User should reserve resources (mass, power, number of

device’s used ports that can be utilized for a basic network

structure, should be decreased correspondingly to quantity of

faults and selected fault tolerance policy) before a basic

network generation. In the basic network should be used not

more than 1/N allowable mass and not more than 1/N of every

terminal node port’s quantity for tolerance to N-1 faults.

For practical reasons it is typical to apply FT-requirements

to some fragments of the network only, to some of its

subnetworks, clusters. Thus the strategy of network

redundancy by path replication is applied to these individual

parts of the network.

B. Dynamic path reconfiguration redundancy

Further, dynamic path reconfiguration redundancy could be

used for a N-1 faults tolerant network that includes N replicas

of a basic network (Fig.3). All routers Ri(0) and Rj(0) in the

basic network (marked by “0”) that are directly connected,

have connections with routers Rj(k) and Ri(k) for all network

replicas (represented by gray dotted lines in the figure).

Adaptive routing configuration for direct interconnections

of devices by some links is identical in the basic network and

all the replicas.

For dynamic path reconfiguration additional adaptive

routing configuration is generated for interconnections between

network replicas in whole network structure.

Tn1

Tn2

R1

R2
R3

Tn3

Tn4

Tn5
R1

R2 R3

(0)

(1)

Fig.3 Example of dynamic path reconfiguration based network (N=2)

In this case a terminal node sends to the network only one

copy of a packet. It sends packet to any link that corresponds to

this packet’s path and is currently in the work state. Then every

next transit router send packet to any link that corresponds to

this packet’s path and is ready. If a fault occurs in a router or a

link when a packet transmitted, this packet would be lost or

corrupted and destination node would not receive correct copy

of it. Also fault can impact to transmission time of others

packets in network.

However in this case designer doesn’t need additional

hardware for packet buffering in terminal nodes. Therefore this

fault tolerance policy is recommended for networks without

guaranteed delivery packets, without strict real time

requirements and when packets buffering in terminal nodes is

impossible.

When a designer plans to use this fault tolerance policy, he

should reserve resource of network equipment mass and

resource of terminal nodes and routers port’s quantity before a

basic network generation. In the basic network should be used

not more than 1/N allowable mass and not more than 1/N of

every router and terminal node port’s quantity for tolerance to

N-1 faults.

VI. CONCLUSION

The paper describes the methodology and toolset for

SpaceWire network design. It provides the design space

exploration mechanism for synthesis of large SpaceWire

networks. The design includes the set of terminal nodes,

communication structure, switches and links to meet the

computation requirements and user-defined constraints. The

high level of automation allows making changes in

requirements and reconfiguration of SpaceWire network rapid

and easy. The methodology also allows generating fault

tolerant networks with variable level of tolerance.

152

REFERENCES

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

CliffordStein, Introduction to algorithms, Second Edition,

Massachusetts Institute of Technology, 2009.

[2] Hazewinkel, M. (2001), "Steinertreeproblem", inHazewinkel,

Michiel, EncyclopediaofMathematics, Springer, ISBN978-1-

55608-010-4

[3] Algebraic Graph Theory" byChrisGodsilandGordonRoyle,

publishedbySpringer-Verlag, 2001, 439 pp

[4] The Steiner three problem: a tour through graphs, algorithms,

and complexity Hans Jürgen Prömel, Angelika Steger. Amer

Mathematical Society, 2002 241 pp.

[5] Wu, BangYe; Chao, Kun-Mao (2004). Spanning Trees and

Optimization Problems. CRC Press. ISBN1-58488-436-3

[6] A Walk ThroughCombinatorics: An Introduction to

Enumeration And Graph Theory. MiklósBóna. World Scientific,

2006 – 469 pp.

[7] Principles and Practices of Interconnection Networks William

James Dally, Morgan Kaufmann Publishers is an imprint of

Elsevier 2004 581 pp

[8] Computer NetworksV.S.Bagad, I.A.Dhotre, Technical

Publications, 2009 г. – 512 pp.

[9] Data And Computer CommunicationsюWilliam Stallings.

Pearson Education, 2007.852

153

Delay Guarantee for Real-time Message in
SpaceWire-D Network

Session: Networks and Protocols, Short Paper

Qiang ZHOU, Chunming ZHANG
School of Electronics Information Engineering

BeiHang University
Beijing, China

 zhouqiang_ee@buaa.edu.cn, 446022801@qq.com

Hengqing LIN
System Engineering Research Institute
China State Shipbuilding Corporation

Beijing, China
wu342@163.com

Abstract—SpaceWire is a standard for on-board satellite
networks as the basis for future data-handling architectures.
However, it can’t meet the deterministic requirement for
safety/time critical application in spacecraft, where the delay of
real-time (RT) message streams must be guaranteed. Therefore,
SpaceWire-D is developed that provides deterministic delivery
over a SpaceWire network. This paper researches on computer
simulation for real-time performance in SpaceWire-D network.
Based on the principal of SpaceWire-D protocol, we set up its
network model and simulation model where an event-driven
scheme is adopted, give an implementation of simulation
program based on VC, where the Time Slot scheme and static
schedule method are also implemented, and then present a
validation of the simulation model, and finally develop several
simulation cases on typical application. The simulative results
indicate that the schedule table plays an important role on delay
of the message in SpaceWire-D networks. To increase the real-
time performance of SpaceWire-D, an effective schedule table
should be researched and provided.

Index Terms—SpaceWire-D, real-time, simulation, VC.

I. INTRODUCTION

SpaceWire is a standard for on-board satellite networks
chosen by the ESA as the basis for future data-handling
architectures [1]. However, it can’t meet the deterministic
requirement for safety/time critical application in spacecraft,
where the delay of real-time (RT) message streams must be
guaranteed. Therefore, SpaceWire-D is developed that
provides deterministic delivery over a SpaceWire network [2].

Aiming to evaluate the SpaceWire/SpaceWire-D protocol,
network designers may take several measures such as
numerical analysis [3], simulation, and hardware test. An
analytical method in [3] to compute an upper-bound on the
worst-case end-to-end delay of a packet in a SpaceWire
network is proposed. However, the analytical method is limited
by many assumptions. Also, hardware test is sometimes
impractical because of long research cycle and expensive cost.

This paper researches on computer simulation for real-time
performance in SpaceWire-D network. Based on the principal
of SpaceWire-D protocol, we set up its network model and
simulation model where an event-driven scheme is adopted,
give an implementation of simulation program based on Visual

C++, where the Time Slot scheme [4] and static schedule
method are also implemented, and then present a validation of
the simulation model, and finally develop several simulation
cases on typical application.

II. OVERVIEW OF THE SPACEWIRE-D

A. SpaceWire-D Protocol

SpaceWire provides versatile network architecture for
onboard data-handling using switches and bi-directional serial
links. It delivers the high throughput required for payload data
with low implementation cost. However, it does not provide
guarantees in the packet latency due to network congestion.
Besides, the use of wormhole switching increases the worst
case latency of packets that use shared links on the way to their
destination.

SpaceWire-D is a protocol that provides deterministic
delivery over a SpaceWire network [4] (the protocol stack for
SpaceWire-D is illustrated in Fig.1). SpaceWire-D delivers
data within predetermined time constraints. Deterministic data
delivery is the delivery of data within predetermined time
constraints: not too early and not too late.

Fig.1. SpaceWire-D protocol stack

B. SpaceWire-D Scheduling

In SpaceWire-D networks, it is often required that data is
delivered within certain time constraints. One promising
solution is to schedule the network using time division
multiplexing. With a schedule table, there is no network
contention and packet delivery time is deterministic. Then it is
possible to obtain latency and throughput guarantees for the
user data. The required periodic synchronization signal is

154

easily provided using SpaceWire Time-Code (TC) characters.
Time is divided into discrete time intervals or time-slots (TS)
determined by the arrival of a Time-Code.

SpaceWire uses wormhole switching, so packets are
typically not buffered within the routers. Therefore, the
scheduling is implemented at each transmitting node or
network terminal using a local schedule table. Each local
table must be configured following a global network
scheduling, assuring that contention can not occur when
no errors are present in the network.

III. SIMULATION MODELLING

Aiming to evaluate the SpaceWire/SpaceWire-D protocol,
a simulation method is adopted. And simulation modeling of
the SpaceWire networks covers some issues including event-
driven mechanism, time-code synchronization, and etc.

A. Event-driven Mechanism

There are two time advance approaches in simulation [5]: a)
time-driven simulator, and b) event-driven simulator. In this
paper, the event-driven approach is adopted because of its
effective simulation performance. Figure 2 presents the flow
diagram of event-driven simulation.

Fig.2. A Typical event-based simulation model

Where,
Initialize simulation is that some node information and events

are generated when the simulation is started, and an event
list is built.

Get the next event to be executed from the list is that those
events are arranged chronological in the event list, and the
simulation program gets the next event which should be
executed from the list.

Tsim= Tnext-event is that once the next-event is got, the event-
driven simulator progresses time with the next-event time.

Execute the event is that the event is triggered and executed
step by step.

Produce new events and put them into the list is that the
executed event may triggers new events. If there are some
new events triggered, they will be inserted into the event
list.

Update the statistics information is that when an event is
executed, there may lead to some changes of states and
parameters in the nodes or routers. So the changes should
be updated.

Tsim>Tmax is that the simulation program would judge if the
current time exceeds the simulation time we set. If no, the
simulation will go on, or else, the simulation will finish.

B. Event Example

The implementation process of the simulation program is
described by corresponding events. Figure 3 proposes an
example of event, named as Time-Code generation event. In
the SpaceWire-D network, there is a unique node that can
allocate system time to other nodes to ensure synchronization.
It is named as Time-Master. Time-Master periodically
triggered the Time-Code generation event. The flowchart of
this event is shown in fig.3. This event is triggered
periodically to generate Time-Code and insert the Time-Code
into the output queue. While sending the Time-Code, the
corresponding router event is triggered. In this way, all the
information transferred in the SpaceWire-D network can be
scheduled.

Fig.3. Flowchart of the Time-Code generation event

C. SpaceWire-D Simulation Based on Event-driven Scheme

Figure 4 presents the working process of the SpaceWire-D

Fig.4. Flowchart of SpaceWire simulation model
based on event-driven scheme

155

network model based on event-driven scheme. As described in
section II, the Time-Code and schedule are two key issues in
the SpaceWire-D network. Therefore, the simulation model
needs to provide event scheduling scheme based on Time-
Code. In fig.4, Step 2 indicates that scheduling of every event
can be implemented only if the event is in its Time Slots.

D. the Simulation Software Based on VC + +

On the basis of the simulation modeling, a simulation
program based on VC++ [6] is developed to research the
performance of SpaceWire-D network. And the simulation
software includes several modules such as message parameter
setting module, topology configuration module, simulation
control module, and data survey module.

IV. VERIFICATION

In this section, a mathematical model is proposed to analyze
and verify the effectiveness of the aforementioned simulation
model.

A. SpaceWire Network Topology

The SpaceWire Network is setup according to the topology
described in fig.5. The network topology consists of seven
nodes, two routers and several SpaceWire links. Where, LA41,
LA52~ LA54, LA60, LA70, and LA80 are working as nodes.
Among them, LA70 is a mass storage, the destination of LA41,
LA52 ~ LA54, LA60 and LA80. As a processor, LA80 is used
to transmit the packets coming from LA54 to LA70 for
storage. LA60 collects packets from sensors, and then sends
them to LA70 mass storage [4].

In s tru m e n t*
5

L A 4 1

L A 5 2

L A 5 3

L A 5 4

L A 6 0

R o u te r
1

M e m o ry

P ro c e sso r

L A 7 0

L A 8 0

R o u te r
2

In s tru m e n t
2

In s tru m e n t
4

In s tru m e n t
3

In s tru m e n t
H ig h R a te

e q u iv a le n t to
S p a c e W ire n o d e
Fig.5. SpaceWire-D network topology architecture

B. the Scenario Parameters

The scenario parameters and the events are set in Table I
and Table II, respectively.

C. Model Verification

Ref. [4] proposes a mathematical model to compute the
event delay in a SpaceWire-D network. Ordinarily, an event
contains two processes, one is the process of source node
sending message and the process of destination node sending
response message. So the event delay is the sum of message
delay and response message delay, i.e., the delay is the time to
finish both processes.

The delay of SpaceWire-D is denoted as
,i mD

()

,

\ \
(\) \ 1 * (1)* 1, (\) \

\
1, (\) \

\ \
2 * (\) \ 1

im e e

e
ei m

e

T C T C
P T C P N P i P D i P T C P D

P P

T C
i P T C P D

D D P

T C T C
i P P T C P D i

P P

 − + − − + − + ≥ − − <

 = − − ≥=

 − − + − + < −

(1)
Where,

N is the number of nodes in the SpaceWire network.
i is the sequence number of each node.
Tim is the generation time of the m-th message in the i-th

node.
De is the operation delay, which represents the delay of

event such as READ and WRITE defined in [4].
\ is an operator getting remainder. The remainder is

number left over when one integer is divided by
another.

D. Results

Table III shows the deviation between the simulation results
and mathematical analysis results.

Table III illustrates that the simulation results are basically

consistent with mathematical analysis results, which indicates
the correctness of the simulation model. Moreover, the
deviations of delay between two methods are less than 2%,
which verify the validity of the simulation model.

V. SIMULATION AND ANALYSIS

In the simulation program, the delays of different events are
discussed when the schedule is set to Simple Schedule,
Concurrent Schedule and Optimization Concurrent Schedule,
respectively.
A. Simulation Scenario & Message Parameters

Here, we use the aforementioned network topology and the
events in Sec.IV. The scenario parameters are set in table IV.

TABLE II. EVENTS AND THEIR TYPES

Number Event Event Type

M1 LA41�LA70 Write
M2 LA60�LA70 Read

M3 LA80�LA70 Write
M4 LA52�LA70 Read
M5 LA53�LA70 Read

TABLE I . THE SCENARIO PARAMETERS

Quantity Value
Simulation time 100s
Link bandwidth 200Mbps

Scheduling delay of
router

0.5us

TABLE III. COMPARISON ON ETE DELAY OF DIFFERENT EVENTS

Maximum delay Minimum delay
exp.(1) sim. deviation exp.(1) sim. deviation Events

(us) (us) (%) (us) (us) (%)
M1 188.450 188.548 0.052 38.450 38.452 0.005

M2 233.650 233.748 0.042 83.650 83.748 0.117

M3 203.450 203.549 0.049 53.450 53.549 0.185

M4 248.650 249.750 0.442 98.650 99.750 1.115

M5 218.450 219.550 0.504 68.450 69.550 1.607

156

i) Simple Schedule (SS)
SS gives an initiator full control of the network for one or

more specified time-slots, which is illustrated in Table V.

ii) Concurrent Schedule (CS)
CS makes more usage of network bandwidth by allowing

more than one initiator to initiate transactions in a time-slot.
This gives much possibility that two initiators might attempt
to use the same network resources (links) at the same time. So
in CS, LA52 can share the time slot with LA80, which is
illustrated in Table VI.

iii) Optimization Concurrent Schedule (OCS)
OCS builds on the concurrent schedule to improve network

efficiency further. Different from CS in table VI, where the
time schedule of LA80 and LA52 take two TCs, OCS makes
the two TCs become one, so the distribution period will cut
down by a time slot.

B. Simulation

Figure 6 presents the delays of five events when the scheme
is set to SS, CS and OCS, respectively.

Fig.6. Delay comparison among three schedules

Figure 6 shows that, i) For SS, the delays of five events

(190, 230, 200, 250, and 220 (unit: us)) are all higher than
those of the other two schedules. ii) For CS, the delay of event
LA52 is smaller than that of SS, i.e., the delay is decreased
from 250us to 200us. The reason is that LA52 and LA80 share
the same time-slot. The two nodes can use the same links at
the same time. iii) For OCS, the delays of five events are the
smallest among the three schedules. The reason is that the
schedule period decrease from 5 to 4, so the delays of all
events decreased.
C. Result

Based on the above simulation, we can infer the following
result that the schedule table plays an important role on delay
of the message in SpaceWire-D networks. To increase the
real-time performance of SpaceWire-D, an effective schedule
table should be researched and provided.

VI. CONCLUSION

In this paper, we set up SpaceWire-D network model and
simulation model where an event-driven scheme is adopted,
give an implementation of simulation program based on VC++,
where the times slot scheme and static schedule method are
also implemented, and then present a validation of the
simulation model, and finally develop several simulation cases
on typical application. The simulative results indicate that an
effective schedule table can obtain better real-time
performance of SpaceWire-D networks.

ACKONWLEDGMENT

This work was supported by Beijing Natural Science
Foundation (4133089).

REFERENCES

[1] ECSS-E-50-12-C. SpaceWire Engineering: SpaceWire-Links,
node, routers and networks ESA-ESTEC. November 2008.

[2] S. Parkes and A. Ferrer-Florit, “SpaceWire-D Deterministic
Control and Data Delivery Over SpaceWire Networks”, ESA
Contract No. 220774-07-NL/LvH, University of Dundee, April
2010.

[3] T. FERRANDIZ, F. FRANCES, C. FRABOUL. A method of
computation for worst-case delay analysis on SpaceWire
networks [J]. Institute of Electrical and Electronics Engineers
(IEEE), SIES '09; 8 - 10 July 2009, Ecole Polytechnique
Federale de Lausanne, Switzerland. IEEE, Piscataway, pp.19-27.

[4] SpaceNet-SpaceWire-RT Initial Protocol Definition. Space
Technology Centre School of Computing University of Dundee,
DD1 4HN Scotland, UK. October 2008.

[5] Euiyul Ko, Hanjin Park, and Ikjun Yeom. A New Event-Driven
Network Simulator for Delay-Tolerant Networks(DTNs),
Proceedings of the 3rd International ICST Conference on
Simulation Tools and Techniques, Brussels, Belgium. page 59-
64, (2010)

[6] Microsoft Development Network-MSDN Library Visual Studio
6.0 Release. Microsoft Company,2000 April.

TABLE VII. OPTIMIZATION CONCURRENT SCHEDULE

Time-Slot 0 1 2 3 4 … 58 59

Event LA41 LA60 LA80
LA52

LA53 LA41 … LA53 LA41

TABLE VI. CONCURRENT SCHEDULE

Time-Slot 0 1 2 3 4 … 58 59

Event LA41 LA60 LA80
LA52

LA52
LA80

LA53 …
LA52
LA80

LA53

TABLE IV. THE SCENARIO PARAMETERS

Quantity Value
Simulation time 100s

Time-slot 45us
Time code 0~63

TABLE V. SIMPLE SCHEDULE
Time-
Slot

0 1 2 3 4 … 58 59

Event LA41 LA60 LA80 LA52 LA53 … LA52 LA53

157

SpaceFibre Quality of Service Features Support in

the Network Level
SpaceWire Networks and Protocols, Short Paper

Nadezhda Matveeva, Elena Suvorova, Valentin Olenev, Irina Lavrovskaya, Ilya Korobkov, Artur Eganyan

Saint-Petersburg State University of Aerospace Instrumentation

SUAI

Saint-Petersburg, Russian Federation

n.matveeva88@gmail.com, wildcat15@yandex.ru, Valentin.Olenev@guap.ru, Irina.Lavrovskaya@guap.ru,

Ilya.Korobkov@guap.ru, eganyan.artur@gmail.com

The novel SpaceFibre standard provides quality of service

features, which are implemented by means of virtual channels.

However, the SpaceFibre standard covers only “point-to-point”

connections and does not specify the network layer.

In order to provide quality of service in a network operating with

SpaceFibre links it is necessary to support quality of service

mechanisms in the routing switch functionality.

Nowadays, routing switches can support various implementations

of virtual channels mechanisms (architectures and structures of

port controllers and switch matrix). These implementations provide

different performance and latency characteristics for packet flows.

But at the same time, they lead to different hardware costs.

One of the key aspects affecting both achievable performance

and latency characteristics and hardware costs is ratio of the virtual

channels quantity in a port and switch matrix’s channels quantity

connected to every port (connection point). The connection points

quantity can vary from one to a quantity of virtual channels in this

port.

The case when switch matrix’s channel quantity connected to

one port is less than quantity of virtual channels in this port can

lead to additional packet transmission latency which is necessary

for release of a connection point. Moreover, with growing quantity

of connection points the hardware cost of switch matrix and port

controllers increases dramatically.

In this paper we evaluate additional data packet transmission

latency introduced by a switch matrix and hardware costs for

different routing switch parameters: ports quantity, virtual

channels quantity in ports, connection points quantity; and

different parameters of packet flows through each virtual channel.

Index Terms—SpaceFibre, SpaceWire, Networking, Virtual

channels, Quality of Service.

I. INTRODUCTION

SpaceWire-RT Network layer is responsible for routing

SpaceFibre packets over a SpaceFibre network, comprising

SpaceFibre routing switches, SpaceFibre links, and SpaceFibre

nodes. SpaceWire-RT provides compatibility with SpaceWire

at Network and Packet Layers [1]. The current specification of

the Packet and the Network layers is not included in the

SpaceWire-RT standard. But the Network layer

implementation is described in the SpaceFibre presentation [5].

Quality of service parameters that can be provided by

routers with SpaceFibre ports [1] depend not only on the

SpaceFibre protocol characteristics and port implementation

specific but on a network layer implementation also.

In this paper we consider some classical ways of the

network layer implementation that can be used for a router with

SpaceFibre ports. We evaluate the hardware costs and timing

characteristics for these implementations.

We do not consider an impact of low layers of SpaceFibre

(from the Retry Layer and lower) to timing characteristics of

data flows. In our analysis we suppose that SpaceFibre

connection is established and data transmission errors do not

occur (data frames are not retransmitted). We take into account

the necessity of auxiliary information’s transmission by

reserving of some physical channel throughput.

Let us consider which parameters are important for

different qualities of service (QoS) that are provided by

SpaceFibre.

For the Scheduled service a packet should be transmitted

from the source to the destination during a corresponding time

slot (the packet can be transmitted through one or several

routers).

Thus the short transmission time from the input port to the

output port via the network (with only one router) is very

important for the scheduling service.

Therefore, for evaluation of achievable parameters for this

type of service we need to know the maximal packet

transmission time via the network layer.

For the Bandwidth reserved service the network layer

should support the corresponding throughput for its channels.

For this type of service the following additional requirement to

a jitter size [2] often exists: the difference between minimal

and maximal packet transmission time via the network (with

only one router) should not exceed a required value.

Consequently, it is necessary to know the minimal and

maximal packet transmission time through the network.

If the Priority service is used, the network layer should

provide a priority processing scheme without priority

inversion. Priority inversion could appear only when data

packets with different priorities are transmitted via one network

layer resource (one channel). In this case the packet with the

158

mailto:Ilya.Korobkov@guap.ru

higher priority can wait until a lower priority packet would be

transmitted if the lowest priority packet goes first.

II. CONSIDERED ROUTER’S STRUCTURES

A. 1st
 way of router’s network layer structure

Router’s Switch matrix includes a separate channel for

connection of each input virtual channel with the correspondent

output virtual channel in this way. Quantity of connection

points to the switch matrix (hereinafter – connection points) for

every port of a router is equal to the virtual channels amount in

this port, Fig. 1 (only one data transmission direction is

represented). This way was recommended by the SpaceWire-

RT specification draft [5].

In such router structure data flows can compete with each

other only within one virtual channel in output port of router.

In this case timing characteristics in the network layer depend

only on arbitration rules. In all other cases timing

characteristics of data flows are not influenced by the router

network layer.

However, such router structure results in an essential

hardware cost.

RX

TX
1

RX

TX
2

RX

TX
3

RX

TX
1

RX

TX
4

RX

TX
1

RX

TX
2

RX

TX
3

RX

TX
4

RX

TX
1

RX

TX
4

Sp
Fi

Sp
Fi

data

Virtual
channels

Input
controller

1
Input

controller
2

Input
controller

3

Input
controller

1
Input

controller
4

Output
controller

1
Output

controller
2

Output
controller

3
Output

controller
4

Output
controller

1
Output

controller
4

framingVirtual
channels

Virtual
channelsNetwork layerframing

Switch
matrix

Fig. 1 The first way of router’s network layer implementation

B. 2nd
 way of router’s network layer structure

According to this router structure, the quantity of

connection points for every port is less than amount of virtual

channels in the port. In our research we suppose that data flows

from every virtual channel can be transmitted via any

connection point of the correspondent port, Fig. 2.

Hardware cost of this router structure is essentially less,

than hardware cost of the previous one. But in this way, data

flows from different virtual channels share switch matrix

channels. Therefore, an impact between data flows and

corresponding disturbance of its timing characteristics in this

case in this router structure is more essential than in the

previous one.

RX

TX
1

RX

TX
2

RX

TX
3

RX

TX
1

RX

TX
4

RX

TX
1

RX

TX
2

RX

TX
3

RX

TX
4

RX

TX
1

RX

TX
4

Sp
Fi

Sp
Fi

data

Virtual
channels

Input
controller

Input
controller

Output
controller

Output
controller

framingVirtual
channels

Virtual
channelsNetwork layerframing

Switch
matrix

Fig. 2 The second way of router’s network layer implementation

III. EVALUATION OF HARDWARE COSTS

We are using Cadence RTL Compiler and Encounter and

UMC 120 nm technology library for evaluation of router’s

switch matrix hardware cost.

We performed a logical and a physical synthesis of the

switch matrixes with different number of channels that

correspond to different router implementations (different

amount of ports and connection points).

Results of the logical synthesis are represented in Fig. 3. As

shown in this figure, if quantity of connection points is bigger

than 4, hardware cost grows essentially. The logical synthesis

becomes impossible when quantity of ports is 16 and quantity

of virtual channels is 16 or bigger (256 channels of the switch

matrix). The physical synthesis is problematic if quantity of

ports is bigger than 8 and of virtual channels is bigger than 8

(64 channels of switch matrix). This amount of switch matrix

channels is boundary of hardware resources for the 1
st
 way of a

router structure. The 2
nd

 way can be implemented with the

greater amount of virtual channels if 2 – 4 connection point for

every port is used.

Fig. 3 The switch matrix hardware cost

Thus the 1
st
 way of a router structure hardware is

essentially constrained.

IV. THEORETICAL PARAMETERS EVALUATION

Maximum/minimum delay and jitter are calculated for the

proposed router structures. The following assumptions were

made during calculations: the packet size for the virtual

channel was the same for every source; for every virtual

channel data transmission is enabled in every time slot; Nchars

are written to TX and RX buffers of each port at the same

amount of time; the packet size for every virtual channel is less

then frame size; the frame size is less then buffer size for every

virtual channel; kTcalcPrec for every port of a device has the

same value.

Notation:

i - an identifier of a virtual channel;
k - an identifier of a node (a terminal node or a router);
l - an identifier of a link;

p - an identifier of a port ;

h - an identifier of a virtual channel with the highest

priority;
sizeF - the frame size in bytes;

i
sizeP_VC - a packet size for the virtual channel i in bytes;

i
VC_sizeB - a buffer size for the virtual channel i in bytes;

159

i
VC_countSw - the number of routers which should be

passed for transmission of data of the virtual channel i;

i
VC_countLink

 - the number of links which should be

passed for transmission of data of the virtual channel i.

1
i

countSw_VC
i

VCcountLink_

lv - a data rate in the link l, Gb/s. We assume that it is equal

to 1 Gb/s for all links.

s/byte21024128s/bit31024v

l
Tbyte - the transmission time of 1 Nchar (1 byte) through

the link l.

l
v

1
l

Tbyte ; for the data rate of 1 Gb/s

s9105,7
21024128

1

v

1
l

Tbyte

k
f - an operating frequency of the node k, MHz.

i
VC_jitter - jitter of data packets for the virtual channel

i;

i
CminDelay_V - the minimal packet’s transmission

delay for thr virtual channel i for the whole transmission path;

i
CmaxDelay_V - maximal packet’s transmission delay

for virtual channel i for the whole transmission path;

i
VC_Delaymin

i
VC_Delaymax

i
VC_jitter

}
i

SourceVC{ - a set of source nodes for the virtual

channel i;

}
i

DestinVC{ - a set of destination nodes for the virtual

channel i;

k
TwrByteTX

- time of writing of 1 Nchar into the TX

buffer of the node k;

k
TwrByteRX

- time of writing of 1 Nchar into the RX

buffer of the node k (for this implementation it is equal to the

transmission time of 1 byte through the SpaceFibre link, i.e.

l
Tbyte

k
TwrByteRX)

k
TcalcPrec - time of the Precedence calculation for all

virtual channels in node k. This parameter is defined by the

developer of the system.

k
rixDelaySwMat - the delay of accessing to routing

table and selection of connection points in a router with

identifier k. This time is necessary to connect the input port

with the output port for data transmission.

Calculation of the minimum data transmission delay for

the virtual channel i:

}LinkVC{min i - a set of physical links, which constitute

the shortest data transmission path for the virtual channel i.

}
i

SwVC{min - a set of routers, which constitute the

shortest data transmission path for the virtual channel i;

i
urce_VCminDelaySo - the minimal processing delay

in a packet's source of the virtual channel i

)
k

TcalcPrec
k

TwrByteTX
i

(sizeP_VC
}

i
{SourceVCk

min

i
urce_VCminDelaySo

i
VC_nDelayDestimin

 - the minimal processing delay

in a receiver of the virtual channel i

)
k

TwrByteRX
i

(sizeP_VC
}

i
{DestinVCk

min

i
n_VCDelayDestimin

i
_VC

k
minDelaySw

- the minimal delay in a router for

packets of the virtual channel i. We assume that there is no

competition between packets of one virtual channel and that

different virtual channels do not compete in the router’s output

port.

k
TcalcPrec

k
rixDelaySwMat

k
TwrByteRX

i
VC_sizeP

i
VC_

k
DelaySwmin

i
n_VCDelayDestimin

}
i

SwVCmin{k
i

_VC
k

DelaySwmin

}
i

LinkVCmin{l
i

sizeP_VC
l

Tbyte

i
e_VCDelaySourcmin

i
Delay_VCmin

Calculation of the maximum data transmission delay

for the virtual channel i:

}
i

LinkVC{max - a set of links, which constitute the

longest data transmission path for the virtual channel i;.

}
i

SwVC{max - a set of routers, which constitute the

shortest data transmission path for virtual channel i;

iurce_VCmaxDelaySo - the minimal processing delay in

a packet’s source of the virtual channel i;

}
p

allVC{ - a set of virtual channels, which are supported

in the port with identifier p of a node.

}
i

rityPrioHigh{allVC - a set of virtual channels, which

are supportes in the port with identifier p of a node and have a

higher priority than the priority of the virtual channel i;

}
i

allPortVC{ - a set of node’s ports which support data

transmission via the virtual channel i;

)}

ij,
p

allVCj

)
k

TcalcPrec
k

TwrByteTX
j

(sizeP_VC

k
TcalcPrec

k
TwrByteTX

i
(sizeP_VC

}
i

allPortCV{p
max{

}
i

{SourceVCk
max

i
urce_VCmaxDelaySo

i
stin_VCmaxDelayDe - the maximum processing delay in

a destination node for packets of the virtual channel i

160

)
k

TwrByteRX
i

VC_sizeP(
}

i
DestinVC{k

max

i
VC_nDelayDestimax

i
VC_

k
DelaySwmax

 - maximum delay in a router for

packets of the virtual channel i for the case when the

competition exists between the packets of one virtual channel

and the packets of different virtual channels for the switch

output port..

)
k

TcalcPrec

ij},
i

rityPrioHigh{allVCj

)
k

TcalcPrec
k

TwrByteRX
j

VC_sizeP(

k
TwrByteRX

i
VC_sizeP(

)1}
i

allPortVC{(

k
TcalcPrec

k
rixDelaySwMat

k
TwrByteRX

i
VC_sizeP

i
VC_

k
DelaySwmax

i
stin_VCmaxDelayDe

}
i

{maxSwVCk
i

_VC
k

maxDelaySw

}
i

{maxLinkVCl
i

sizeP_VC
l

Tbyte
i

urce_VCmaxDelaySo

i
CmaxDelay_V

Calculation of the data transmission delay and jitter for the

virtual channel with the highest priority.

The following restrictions were made during calculations:

for every virtual channel data transmission is enabled in every

time slot; all routers contain only one connection point for each

port.. The connection point is shared by all virtual channels of

the corresponding port.

h
VC_jitter - jitter for packets of the virtual channel with

the highest priority.

h
CminDelay_V - the minimal packet transmission delay

for the virtual channel with the highest priority for the whole

transmission path.

h
CmaxDelay_V - the maximal packet transmission

delay for the virtual channel with the highest priority for the

whole transmission path.

h
VC_Delaymin

h
VC_Delaymax

h
VC_jitter

The value of the minimal packet transmission delay for the

virtual channel with the highest priority is equal to the value of

the minimal packet transmission delay for the virtual channel

of an arbitrary priority.

i
CminDelay_V

h
CminDelay_V

The value of the maximal packet transmission delay for the

virtual channel with the highest priority is not equal to the

minimal packet transmission delay for the virtual channel of an

arbitrary priority.

hurce_VCmaxDelaySo - the maximal packet processing

delay for the virtual channel with the highest priority in a

source node.

}
k

TcalcPrec
k

TwrByteTX)1F(size

k
TwrByteTX

h
(sizeP_VC

}
h

allPortVС{p
max{

}
h

{SourceVCk
max

h
urce_VCmaxDelaySo

i
stin_VCmaxDelayDe

h
stin_VCmaxDelayDe -

the maximal packet processing delay in a destination node for

the highest priority virtual channel is equal to the maximal

packet processing delay in a destination node of an arbitrary

virtual channel priority.

h
VC_

k
DelaySwmax - the maximal delay in a router

for packets from the virtual channel with the highest priority.

We assume that the frame of the lower priority packet is

already being transmitted and there is a competition between

the packets of virtual channels of the same priority in output

port of router.

)
k

TcalcPrec
k

TwrByteRX
h

VC_sizeP()1}
h

allPortVC{(

k
TwrByteRX)1sizeF(

k
TcalcPrec

k
rixDelaySwMat

k
TwrByteRX

h
VC_sizeP

h
VC_

k
DelaySwmax

h
stin_VCmaxDelayDe

}
h

{maxSwVCk
h

_VC
k

maxDelaySw

}
h

{maxLinkVCl
h

sizeP_VC
l

Tbyte

h
urce_VCmaxDelaySo

h
CmaxDelay_V

}
h

{maxSwVCk
))

k
TcalcPrec

k
TwrByteRX

h
VC_sizeP(

)1}
h

allPortVC{(

k
TwrByteRX)1sizeF((

k
TwrByteRX)1sizeF(

h
VC_Delaymin

h
VC_Delaymax

h
VC_jitter

Connection point is not allowed to switch between virtual

channels.

}
h

{maxSwVCk
))

k
TcalcPrec

k
TwrByteRX

h
VC_sizeP(

)1}
h

allPortVC{(

k
TwrByteRX)1VC_sizeP((

k
TwrByteRX)1VC_sizeP(

h
VC_Delaymin

h
VC_Delaymax

h
VC_jitter

l

l

lVC_sizeP - the maximum packet size for the virtual

channel with the lower priority l.

V. TIMING CHARACTERISTICS ESTIMATION

A. Network models

Timing characteristics estimation was done on the basis of

the models, which are depicted in Fig. 4 and Fig. 5.

161

1

SW 1

4

32

1
1

1

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1

1

TN 1

TN 2

TN 3

TN 4

Fig. 4 Network model 1

1

SW 1

4

32

1

1

1
1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1

1

5
1
2
3
4

1
1
2
3
4

TN 4

TN 3TN 1

TN 2

TN 5

Fig. 5 Network model 2

The Network model 1 comprises a router with 4 ports, each

of which can work with 4 virtual channels. Terminal nodes

generate packets in a random time moments. At these random

moments the terminal node sends the generated packets to each

virtual channel. The destination nodes for each virtual channel

are also chosen randomly and can be different for the virtual

channels. This configuration can lead to a potential possibility

of data packets flow concurrency in the output port. The

second way of the router organization can also result in the

concurrency for the connection points in the input ports.

In its turn the Network model 2 comprises a router with 5

ports. Four of these ports are connected with the terminal

nodes, which are sources of packets, and the fifth port is

connected to the terminal node, which is a destination node for

all packets flows. According to this model, each packet source

generates packets for only one particular virtual channel. Such

model gives an ability to investigate the characteristics in case

of the concurrency of packets flows in the output port 5. In

contrast to the first network structure, the distortion of data

flows characteristics can be more considerable as all data flows

shall be transmitted through the same output port.

These particular models were chosen in order to investigate

how the common virtual channels recourses utilization on the

network layer of a router can affect the timing characteristics of

the virtual channels as well as degradation of the quality of

service.

B. Models’ implementation and simulation results

interpretation

The results of the simulation can significantly depend on

the router model implementation features such as local clock

frequency and link capacity within the router. We used two

different router models for our investigation and built the

network models on the basis of these routers.

The first model was created on the basis of the SystemC

SpaceWire-RT Network model, which was implemented in the

scope of the SpaceWire-RT project [3]. According to the

SpaceWire-RT Outline Specification, SpaceWire-RT standard

takes SpaceFibre as the basis. This model defines a router

which implements the protocol layers from the Serialisation

Layer up to the Network Layer. The link bandwidth in the

model is set to 2 Gbits/s.

Also the concerned network was simulated on the adapted

DCNSimulator model [4]. In this case we used the router and

node models which comprise only the Virtual Channel and the

Network Layers (this gave an opportunity to reduce the

simulation time and to obtain the more detailed results). The

link bandwidth in the model is set to 1 Gbit/s.

The simulation of the Network 2 model resulted in the

following latencies which are given in Table 1. The obtained

latencies for two models differ by two times. This can be

explained by the two times difference in the link bandwidth in

the models.

TABLE I. THE COMPARISON OF SIMULATION RESULTS

Virtual Channel

number

Latency in the

SpaceWire-RT

Network model,

μs

Latency in the

DCNSimulator,

μs

1 3,43 6,09

2 4,64 8,12

3 5,85 10,15

4 7,064 12,18

Therefore, the absolute values of the timing characteristics

are scaled proportionally to the change of the link bandwidth in

case of router characteristics alternation such as a local

frequency and/or link capacity. In spite of scaling the general

relation remains the same.

C. Estimation of achievable characteristics of the Network

model 1

Let us consider the case when each virtual channel has its

own particular priority level, which corresponds to the virtual

channel number: VC1 – the highest priority, VC4 – the lowest.

The packet length does not exceed the frame length. Fig. 6

shows the simulation results for the 1
st
 way of router

implementation, Fig. 7 – for the 2
nd

 way of router

implementation with only one connection point for each port.

According to the diagrams, the reduce of the connection

points quantity leads to a minor increase of the average time of

packet transmission and to a considerable increase of jitter,

especially for the low priority levels. As for the highest priority

level, there is almost no difference.

However, if the packet length exceeds the frame length the

achievable characteristics for the 2
nd

 way (average transmission

time and jitter) would be considerably worse than for the 1
st

162

way especially for the highest priority levels (Fig. 8 – Fig. 11).

The packet length in this simulation was set to 750 bytes.

Fig. 6 Simulation results 1

Fig. 7 Investigation: the 2nd way of router implementation, 1 connection

point

Fig. 8 Investigation 9. Comparison of the packet transmission time via

VC1 in case of different connection points quantity

Fig. 9 Investigation 9. Comparison of the packet transmission time via

VC2 in case of different connection points quantity

Fig. 10 Investigation 9. Comparison of the packet transmission time via

VC3 in case of different connection points quantity

Fig. 11 Investigation 9. Comparison of the packet transmission time via

VC4 in case of different connection points quantity

The average transmission time and jitter grow

proportionally with the increase of the packet length while

using one connection point (Fig. 12- packet length – 1000 bytes,

Fig. 13 – packet length – 1500 bytes)

0

5

10

15

20

4
0
0
0
0

1
.0
4
E+
0
6

2
.0
4
E+
0
6

3
.0
4
E+
0
6

4
.0
4
E+
0
6

5
.0
4
E+
0
6

6
.0
4
E+
0
6

7
.0
4
E+
0
6

8
.0
4
E+
0
6

9
.0
4
E+
0
6

d
e

la
y,

 u
s

simulation time, ns

Tavg

Tavg_VC1

Tavg_VC2

Tavg_VC3

Tavg_VC4

0
2
4
6
8

10
12
14
16
18
20

4
0
0
0
0

1
.0
4
E+
0
6

2
.0
4
E+
0
6

3
.0
4
E+
0
6

4
.0
4
E+
0
6

5
.0
4
E+
0
6

6
.0
4
E+
0
6

7
.0
4
E+
0
6

8
.0
4
E+
0
6

9
.0
4
E+
0
6

d
e

la
y,

 u
s

simulation time, ns

Tavg

Tavg_VC1

Tavg_VC2

Tavg_VC3

Tavg_VC4

0

10

20

30

40

50

60

9
5
0

1
.0
0
0
9
5
e+
0
6

2
.0
0
0
9
5
e+
0
6

3
.0
0
0
9
5
e+
0
6

4
.0
0
0
9
5
e+
0
6

5
.0
0
0
9
5
e+
0
6

6
.0
0
0
9
5
e+
0
6

7
.0
0
0
9
5
e+
0
6

8
.0
0
0
9
5
e+
0
6

9
.0
0
0
9
5
e+
0
6

d
e

la
y,

 u
s

simulation time, ns

2ndVC1(1P)

2ndVC1(2P)

2ndVC1(3P)

2ndVC1(4P)
/1st

0
10
20
30
40
50
60
70

8
5
0

9
5
0
8
5
0

1
.9
0
0
8
5
e+
0
6

2
.8
5
0
8
5
e+
0
6

3
.8
0
0
8
5
e+
0
6

4
.7
5
0
8
5
e+
0
6

5
.7
0
0
8
5
e+
0
6

6
.6
5
0
8
5
e+
0
6

7
.6
0
0
8
5
e+
0
6

8
.5
5
0
8
5
e+
0
6

9
.5
0
0
8
5
e+
0
6

d
e

la
y,

 u
s

simulation time, ns

2ndVC2(1P)

2ndVC2(2P)

2ndVC2(3P)

2ndVC2(4P)
/1st

0
10
20
30
40
50
60
70
80

7
5
0

9
5
0
7
5
0

1
.9
0
0
7
5
e+
0
6

2
.8
5
0
7
5
e+
0
6

3
.8
0
0
7
5
e+
0
6

4
.7
5
0
7
5
e+
0
6

5
.7
0
0
7
5
e+
0
6

6
.6
5
0
7
5
e+
0
6

7
.6
0
0
7
5
e+
0
6

8
.5
5
0
7
5
e+
0
6

9
.5
0
0
7
5
e+
0
6

d
e

la
y,

 u
s

simulation time, ns

2ndVC3(1P)

2ndVC3(2P)

2ndVC3(3P)

2ndVC3(4P)
/1st

0

20

40

60

80

100

6
5
0

9
5
0
6
5
0

1
.9
0
0
6
5
e+
0
6

2
.8
5
0
6
5
e+
0
6

3
.8
0
0
6
5
e+
0
6

4
.7
5
0
6
5
e+
0
6

5
.7
0
0
6
5
e+
0
6

6
.6
5
0
6
5
e+
0
6

7
.6
0
0
6
5
e+
0
6

8
.5
5
0
6
5
e+
0
6

9
.5
0
0
6
5
e+
0
6

d
e

la
y,

 u
s

simulation time, ns

2ndVC4(1P)

2ndVC4(2P)

2ndVC4(3P)

2ndVC4(4P)
/1st

163

Fig. 12 Investigation 14. Comparison of the packet transmission time via

VC1 in case of different connection points quantity

Fig. 13 Investigation 15. Comparison of the packet transmission time via

VC1 in case of different connection points quantity

The increase of the connection points’ quantity up to two

points gives an ability to significantly reduce the difference

between the characteristics. The difference for the 2
nd

 way with

two and three connection points is very small and the

characteristics, obtained for them are very close to the 1
st
 way

characteristics.

This investigation shows that the 2
nd

 way of router

implementation with one connection point has a significant

drawback. The addition of one more connection point (i.e. two

connection points for the port) provides a possibility for

improvement of the average transmission time and jitter values.

The average transmission time values are almost similar for the

1
st
 way of the router implementation and for the 2

nd
 way with

two connection points. As for jitter, it is 20% higher for the 2
nd

router structure.

D. Estimation of achievable characteristics of the Network

model 2

In contrast to the Network model 1 in this case the

competition between data flows exists only in the output port,

but it is stronger because of the essential data flows intensity.

If a packet length is smaller than the frame length then the

average packet transmission time for the 1
st
 and the 2

nd
 ways

of the router implementation is almost the same, Fig. 14. This

result is coinciding with results obtained on the Network

model 1.

Similarly to the Network model 1, the average transmission

time and jitter grow proportionally with the increase of the

packet length in case of using the 2
nd

 way of the router

implementation with one connection point (Fig. 15 – packet

length – 1000 bytes, Fig. 16 – packet length – 1500 bytes).

The increase of the connection points’ quantity up to two

points gives an ability to significantly reduce the difference

between the characteristics of the 1st and 2nd ways. Similarly

to the Network model 1 in this case the difference of jitter

between these router’s implementations is not more than 20%.

Fig. 14 Investigation 13. Comparison of the packet transmission time via

VC1 in case of different connection points quantity

Fig. 15 Investigation 14. Comparison of the packet transmission time via

VC1 in case of different connection points quantity

Fig. 16 Investigation 15. Comparison of the packet transmission time via

VC1 in case of different connection points quantity

VI. CONCLUSION

According to the investigations made the 1
st
 way of the

router organization results in the limitations in hardware

implementation. The comparison of the achievable timing

characteristics for different ways of router implementation

0

10

20

30

40

50

60

70

9
5
0

1
.0
0
E+
0
6

2
.0
0
E+
0
6

3
.0
0
E+
0
6

4
.0
0
E+
0
6

5
.0
0
E+
0
6

6
.0
0
E+
0
6

7
.0
0
E+
0
6

8
.0
0
E+
0
6

9
.0
0
E+
0
6

d
e

la
y,

 u
s

simulation time, ns

2ndVC1(1P)

2ndVC1(2P)

2ndVC1(3P)

2ndVC1(4P)
/1st

0
10
20
30
40
50
60
70
80
90

9
5
0

1
.0
0
0
9
5
e+
0
6

2
.0
0
0
9
5
e+
0
6

3
.0
0
0
9
5
e+
0
6

4
.0
0
0
9
5
e+
0
6

5
.0
0
0
9
5
e+
0
6

6
.0
0
0
9
5
e+
0
6

7
.0
0
0
9
5
e+
0
6

8
.0
0
0
9
5
e+
0
6

9
.0
0
0
9
5
e+
0
6

d
e

la
y,

 u
s

simulation time, ns

2ndVC1(1P)

2ndVC1(2P)

2ndVC1(3P)

2ndVC1(4P)
/1st

0
2
4
6
8

10
12
14

9
5
0

9
3
0
9
5
0

1
.8
6
E+
0
6

2
.7
9
E+
0
6

3
.7
2
E+
0
6

4
.6
5
E+
0
6

5
.5
8
E+
0
6

6
.5
1
E+
0
6

7
.4
4
E+
0
6

8
.3
7
E+
0
6

9
.3
0
E+
0
6

d
e

la
y,

 u
s

simulation time, ns

2ndVC1(1P)

2ndVC1(2P)

2ndVC1(3P)

2ndVC1(4P)/
1st

0
10
20
30
40
50
60
70

9
5
0

1
.0
0
E+
0
6

2
.0
0
E+
0
6

3
.0
0
E+
0
6

4
.0
0
E+
0
6

5
.0
0
E+
0
6

6
.0
0
E+
0
6

7
.0
0
E+
0
6

8
.0
0
E+
0
6

9
.0
0
E+
0
6

d
e

la
y,

 u
s

simulation time, ns

2ndVC1(1P)

2ndVC1(2P)

2ndVC1(3P)

2ndVC1(4P)/
1st

0
10
20
30
40
50
60
70
80

9
5
0

1
.0
0
0
9
5
e+
0
6

2
.0
0
0
9
5
e+
0
6

3
.0
0
0
9
5
e+
0
6

4
.0
0
0
9
5
e+
0
6

5
.0
0
0
9
5
e+
0
6

6
.0
0
0
9
5
e+
0
6

7
.0
0
0
9
5
e+
0
6

8
.0
0
0
9
5
e+
0
6

9
.0
0
0
9
5
e+
0
6

d
e

la
y,

 u
s

simulation time, ns

2ndVC1(1P)

2ndVC1(2P)

2ndVC1(3P)

2ndVC1(4P)
/1st

164

showed that if a packet size is smaller than the frame size then

the average packet transmission time for both ways is almost

similar. Jitter of the low priority traffic grows faster for the 2
nd

way of the router implementation.

Therefore, the 2
nd

 way of the router implementation with

one connection point can be used for the networks with the

packet length shorter than frame size. In this case it will

provide scheduled, bandwidth reserved and priority qualities of

service.

The packet lengths larger than the frame size while using

the 2
nd

 way of the router implementation result in degradation

of the timing characteristics in comparison with the 1
st
 way.

This degradation of characteristics grows proportionally to

the packet’s length of the virtual channels of low priorities.

Consequently, the 2
nd

 way of the router implementation with

one connection point in networks where long packets are

transmitted is possible only when there are no hard real time

requirements and jitter constraint’s.

In such systems the achievable link utilization will be less

than the physical link throughput. The link can stay and wait

for the rear frames of the transmitted packet (frames from

others virtual channels could not go to this output port because

the connection point is occupied by the current packet).

The 2
nd

 way of the router implementation with two

connection points essentially decreases these disadvantages.

The average packet transmission time and achievable link

utilization in this case are almost similar to the 1
st
 way of the

router implementation.

Jitter is 20% bigger for the 2
nd

 way of the router

implementation with 2 connection points than for 1
st
 way.

Therefore, the achievable characteristics for the scheduled

service and jitter value for this 2
nd

 way of router

implementation are 20% lower.

The achievable characteristics for the priority and

bandwidth reserved (without jitter constraint) qualities of

service are practically the same for the 2
nd

 way of router

implementation with 2 connection points and for the 1
st
 way.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Community's Seventh Framework

Programme ([FP7/2007-2013]) under grant agreement n°

263148.

REFERENCES

[1] S. Parkes, A. Ferrer, A. Gonzalez, C. McClements, D3.2-

SpaceWire-RT Updatated Specification. Annex 1 SpaceFibre

Standart, Febrary 2013

[2] H. Kopetz, Real-Time Systems Design Principles for Distributed

Embedded Applications, Second edition, 2011

[3] V. Olenev, I.Lavrovskaya, I. KorobkovH. SpaceWire-

RT/SpaceFibre Specification and Modeling, 2013

[4] A. Eganyan, L. Koblyakova, E. Suvorova. SpaceWire network

simulator. SpaceWire-2010. Proceedings of international

SpaceWire conference St.Petersburg 2010, p.403-406. ISBN^

978-0-9557196-2-2

[5] Steve Parks, Chris McClements, Martin Dunstan Albert Ferrer,

Alberto Gonzalez. SpaceFibre.SpW WG October 2012

165

Poster Presentations

166

SPW CONFERENCE 2013

1 Tbits of data serviced by SpW

Christophe Delay
SYDERAL SA

Gals, Switzerland

Stephane Humbert
SYDERAL SA

Gals, Switzerland

Abstract—The GAIA Mass Memory receives asynchronous
scientific data from the instruments via seven Spacewire links @
40 Mbps. These 7 SpW are included as IPs in a single FPGA.
GAIA launch is planned end 2013.

Index Terms—Mass Memory, file system, reliability

I. INTRODUCTION

The Gaia mission, lead by ASTRIUM, is an ESA mission
that will allow the creation of a precise three-dimensional map
of about one billion stars throughout our Galaxy and beyond.

Seven 'Video Processing Units' collect the astrometric and

photometric observations of objects passing across the Gaia
focal plane. The data produced by these units must be stored
prior to transmission to the ground. Due to the large amount of
data produced and limited visibility of ground stations, Gaia
contains a dedicated data storage unit - the Payload Data
Handling Unit (PDHU).

M em ory
M odules

Star P ackets
&

A uxillia ry
Sc ience P acke t

S cience TM
(C CS D S P acke t)

M em ory
M odules

M em ory
M odules

P DH U

7 x 7M bps 8 ,6M bps

M IL-1553 Bus A

V P U1

V P U2

V P U3

V P U4

V P U5

V P U6

V P U7
CD M UM IL-1553 B us B

Fig. 1. GAIA PDHU DATA FLOW

II. DESCRIPTION

The PDHU is mass memory equipment which offers a
storage capability of more than 1Tbits beginning of life and
more than 800Gbits end of life.

The PDHU accepts and handles stores and reads the
following data flow in parallel:

• "Science Data Packets" Data packets from the 7
VPUs by the SpW links

• "Auxiliary Science Data Packets" Transmitted by
the 7 VPUs by the SpW links

• "Telemetry science Data" Packets sent by the PDHU
to the CDMU

In addition to this task, the PDHU manages the TM/TC
links with the CDMU (Command and Data Management Unit),
maintains its internal reference time (periodically re-
synchronized with the On Board Timing via MIL-1553),
controls the sectors deletion and recovery processes. The
equipment includes both hot and cold redundancy depending
on the functionalities. The Hardware-Software functionalities
require a very high level of interactions.

III. MAIN CHALLENGES

The design, development manufacturing and tests of the
equipment have led to some major challenges successfully
achieved leading to the PDHU being recognized as one of the
most challenging electronic equipment of the GAIA satellite.
During the design phase the reliability was carefully looked at
in order to reach a 0, 99 figure over the mission life time of 5,5
years.

Due to the particular location of the equipment the
mechanical design faced a thermal request for no conductive
thermal dissipation. Thermal Vacuum tests have shown that the
maximum power of 35 Watts could be dissipated via thermal
radiation only.

In terms of mass memory operation the two main topics are
the file management with a very fast response time and the
asynchronous nature of the data inputs. Packets handling of
sizes between 17bytes and 96 Kbytes is performed in a typical
response time of 3,5 µsec.

167

SPW CONFERENCE 2013

All 7 SpW inputs are handled with IPs integrated in a single
RTAX FPGA with the fully asynchronous data handling
performed at a typical data rate of 40Mbps (useful data at
30Mbps), with possible maximum speed above 100Mbps.

IV. EQUIPMENT DESCRIPTION

The PDHU has the following major characteristics:

� Mass: 14 kg
� Power : 26 Watts
� Volume : 2,3 liters

Fig. 2. PDHU FM in the satellite (Credit:ASTRIUM)

The PDHU model “Fig. 2” is composed of three different

types of boards:
� Memory Boards
� Controller Boards (see “Fig. 3”)
� Power Supply Boards

The controller board, based on a LEON 2 FT ASIC,

includes all input-output-command-control functions. All
aspects related to the SpW inputs are included within this
single board.

Fig. 3. CONTROLLER BOARD

The specificity of the equipment stands also in the fact that

the file system in largely based on an Hardware approach
rather then on usual software ones . This has been triggered by
the very short file-system response time required (below 5µs in
the worst case) due to the inputs signal speed. Further details
on this very specific implementation is provided in § 5.

The software services implemented are equivalent to the so

called PUS Service 13.

The equipment is based on mixed of cold and hot

redundancy concept. The power supplies are used in hot
redundancy while the controller and memory functions are in
cold redundancy.

PS Controller
N

PS Controller
R

Controller
Module N

Controller
Module R

Backplane
N

Backplane
R

PS Memory N

PS Memory R

Memory
Module 0

Memory
Module 1

Memory
Module 2

Memory
Module 3

Memory
Module 4

Memory
Module 5

Memory
Module 6

Memory
Module 7

Memory
Module 8

Memory
Module 9

Memory
Module 10

Memory
Module 11

1/2

10 / 12

Cold Redundancy Hot Redundancy

Fig. 4. REDUNDANCY CONCEPT

168

SPW CONFERENCE 2013

V. HARDWARE BASED FILE SYSTEM

Every packet received from the VPU or from the LEON is
divided in Blocks of 64 Bytes, whatever the size of the
incoming packet. That is, the Block containing the end of the
packet will probably not be full and the padding of the Block is
not used.

A Block contains the data of the packet and the
corresponding Reed-Solomon control bits. Considering a Reed-
Solomon code 64 / 60, the data payload are 60 Bytes, 4 Bytes
are reserved for the RS control Bytes. This code can correct up
to 2 Bytes anywhere in the data field.

When a packet is coming, the Packet size is sent to the
FSM by the mean of the data link interface. The FSM has the
responsibility to calculate the real packet size that will be taken
in the mass memory with the formula:

- Number of Blocks = (Star Packet size + 59) / 60

The File management is Hardware implemented inside the

so called Management FPGA.
The PDHU file system management is mainly, bit not only,

based on two tables, the File Header Table (FHT) and the
Sector Link Table (SLT), which allows the memory allocation
of the entire Memory Array. The File System Manager has the
responsibility to manage all the 256 files stored in the Memory
Array.

The File Manager is responsible to process each request,
access and update the file system tables. As FHT is frequently
accessed, and in order to reduce the file system request latency,
it is stored in the embedded FPGA memory while the Sector
Link Table is stored in the external SRAM memory. All the
memories are protected by EDAC.

The requests to the file system are issued from the VPU I/F
located inside the Data Link FPGA.

Each time a new star packet or an auxiliary science data is
received from a VPU, the VPU Interface extracts the File ID
and packet size from the incoming packet and performs a file
system request to the File System Manager, sending these two
data.

The FSM has to define the number of Blocks to be
implemented in the Memory Array. The Number of Blocks
corresponds to: (Star Packet size + 59) / 60.

Based on the File ID, the File System Manager access the
File Header Table. The FSM returns, according to the number
of Blocks, the corresponding Sector address and Block offset.
Further more it updates the File Header Table, the Sector Link
Table (SLT), the Block Counter Table (BCT), the Useful
Header Table (ULT) and the Sector Size Table (SST).

The deletion process is controlled by the processor through
the PCI bus. The File Header Table and the Sector Link Table
are accessed by the LEON which performs the necessary tables
update to free the selected sectors of files.

The File System Manager is connected with the internal
AMBA bus to handle the file system request from the LEON

processor and to access the Sector Link Table and the Block
Counter Table, which are located in an external memory.

The access of the FHT by the LEON is controlled by the
FSM and gives the priority on the access to its own controller.

The “First free sector” register is implemented in an APB
register, in order to be also accessible by the LEON.

The “Last free sector” register, used only by the LEON for
file deletion, is memorized in the SRAM of the LEON

In the cyclic files, a Sector must be closed on request. A
dedicated command sent by the LEON using a register
containing the file number where the current sector must be
closed

VI. SPW FPGA IMPLEMENTATION

The FPGA including all inputs data processing is dedicated
to data link and consists of the following blocs:

- Reset and Clock
- VPU Interface (7x)
- VC Interface
- Time Keeper
- Management Transfer Interface
- Memory Bus Interface
- Memory Module Switch Decoder and Leon Status

The design is based on 7 commercial Spacewire IP

(SpaceWire-b CODEC from University of Dundee) included in
a single Actel RTAX2000S FPGA with the following
architecture:

DATA LINK FPGA

Management
Transfer IF

VPU6 I/FVPU5 I/FVPU4 I/FVPU3 I/FVPU2 I/FVPU1 I/F VPU7 I/F

32 bit bus
R
T
S B

uf
fe

r

V
P

U
1

V
P

U
2

V
P

U
3

V
P

U
4

V
P

U
5

V
P

U
6

V
P

U
7

V
C

1
N

V
C

1
R

V
C

3
N

V
C

3
R

S
Y

S
_R

E
S

E
T

_N

S
Y

S
_C

LK

D
at

a

A
dd

 +
 C

tr
l

D
at

a

IR
Q

V
C

3

A
dd

 +
 C

tr
l

Memory Bus

F
ile

 S
to

ra
geHeader

Readout

Reed Solomon
Encoder

FIFO

FIFO

F
ile

 S
to

ra
geHeader

Readout

Reed Solomon
Encoder

FIFO

FIFO

F
ile

 S
to

ra
geHeader

Readout

Reed Solomon
Encoder

FIFO

FIFO

F
ile

 S
to

ra
geHeader

Readout

Reed Solomon
Encoder

FIFO

FIFO

F
ile

 S
to

ra
geHeader

Readout

Reed Solomon
Encoder

FIFO

FIFO
F

ile
 S

to
ra

geHeader
Readout

Reed Solomon
Encoder

FIFO

FIFO

F
ile

 S
to

ra
geHeader

Readout

Reed Solomon
Encoder

FIFO

FIFO

66 1616

8 8 8 88888888

38

VC3 I/F

CRC

FIFO

T
x

ct
rl

VC1 I/F

CRC

FIFO

T
x

ct
rl

IR
Q

V
C

1

PacketWire PacketWireSpaceWireSpaceWireSpaceWireSpaceWireSpaceWireSpaceWireSpaceWire

Time Keeper

Reset &
Clocks

Switch Dec
&

LEON Sts

Fig. 5. SPW FPGA ARCHITECTURE

The system requires the implementation of seven (7)

SpaceWire interfaces for the GAIA VPU data reception. The
requested speed of each SpaceWire link is 40Mbps (RX_CLK
= 40MHz) with an average useful data rate over one second of
30Mbps. Due to board design constraints, only one FPGA was
foreseen for the seven SpaceWire interfaces.

169

SPW CONFERENCE 2013

The main challenge of this FPGA design was the
management of the clock networks, since Actel’s RTAX
FPGA only provides eight (8) dedicated clock buffers
(Hardwired Clock and Routed Clock Buffers), and the
implementation of the SpW clock recovery logic for the seven
links.

Due to design constraints (several clock domains), most of

the dedicated clock buffers were already used preventing the
implementation of the SpaceWire clock recovery logic as
recommended by Actel. .Therefore, in order to provide each
SpW IP with a dedicated clock network, local clock feature
provided by the FPGA has been used. Each SpW IP is placed
in a separate FPGA tile and uses part of the global clock
network.

To increase the SpW link speed and clock signal integrity,

the clock recovery logic (XOR and first Flip-flops stage) has
been manually placed in the FPGA to precisely control delay.
The post-layout static timing analysis (worst-case) reports
RXCLOCK frequency between 114MHz and 128MHz on the 7
SpaceWire Interfaces while 40MHz was required.

ACKNOWLEDGMENT

The authors would like to thank P. Lelong, P. Norridge, C.
Lloyd and S. King from ASTRIUM as well as T. Paulsen from
ESA for their valuable contribution to the development and
realization of the equipment.

170

SpaceWire Validation Test Plan & Conformance Test
Bench Prototyping

Session Test & Verification

Fabien Vigeant
Onboard Data Handling Department

CNES
France, Toulouse

fabien.vigeant@cnes.fr

Thierry Parrain
Delta Technologies Sud-Ouest

France, Toulouse
t.parrain@delta-technologies.fr

Abstract — The aims of the present study were first to establish

a SpaceWire Validation Test Plan (SVTP), commonly with
Astrium-F and TAS-F, in order to cover all the ECSS standard
specifications, addressing in particular the physical and electrical
compliance requirements, in which some additional tests were
specified. The methodology offered through this SVTP is
substantially based on the approach used for the MIL-STD-1553
Validation Test Plan.

Subsequently, this SVTP has provided the basis to define and
realize a prototype of a SpaceWire Validation Test bench aiming
to fulfill most of the SVTP specifications. For an optimized
covering of these requirements, this test bench has been built by
using both the SpaceWire Conformance Tester from STAR
Dundee company, associated with a custom tool (called “HOST
SpaceWire Traffic Generator” from Delta Technologies Sud-
Ouest (DTSO)) developed especially for this validation test plan
and providing a large panel of physical and low-level/electrical
compliance tests.

Index Terms—SpaceWire standard, Compliance Testing,
LVDS, BER, Eye diagram, design margins, test procedures.

I. INTRODUCTION

SpaceWire is based on two existing commercial standards,
IEEE-1355 and LVDS which have been combined and adapted
for use on-board spacecraft. Since its introduction in the early
2000s, SpaceWire applications have grown steadily and have
led to the development of a large variety of SpaceWire
implementations based on different ICs and CODEC IP,
conceived independently by different agencies, labs and
industrials of the Space Community.

Taking into account that the ECSS-E-ST-50-12C
specification lacks detailed requirements concerning in
particular the lower levels of the standard, it has become a real
challenge to assess the compliance of a SpaceWire interface. In
his current state, the chapter 5 of the ECSS standard only
provides some basis for the SpaceWire Physical Layer (as
highlighted in previous equivalent analysis like [10]).

It is even more essential that newly higher protocols have
been added since (RMAP, CPTP, RDDP, …) or are currently
under development (SpaceWire-D, SOIS, …), allowing more
complex or critical communications to take place on
SpaceWire links or networks.

It is in this context that this study has been carried out,
aimed at complementing the current standard and providing
complete and suitable requirements and tests procedures to
insure the compliance of SpaceWire interface for space
applications, from Physical Layer to Packet Level.

II. SPACEWIRE STANDARD BASIS

The SpaceWire Standard ECSS-E-ST-50-12C calls for a
Low Voltage Differential Signaling (LVDS) physical layer as
defined in ANSI/TIA/EIA-644, Electrical Characteristics of
Low Voltage Differential Signaling Interface Circuits. LVDS
is the most common differential signaling interface. The low
power consumption, minimal EMI, and excellent noise
immunity are the features that have made LVDS an interface of
choice for many applications.

In its current definition, SpaceWire standard covers up to
the network level of the layer-based OSI model, with slight
differences in its organization:
• Physical layer which gathers the signal and physical level

specifications in a ISO/OSI sense, including : signal
voltage levels, signal encoding, noise margins, data rates
Connectors and PCB wiring

• Data link layer which lists all the character, exchange and
packet level specifications in an ISO/OSI sense, including
data and control characters specification, flow control,
error detection and link error recovery.

There are different means to ensure compliance with the
standard, from a physical and electrical tester (as the
SpaceWire Margins Tester presented in [4]) to Base Functional
Model-oriented approach for testing and verification of
SpaceWire IP-Blocks Interface, as in [1]. Although SpaceWire
standard has helped reduce incompatibility problems at the data
link and physical layers, there is still the potential for problems
at this level. In particular, in some cases the physical layer
specification defined in the standard is not fulfilling all
requirements of a specific application, and remains incomplete
(for instance with regard to common mode range, jitter, bit
error rate, …).

 Moreover test and verification of interfaces includes
different subsets of SpaceWire standard layers, which makes
even harder to cover all the possible implementations and
application’s specific needs.

171

III. SPACEWIRE VALIDATION TEST PLAN

From this perspective, the first task of this study was to
establish a SpaceWire Validation Test Plan (SVTP), through a
working group led by DTSO and composed by CNES and the
two main space-industrial actors Astrium-F and TAS-F, in
order to cover all the ECSS standard specifications (from
character level to packet level), and also to complement it with
regard to the physical and electrical requirements. In the latter
case, some additional tests were specified in the SVTP, which
introduces a group test classification, at signal level, based on
input and output signals. The main requirements added in that
section of the SVTP concern common mode, noise, Rise / Fall
time, Amplification / Attenuation, Skew, Jitter, BER and
dynamic output signal balance tests (see below for further
details).

The methodology offered through this SVTP is willingly
and substantially based on the approach used for the MIL-
STD-1553 Validation Test Plan. This document is built on
these main sections:

• Section 2 is the presentation of the documentary
reference system, and Section 3 shows a general
description of SVTP perimeter,

• Section 4 shows the set of requirements that a
SpaceWire interface shall fulfill, and also deals
with guideline rules for designing and
implementing a SpaceWire Interface (referring
either to ECSS standard (ECSS-Q-ST-70-08 or
ECSS-Q-ST-70-26) or implementation feedback
gathered among the SpaceWire users community).
It provides useful recommendations for PCB and
backplane tracking as well as conceptual advises
to system designer (such as fail-safe extension
feature like described in [11]).

• Section 5 presents hardware setup for test
execution, section 6 lists the corresponding test
procedures and section 7 gathers through a table
all requirements and the method that will be
applied on each test,

• Section 8 contains the traceability matrix between
SVTP requirements and ECSS requirements, and
section 9 is for appendixes.

Fig. 1. SVTP Common mode offset requirements

Taking the example of the common mode offset test at the
input level of the UUT, according to the SVTP (based itself on
LVDS standard), each LVDS input shall be tolerant to a
common mode voltage through a range from 0.2V to 2.2V with
a maximum of ±1V ground noise. The recommended voltage
applied to the receiver is between ground and 2.4 V with a

common mode range of 0.05 V to 2.35 V, like depicted in Fig.
1.

For testing the compliance of the UUT, the hardware setup
corresponding to this test is based on the SVTP general test
setup configuration for testing SpaceWire Inputs, and relies on
a specific signal disrupter (offset generator injected at the input
level) as illustrated in Fig. 2. below.

Fig. 2. Hardware setup and signal disrupter for SVTP Common mode offset

test

Offset values with 250mV ±10% step are injected onto
TX1-D± and/or TX1-S± and expected VCM common voltage
read at RX2-D± and/or RX2-S± inputs is measured. VCM is
computed as (RX2-D+ + RX2-D-) / 2 or (RX2-S+ + RX2-S-) /
2). The corresponding SVTP procedure is presented in Fig. 3. .

Fig. 3. SVTP Procedure for Common mode offset test

The next section of the SVTP gathers in a table all the
validation methods applicable for this test, with standard
terminology (A: Analysis - I: Inspection - D: Demonstration -
F: Frequency = sYstematic/Unitary/Several).

IV. GROUP TEST CLASSIFICATION & DESCRIPTION

Two main categories have been specified in the SVTP, for
considering independently the input and output level of a
SpaceWire Interface, mainly based on [6]. The main tests
addressed in the Input Level Group Test concern:

• Voltage span or differential input voltage
threshold

172

• Bias tolerance or common mode voltage tolerance
• Rise and Fall time tolerance
• Common and differential mode noise tolerance
• Common and differential impedance/ground

properties
• Failsafe properties verification

The latter test is not treated as an “execution test” like the
others but rather with a design rule due to the black-box testing
principles (the UUT is only accessible through his outside
connector and not on his internal interface).

The Output Level Group Test gathers the following
compliance tests:

• Offset voltage and balance measurements: this
measure is of particular interest for measuring
design margin since SpaceWire isn’t DC balanced.

• Output swing
• Jitter and skew
• Overshoot and undershoot
• Rise and Fall time characterization
• Dynamic Output Balance
• Common and differential impedance/ground

properties
Furthermore two more tests have been added in the SVTP:

• Eye pattern test: as presented in Fig. 4. , there is a
number of measurements that can be made and
extract information from the eye diagram at
termination resistor level (offset voltage, output
swing, jitter, rise/fall time,). In the SVTP, this is
used to correlate the previous individual
measurements and also to measure margins on
these parameters.

Fig. 4. Eye pattern measurements

• BER test
BER testing is very time-intensive: the time length of the

test is determined by the data rate and also the desired
performance bench mark. For example : for achieving a correct
BER (Bit Error Rate) < 10-12 without noise injection, the test
has to be run for @ 1,38 hours at maximum data rate (200
Mbit/s) or @ 27,7 hours at default data rate (10Mbit/s).

To minimize the time required for the BER Test, method
similar to MIL-BUS procedure has been adopted [5] : the test
is launched while stressing this communication link. Every bit
error, time test is increased by transferring more data bit or stop
test. The noise test shall run continuously until the total number
of data received by the UUT exceeds the required number for

acceptance of the UUT or is less than the required number for
rejection of the UUT. The measurement is computed
automatically by the tester: each data transmitted by the tester
is returned by UUT on the worst path, i.e. a cable of maximum
length (defined for the equipment) at maximum data rate with
pseudo-pattern sequence for data for optimizing Inter Symbol
Interference.

It should be noted that prior to executing the compliance
tests provided by the SpaceWire Validation Test Bench, the
UUT shall enter a specific Test Mode at SpaceWire Interface
Level, in which the UUT returns all data packets received on
his receive end-point: as recommended in [4], the loop-back is
implemented at the SpaceWire CODEC level (Fig. 5.) to
insure better results, in particular for BER testing. Currently
the SVTP specifies that this Test Mode shall be entered either
when receiving a specific time code sequence from the HOST
(referred to as Initialization Sequence) or simply by setting a
bit in a configuration register after power-up.

Fig. 5. Loopback implementation for error reporting level & measurement

method

V. VALIDATION APPROACH

Considering the needs for assessing the compliance of a
SpaceWire Interface (flight-model or board interface
validation, AIT-AIV procedures, including late investigations
allowing limited access to the SpaceWire interface), a black-
box approach has been adopted: the SpaceWire interface is
only available at his external interface (connector only) and not
internally at component level.

For that matter, the SpaceWire Conformance Tester (SCT)
from Star-Dundee provides a wide range of tests to probe and
to insure the compliance with the higher levels/layers of the
standard (from character to exchange levels). Indeed even if
some low-level (link or bit-level) tests are proposed through
this tool, it doesn’t provide an acceptable coverage of the
physical and signal layers : [2] it is more likely intended for
debugging purposes, to the attention of hardware and software
engineers developing and using SpaceWire systems.

Using SCT to cover upper layers of the standard is coherent
with the black-boxing testing philosophy: the conformance
tester has no knowledge of the internal structure or behavior of
the UUT and can only investigate conformance by stimulating
the UUT in different ways and then analyzing the visible
behavior.

Taking into account the features and capabilities of a the
SCT, the remaining key need towards SpaceWire Interface
Validation resides in physical and electrical layers testing,
according to the SVTP requirements previously established,
which can’t be addressed with the Star-Dundee tool.

173

VI. SPACEWIRE VALIDATION TEST BENCH

In order to better fulfill all the SVTP requirements taking
advantage of the strengths of existing tools, the prototyping of
the SpaceWire Validation Test Bench relies partly on the SCT
with regard to the data link layer compliance tests (as it
provides the best ECSS specifications coverage for this layer),
complemented with a specific part to address the remaining
SVTP requirements at physical and electrical level of the
interface.

Fig. 6. SpaceWire Validation Test Bench Architecture

The overall architecture of the SpaceWire Validation Test
Bench is therefore based on the following subsystems or
components, as depicted in Fig. 6. :

• SCT from Star-Dundee for executing compliance
tests from character level up to packet level

• Host SpaceWire Traffic Generator from DTSO for
executing compliance tests at electrical and
physical level

• An HMI interface implemented using
LabWindows/CVI on Windows PC, to control.

According to the tests to be performed, a set of metrology
equipments have to be added like Scope, Ohmmeter, Noise
generator, any material for observed physical signals.

Special attention must be paid to the performances of the
equipment, the required characteristics being specified in the
SVTP. For instance, for a 200Mbit data rate, an adequate
oscilloscope should have at least 500 MHz wide bandwidth
with sampling frequency greater than 2 GHz, with wide
bandwidth differential probe (1GHz).

The Host SpaceWire Traffic Generator is built around two
main parts: a digital subsystem, and an analog subsystem, as
depicted in Fig. 7. . The architecture and conception of the
SpaceWire Validation Test Bench allows to apply (at input
level) or characterize (at output level) the worst physical layer
conditions the UUT SpaceWire link can tolerate for a given
error rate, making possible to easily evaluate margins of the
design.

Fig. 7. Host SpaceWire Traffic Generator architecture & bread boarding

VII. TEST BENCH HOST-MACHINE INTERFACE

The HMI implementation, as depicted in Fig. 8. , is based
on configurations file (conf, input, output), which makes the
user test environment much more flexible and easy-to-use :

• « config.ini » constitutes the main configuration
file, organized in different subcategories, for
instance : [COMMUNICATION] for configuring
the HMI interface with the test bench,
[SPW_PARAM] for configuring the UUT
SpaceWire Link, [TEST_PARAM] allowing the
user to identify and select a particular subset of
tests, depending on the validation perimeter aimed
for the UUT.

• Input configuration files depending on the data
rate range of the UUT, user has to select the right
configuration file depending on the reception data
rate of the UUT. These files contain all the
predefined parameters for a specific data rate
(according to the SVTP specifications), allowing
the user to adapt these parameters to its particular
needs (rising and falling time, jitter and skew
criteria,).

• Output files which correspond to the log outputs
of the SVTF and the detailed reports established
during the tests execution.

174

The HMI main features are the following:
• Each test is independent and can be bypassed if

needed or impossible to do (for example, if we
cannot unplugged 100 Ohms resistor on UUT
inputs).

• Each test is based on parameters which can be
changed according to user requirements.

• Each test result is printed on HMI with colors
code (grey: not passed / green : test passed / red:
test failed)

• Each value of observed signal is filled through
HMI panels

• The global sanction of SpaceWire conformance is
printed in a file and screenshots are added to the
final report.

Fig. 8. SpaceWire Validation Test Bench HMI

VIII. TEST BENCH CONSTRAINTS & LIMITATIONS

The limitations of the current test bench prototyping,
mainly due to technical constraints or depending directly on the
SVTP orientations, are listed below:

• Other hardware parameters like EMC, ground plan
tests, environmental tests, high frequency noise
shall be treated at mission/equipment level.

• Transmission & Reception data rate of the test
bench are limited between 2Mbps up to 160Mbps.

• Skew and jitter test limitations, due to the
limitation of the FPGA technology, which provide
limited resources in term of internal delays (high-
precision programmable delay element). The max
data rate limitation results from these constraints
which have led to the development of different test
bench configuration files (in particular in term of
FGPA bitstreams) depending on the data rate
range of the UUT ([2Mbps, 10Mbps], [10Mbps,
20Mbps], ...) for optimized performances.

• Regarding the SVTP noise tolerance requirements,
the method using a bulk current injection probe
has revealed some limitations mainly due to the
test equipment performances and capabilities: it
didn’t allow to precisely control the injected noise
level as required, unlike a noise generator setup
which has been used instead. For noise sensitivity

measurements, [3] recommends the capacitive
coupling (injection with an external function
generator through a capacitor) or a bulk current
injection method in which an external function
generator is previously coupled with a RF
amplifier before injection through a bulk current
probe.

• Limitations intrinsically due to the black-box
testing principles (in particular for fail-safe tests,
or for tests that require having access to the
internal hardware resources of the UUT Interface)

In the frame of the final task of the study, the test bench has

also been validated and operated on CNES products (based on
the CEA SpaceWire IP CODEC, licensed by CNES), and is
foreseen to be also evaluated and valorized on Astrium
product, like SCOC3 or OSCAR equipment.

REFERENCES

[1] Elena Suvurova “Toolset for Test and Verification of IP-Blocks
with SpaceWire Interface“ International SpaceWire Conference,
Session SpaceWire Test & Verification, St. Petersburg State
University of Aerospace Instrumentation, Russia

[2] Steve Parkes, Martin Dunstan, “Debugging SpaceWire Devices
Using The Conformance Tester”, International SpaceWire
Conference, Session SpaceWire Test & Verification, University
of Dundee

[3] Giorgio Magistrati, “Test on LVDS Components @ ESA”, ESA
TEC-ED, TEC-EDD, TEC-EDP, 2011 LVDS-Day

[4] Alex Kisin, Glenn Rakow, “SpaceWire Margins Tester”, 2008
International SpaceWire Conference, Session SpaceWire Test &
Verification, NASA GSFC.

[5] “Validation Test Plan for the digital Time Division
Command/Response Multiplex Data Bus Remote Terminals” -
SAE AS4111 October 1998

[6] “Electrical characteristics of low voltage differential signaling
(LVDS) interface circuits”, TIA PN4584 – Revision 1.2 May
2000

[7] Kevin Buchs, Pat Zabinski, and Jon Coker, “Basic Bit Error
Rate Analysis for serial data links”, Mayo-R-04-07-R0 June
2004

[8] John Goldie, Syed Huk, “LVDS Signal Quality : Jitter
Measurement Using Eye Patterns Test Report #1”, National
Semiconductor Application Note 977, October 1994

[9] John Goldie, Syed Huk, “LVDS Performance : Bit Error Rate
(BER) Testing Test Report #2”, National Semiconductor
Application Note 977, May 1996

[10] Shaune Allen, “SpaceWire Physical Layer Issues”, NASA
GSFC, 2006 MAPLD International Conference, September
2006

[11] John Goldie “Failsafe biasing of LVDS Interfaces”, National
Semiconductor Application Note 1194, December 2011

[12] Stephen Campainen, “Low Voltage Differential Signaling”,
Agilent Technologies Application Note 1382-6

175

Using SpaceWire In a Intellectualized Data Processor
Session: SpaceWire Missions and Applications,

Poster Paper

ZhouYuan
China Academy of Space Technology(XI’AN)

XI’AN, CHINA
mateyes@163.com

Li Li, Zhang Jian-hua, Cui Wan-zhao, Zhao Jun-yi
China Academy of Space Technology(XI’AN)

XI’AN, CHINA
zjh0901@gmail.com, zhaojy@cast504.com

Abstract—The new generation meteorologic satellite of China
selected SpaceWire as the best solution to satisfy the desire for
standard and simple interfaces among instruments of spacecraft.
Data generated by science instruments and are sent to
intellectualized data processor for checking，multiplexing and
formatting. Using SpaceWire as the interfaces between science
instruments and intellectualized data processor, we can obtain
many benefits, such as having flexible speeds on links, easing
connection and control, simplifying the whole network architecture,
etc. Thanks to SpaceWire router, several input links can route to a
same out port, multiplexing them into a data stream, and we can
save a lot of memory space. The intellectualized data processor can
check the data from the out ports of SpaceWire router, and
diagnose whether the SpaceWire packets is correct. If there has
incorrect packets, the intellectualized data processor will deal with
them intellectually and transmit the wrong status to Ground Station.
This paper describes the SpaceWire network of payload instruments
and how the intellectualized data processor works.

Index Terms—satellite, SpaceWire, data processor

I. INTRODUCTION
FY-4 is the second generation of Meteosat geostationary

meteorological satellite, the main development objectives are:
satellite attitude stabilization mode is the three-axis stabilized
which improve the time resolution observations and regional
mobile detection capability; improve imaging device
performance, in order to strengthen the ability of monitoring
weather systems; development and microwave detection
Atmospheric Sounding solve three-dimensional high-orbit
remote sensing; the development of extreme ultraviolet and X-
ray solar observation, to enhance space weather monitoring and
warning.

The payload equipments of the satellite are the two-
dimensional scan of 10-channel imager, the atmospheric
vertical interferometric detector, the lightning imaging device,
and the CCD camera.

At present, many kinds of bus are applied to spacecraft for
data transmission, telecommand and telemetry, such as MIL-
1553B, CAN, RS485 and RS422. The outburst feature of the
these bus is that the data transfer rate is very low, less than
1Mbps as usually. And there are more and more equipments on
the spacecraft which the data speed is more than 1Mbps.

Therefore we need a high-speed data bus to satisfy this
requirement.

In terms of the interfaces of traditional equipments, once
connecting the cables, the paths of transmitting data are fixed.
And the information among the electronic equipments can’t
flow freely and share for each other. If there has a router on the
spacecraft like that the Ethernet router in our office, we can
solve this problem and make the information flow freely
among the electronic equipments on satellites.

There is another problem should be solved is that many
kinds of electronic equipments on satellite and the system
functions are very complicate, so the test and verification for
Electronic system is a great challenge, especially finding and
locating the faults. To solve this problem, it is necessary to
develop the intelligent aerospace electronic equipments which
have the function for health monitoring and maintenance.

In order to solve the two problems mentioned above, we
developed the intellectualized data processor base on
SpaceWire successfully. Using the standard SpaceWire
interface simplified and unified the interfaces of equipments,
and the SpaceWire router breaks the limit between the
traditional electronic equipment to provide information
transmission path is fixed, make the device information sharing
possible. And the router provide more SpaceWire links, this
can realize the transmission link redundancy and fault isolation
between the equipments. The data processor also has intelligent
data judgment and processing functions, provide the functions
of telemetry data monitoring system widely.

II. THE DATA PROCESSOR ROUTING FUNCTION AND
ADVANTAGE BASE ON SPACEWIRE

The intellectualized data processor has used the AT7910
which produced by ATMEL as the SpaceWire router. The
AT7910 ASIC chip has eight bidirectional SpaceWire
interfaces and Two External Interfaces, and data rate from 2 up
to 200 Mbps in each direction of SpaceWire link. In the The
intellectualized data processor, there are five SpaceWire
interfaces are used, as showed in figure 1.

176

SpaceWire
Router

10-channel imager

Atmospheric
vertical

interferometric
detector 1

lightning imaging
device

Atmospheric
vertical

interferometric
detector 1

FPGA

SpW

SpW

SpW

SpW

FIFO9

FIFO10

S
pW

BACKUP
LINK

Figure 1 Data Processor Block Diagram

The port1 to port4 of SpaceWire router are connected to the

payload equipments, and the local interfaces port9 and port10
are connected FPGA.

Using the SpaceWire router, compared with the traditional
data processor, there are following advantages at least:
(1) Simplified the system interfaces. Using the standard

SpaceWire interfaces, unified the connection within the
electronic system, the SpaceWire cable can be
interchangeable, providing convenience for system
interconnection and the interface definition.

(2) The data transmission paths are more flexible, the
performance of link redundancy is more outstanding. Four
SpaceWire ports connected with the payload equipment
scan fully interchangeable, the payload equipments only
need specified by the PORT9 or PORT10 sends the data to
the data processor, without attention from PORT1 to
PORT4 which port access. Due to the routing function,
payload equipments can be set the corresponding target
address, communicate with each other through the
SpaceWire router. In addition, the data processor, port 8
connected as a backup interface. When the fault of any
link PORT1 to PORT4 occurs, you can easily transmit the
link data to the backup equipment through PORT8, which
can improve the reliability of data transmission.

(3) Providing the flexibility of Routing configuration, can
provide the onboard network management function. The
routing chip configuration can be completed by the local
PORT9 or PORT10, or by SpaceWire port through the
remote configuration commands. Based on the function of
routing chip configuration, the link rate can be set to any
SpaceWire interface, and the any SpaceWire port can be
opened or closed according to the needs. In addition, the
parameters of the SpaceWire router can be setted by the
SpaceWire node through SpaceWire links.

(4) Providing the function of data multiplexing. Using the
routing function, when the data packets come from several
SpaceWire links, and routed to the one output port, the

data packets are multiplexed in a data stream. Because the
SpaceWire data packets are packet EOP or EEP, it can
easily find the start and the end of the data packets. And it
doesn’t need extra storage memory to multiplex the data
by user.

III. INTELLIGTENT PROCESSING OF THE DATA PROCESSOR
The intelligent processing functions of the data processor

we developed are mainly manifested in the following aspects:
(1) the local configuration and route configuration for

SpaceWire router.
(2) The intelligent judgment and processing of the instructions.
(3) The intelligent judgment and processing of the high-speed

payload data.
(4) The function of health monitoring.

A. The variety configuration modes of SpaceWire router

 Figure 2 the variety configuration modes of
SpaceWire router

The electronic system based on SpaceWire network, the
correct configuration of the nodes and router is very important.
And if we can modify the configuration parameters of the
SpaceWire nodes and routers when it need to, it will be very
convenient to operate the equipments onboard and can
maximize the system functions. As showed in figure2, the
SpaceWire router has at least three configuration modes:
(1) Local configuration mode. When the data processor is

powered or reset, the FPGA can configure it as system
default mode.

(2) Remote configuration mode by SpaceWire links. The
SpaceWrie remote nodes can configure the SpaceWire
Router by SpaceWire links if it needs to need change the
work mode, such as link speed, link on/off, ect.

(3) Configure the router work mode by telecommand for the
ground station. The data processor can receive the
telecommands which retransmitted by others equipments,
and change the router work mode if it is required.

177

B. The intelligent judgment and processing of the instructions.
The traditional data processor just passively accepts

instructions and executes the instructions. Instruction sender
cannot know whether these instructions are correctly received
by data processor. This approach is not conducive to situation
of the fault condition problems.

In order to solve this problem, the data processor receives
the instructions, and checks the correctness of every
instructions format and the check-sum, only the correct
instruction will be executed. Whether instruction is correct or
not, the data processor will return the check the results to the
digital command sender. Thus, the sender can judge whether
instruction is sent successfully by the return instruction packet
content, if there has transmission error, the sender can
determine what kind of error is. The intelligent judgment and
processing of the instructions can effectively improve the
reliability and safety of the instruction transmission.

C. The intelligent judgment and processing of the high-speed
payload data
Before processing the high speed data from the SpaceWire

links of the payload equipments, the data processor will check
the data packets at first. The content which will be checked
includes logic address checking, protocol type checking, the
counter continuity of the data packets checking and the length
of the data packets checking.

If the logic address or the protocol type of the data packet is
error, the data processor will discard the incorrect data packet.
If the counter of the data packets is not continuous, the data
processor just gives a flag to show that the data packet received
is not continuous. If the data length is not correct, the data
processor will cut the longer data packet into the specified
length, and fill the shorter data packet into the specified length.
The longer data packet truncation is easy in implementation,
but how to fill the shorter data packet into specified length is a
little complex.

The following analysis will show the possibility of filling
the shorter packets into specified data length in theory.

Hypothesis, there have N channels data will be routed to
the same out port of the SpaceWire router, the data rate of the
channel i is Vi, and 1≦i≦N, i is integer. The output rate of the
router port is V, and The data length of packets from N
channels is the same, L bits.

In order to ensure that the packets are processed and
transmitted correctly, it must enquire the inequality 1.
Otherwise, the data will be lost.

VVN

i i 1
 （1）

Suppose that when the data processor had checking the
length of the data packet, and finds the channel s has a shorter
data packet, the data length is Ls, and Ls <L. the data rate of
channel s is Vs. The short The data processor will fill the data
length from Ls to L. Then the output data amount of the out
port per second is:

)(
1 ss

s

sN

i i VL
L
VV

 (2)

In order to ensure the data is not lost, it should meet the
inequality 3 as showed below.

VVL
L
VV ss

s

sN

i i
)(

1
 (3)

It can be deduced inequality 4:

L
VVV

VL N

i is

s
s

1

 (4)

After testing, if the length of the short packet meets the

inequality 4, the data process can fill the short packet into the
specified length without data loss.

D. The function of health monitoring
The on-board intelligent data processor base on SpaceWire

router has the function of collecting the health states
extensively. This includes the following:
(1) Monitoring the state of the SpaceWire router. Such as link

speed, link on/off state, link errors and some key
parameters of router.

(2) Monitoring the execution of instructions. After checking
the received instructions, the data processor return back
the check results to the instructions sender, and after
executing the correct instructions, the data processor also
can send the execution results by telemetry.

(3) Monitoring the high speed payload data packets. The data
processor will check the correction of the received high
speed payload data packets, such as whether the logical
address is correct, whether the protocol type is correct, etc.

IV. CONCLUSION
This paper introduced that using SpaceWire router on

traditional data processor, what simplifies the aerospace
electronic systems within the interfaces, provides more flexible
interconnection method for the information transmission, and
easy to realize redundant backup at link level. The data
processor has some intelligent functions such as supporting a
variety of ways to configure the parameters of SpaceWire
router, and can realize on-orbit maintenance. Increasing the
intelligent judgment of instructions receiving and processing,
which enhance the reliability and safety of the data processor.
The system health monitoring makes it more convenient for
work and ground test.

The intelligent processing and maintenance of Aerospace
electronic equipment will be an important direction for future
development. Especially in deep space exploration and
emergency task, intelligent processing and maintenance
function is more important. We developed intelligent data
processor based on SpaceWire routing has carried on the
beneficial attempt and explore in this aspect.

178

REFERENCES
[1] ECSS-E-ST-50-12C.SpaceWire-Links,nodes,routers and

networks[S]. ESA-ESTEC ,2008.
[2] ECSS-E-ST-50-51C. SpaceWire protocol identification[s].

ESA-ESTEC ,2010.

[3] AT7910E.SpW-10 SpaceWire Router User Manual.
ATMEL,2008.

[4] www.nsmc.cma.gov.cn

179

Real-time Performance Simulation of SpaceWire

Router with Polling Arbitration Schemes
Session: Networks and Protocols, Poster Paper

Qiang ZHOU, Lan ZHANG

School of Electronics Information Engineering

BeiHang University

Beijing, China

 zhouqiang_ee@buaa.edu.cn, zhang_lan_kuaile@126.com

Hengqing LIN

System Engineering Research Institute

China State Shipbuilding Corporation

Beijing, China

wu342@163.com

Abstract—SpaceWire is a standard for on-board satellite

networks chosen by the ESA as the basis for future data-handling

architectures. Because SpaceWire does not use the bus-shared

arbitration, no collision would happen in the link. However,

congestion may occur when simultaneous input port data attempt

to share one output port of the router. Therefore, the arbitration

scheme in SpaceWire router plays an important role on real-time

performance. This paper researches on real-time performance

simulation of SpaceWire router with three polling arbitration

schemes. According to SpaceWire protocol, a SpaceWire

simulation model based on OPNET Modeler is proposed, and

with the functionality of OPNET Modeler, the

network/node/process models are set up. And then three polling

arbitration schemes such as FULL polling, EQUAL polling and

WEIGHTED polling, are proposed in router node. After that, the

validation of the simulation model is presented. And finally a

simulation case on typical application is presented. The

simulation focuses on the ETE delay of the packets, when

aforementioned three polling schemes are implemented. The

simulative results indicate that a suitable polling scheme can

obtain better real-time performance.

Index Terms—SpaceWire, real-time, simulation, OPNET.

I. INTRODUCTION

SpaceWire is a standard for on-board satellite networks

chosen by the ESA as the basis for future data-handling

architectures
[1]

. Since SpaceWire does not use the bus-shared

arbitration, no collision would happen in the link. However,

congestion may occur when simultaneous input port data

attempt to share one output port of the router. Therefore, the

arbitration scheme in SpaceWire router plays an important role

on real-time performance
[2]

.

This paper researches on real-time performance simulation

of SpaceWire router with three polling arbitration schemes

such as FULL polling (FP), EQUAL polling (EP) and

WEIGHTED polling (WP). According to SpaceWire protocol,

a SpaceWire simulation model based on OPNET Modeler
[3]

 is

proposed. And then three polling arbitration schemes FP, EP

and WP, are proposed in router node. To verify the

effectiveness of the aforementioned simulation model, an

analysis method is presented. And both simulation and analysis

have the consistent results. Finally a simulation case on typical

application is presented. The simulation focuses on the end-to-

end (ETE) delay of the packets, when aforementioned three

polling schemes are implemented. The simulative results

indicate that a suitable polling scheme can obtain better real-

time performance.

 II. OVERVIEW OF THE SPACEWIRE

A. SpaceWire Protocol

SpaceWire is an emerging standard for on-board satellite

networks, which uses serial, bi-directional, full-duplex links,

with speeds for data high-speed transmission ranging from 2

to 400 Mbps. The newest SpaceWire Standard ECSS-E-50-

12C is specified for physical connection to implement high-

speed data transmission and data exchange. It comprises six

levels as follows: Physical Level, Signal Level, Character

Level, Exchange Level, Packet Level, and Network Level.

B. SpaceWire Network

SpaceWire network is composed of point-point links,

nodes, and routers. SpaceWire node is the source or

destination of a packet. SpaceWire router provides a means of

routing packets from one node to other nodes. SpaceWire

offers unprecedented flexibility in the choice of network

topology to match the mission requirements
[4]

. It involves

point to point, chains, rings and trees, even complicated

topologies such as multi-dimensional chains and toroid. Figure

1 gives a specific example of SpaceWire network topology

architecture
[5]

.

Instrument*

5

LA41

LA52

LA53

LA54

LA60

Router

1

Memory

Processor

LA70

LA80

Router

2

Instrument

2

Instrument

4

Instrument

3

Instrument

High Rate

equivalent to

SpaceWire node

180

Fig. 1 An example of SpaceWire network topology architecture

C. Polling Arbitration Schemes in Router

SpaceWire routers enable packet arriving at input port to be

transported to the corresponding output port according to its

destination address. When simultaneous input port packets

attempt to share one output port of a router, it may cause

congestion. Therefore, a scheduling mechanism can be

proposed to schedule these input queues.

Because SpaceWire has no specify definition on the

scheduling mechanism, in this paper, we propose polling

scheduling mechanism, which is simple, and can be used

between interfaces of different data rate for the SpaceWire

routers. And the arbitration scheme model in router can be

seen in figure 2.

output queue

Me
ss

ag
e

st
re

am

ROUTER

Arbitration
Scheme

S1(C1,P1)

S2(C2,P2)

Sn(Cn,Pn) input queue Q n

2

1input queue Q

input queue Q

Polling Scheme：
- FULL polling
- EQUAL polling
- WEIGHTED polling

Fig. 2. Arbitration scheme model in router.

III. OPNET SIMULATION ON SPACEWIRE

Based on the above-mentioned SpaceWire standards and

polling arbitration scheme, a simulation model of SpaceWire

network can be setup to evaluate the ETE delay of SpaceWire

networks. The simulation model involves several aspects such

as SpaceWire node model, router model and network model.

A. SpaceWire Node Model

SpaceWire node is the source or destination of a packet. It

can be a processor, memory unit, sensor or some other units

connected to a SpaceWire network. SpaceWire node can be

designed in OPNET as shown in fig.3.

upper_src

manager

xmt rcv

Fig. 3 SpaceWire node model

Where,

Upper_src is a generator module to create packets. It will

produce packets at a certain period and certain length, and

then send them to the manager module.

Manager is a message processing module. It can receive

packets generated in the upper_src module, and use a user-

defined process model to assign destination addresses to the

packets or segment them. It can also retrieve packets arriving

from the point-to-point receiver. Upon receiving a packet, it

uses the same process to calculate the packet's end-to-end

delay and write the value to a global statistic. Then, manager

sends them to the point-to-point transmitter of the node.

XMT / RCV is a point-to-point transmitter/receiver pair for

each node, allowing packets to be sent or received from other

nodes via attached links. They work as a pair of

communication ports of SpaceWire node.

B. SpaceWire Router Model

SpaceWire router is designed to connect many nodes

together and provides a means of routing packets from one

node to other nodes. In OPNET, SpaceWire router is designed

with Polling scheduling mechanism and path addressing, as

shown in fig. 4.

rcv0 Input_FIFO_0

rcv1 Input_FIFO_1

Input_FIFO_7rcv7

FIFO_0

FIFO_1

FIFO_7

xmt0

xmt1

xmt7

Crossbar_Switch

...

...

Fig.4 SpaceWire router model

Where,

Rcv0 ~ 7: receivers, which receive packets from other nodes

via attached links;

Input_FIFO_0~7: input queues, which provide internal

packet queuing facilities to store these packets, and then send

them to the Crossbar_Switch.

FIFO_0~7: output queues, which store the packets waiting

for being transmitted by the corresponding output port.

Xmt0 ~ 7: transmitters, which send the packets to the

adjacent links.

Crossbar_Switch: Processing module, the core of a router,

is used to determine the output port to route a packet to by

checking its destination address. Additionally, it provides a

means of queue scheduling to schedule the input queues, who

request for the same output port, in order to solve the

competition problem. We propose polling arbitration scheme

for this module. And the process model represents the

arbitration behavior of output queue in the SpaceWire router.

Polling arbitration scheme can be implemented by finite state

machine in OPNET.

C. SpaceWire Network Model

The SpaceWire Network Model is setup according to the

topology described in fig. 1. The network topology consists of

seven nodes, two routers and several SpaceWire links. Where,

LA41, LA52~ LA54, LA60, LA70, and LA80 are working as

nodes. Among them, LA70 is a mass storage, the destination

of LA41, LA52 ~ LA54, LA60 and LA80. As a processor,

181

LA80 is used to transmit the packets coming from LA54 to

LA70 for storage. LA60 collects packets from sensors, and

then sends them to LA70 mass storage.

We assume that the link can work properly, and the buffer

capacity is set to infinite.

IV. VERIFICATION

In this section, an analysis method is proposed to verify the

effectiveness of the aforementioned simulation model.

A. the Scenario Parameters

The scenario parameters are set as in Table I.

B. Model Verification

Ref. [6] proposes a method to compute the end-to-end delay

of a packet in a SpaceWire network. The method of

computation is based on the idea that in a SpaceWire network,

the delivery of a packet can be divided into two phases: being

transmitted through the SpaceWire links and being routed

across the routers. We take the maximum delay for each input

link and add those values to the delay for the packet from

itself. As the source and destination of the packet do not cause

any delays and no collision would happen in the link, the

worst case delay for packet occurs in the router.

The maximum ETE delay: the worst case delay occurs

when the output port is already in use by another packet, and

there is one or more packets coming from other ports may

already be waiting for the same output port to become free.

The delay is denoted as
maxd .

)1(;max,
C

T

maxmax2)first(f),(

)max(

,
),(,

f

1

max

C

T

C

T

C

T

C

T
fdd

f

ff

Uf

ff

lfprevlf

n

j Uf

f

Sf

in

inin

j

inlin

inin

jinin

j

inlin

in

Fin

Where,

n is the number of routers in the SpaceWire network.

l is the number of the links that the packet follows.

Tf /C is the delay of each link, which is calculated by packet

length/link transmission speed.

SF is the set of packet flows that have the same source as f.

fin is the packet flow that use the link lin .
j

lin
U is the set of packet flows that use the links (except lj)

attached to the router j.

lj is the ordered list of the links the packet flow f follows.

Now, we mainly consider about the packet ETE delay

impacted by the packet length. For simplicity, it is supposed

that there are only LA52 and LA53 sending packets. Then we

analyze the impact of the parameter on the packet ETE delay.

Table II shows that the deviation between the simulation

results and exp.(1) is not more than 1.505%, which indicates

that the OPNET simulation results are consistent with the

analysis results. This verifies the validity of the simulation

model.

V. SIMULATION AND ANALYSIS

In this section we discuss the relationship between the ETE

delay and the packet length for specific scenario and specific

message flows, when the arbitration scheme in router is set to

FP, EP and WP, respectively.

A. Simulation Scenario & Message Parameters

The scenario parameters are setup as the same as in Table I,

and the network topology is setup as in section III.C. And the

message parameters are shown in Table III. The period of

LA53 and LA52 are both set to be fixed on 200us. The packet

length of LA52 is 4Kbits. And the packet length of LA53 is

set 10K, 15K, 20K, 25K, 30K, 36K(unit: bits) respectively.

According to three polling schemes, the corresponding polling

factors are defined.

B. Simulation

Figure 5 presents the relationship between the ETE delay of

LA52 and the packet length of LA53 when the arbitration

TABLE I

SETTING THE SCENARIO PARAMETERS

Symbol Quantity Value

Ts Simulation time 100s

S Simulation seed 10

BER Link bit error rate 0

C Link bandwidth 200Mbps

Ti
Packet transmission

starting time
Exponential distribution

(mean value:0.01s)

dsw Scheduling delay P(packet length)/C

TABLE II
COMPARISON ON MAXIMUM ETE DELAY

LA53 LA52 LA53

packet

length

Maximum delay Maximum delay

exp.(1) opnet deviation exp.(1) opnet deviation

(Kbits) (us) (us) (%) (us) (us) (%)

0.1 100.5 100.056 0.442 81 80.682 0.393

4 120 119.906 0.078 120 119.742 0.215

8 200 196.991 1.505 220 217.802 0.999

16 360 359.49 0.142 420 419.283 0.171

30 640 639.468 0.083 770 768.999 0.13

36 760 758.027 0.260 920 918.506 0.162

TABLE III
SETTING THE MESSAGE PARAMETERS

 LA52 LA53

Polling

arbitration
scheme

Packet

Length
Period

Polling

factor

Packet

Length
Period

Polling

factor

FP 4Kbits 200us 4Kbits

variable

10 Kbits

15 Kbits

20 Kbits

25 Kbits

30 Kbits
36 Kbits

200us
= Packet
Length

WP 4Kbits 200us 400bits 200us 800bits

EP 4Kbits 200us 400bits 200us 400bits

182

scheme in router is set to FP, EP and WP, respectively.

Fig. 5 The ETE delay of LA52 versus the packet length of LA53

Figure 5 shows that: 1) For FP, the ETE delay of LA52

increases sharply from 134.87, 182.46, 240.17, 289.75, 329.66

to 396.71 (unit: us) when the packet length of LA53 increases

from 10, 15, 20, 25, 30 to 36 (unit: Kbits). 2) for both EP and

WP, the ETE delays of LA52 almost do not change, and

the delays of two schemes are all less than 50us. Both of them

are significantly less than the ETE delay of FP. 3) FP has the

highest ETE delay among the three polling arbitration

schemes, while the delay of EP is slightly smaller than that of

WP.

Figure 6 presents the relationship between the ETE delay of

LA53 and its packet length when the arbitration scheme in

router is set to FP, EP and WP, respectively.

Fig. 6 the ETE delay of LA53 versus the packet length of LA53

Figure 6 shows that: 1) For FP, the ETE delay of LA53

increases sharply from 170.58, 243.92, 317.75, 319.57,

465.41to 553.99 (unit: us) when the packet length of itself

increases from 10, 15, 20, 25, 30 to 36 (unit: Kbits). 2) for

both EP and WP, the ETE delays of LA53 both increase

slowly, while the delays of this two schemes are significantly

smaller than that of FP. 3) FP has the highest delay among the

three polling arbitration schemes, while the ETE delay of EP

is slightly smaller than that of WP.

C. Result

Based on the specific scenario and specific message flows

defined in Section V, we can infer the following results. First,

the FP has the highest ETE delay among the three polling

arbitration schemes, and the delay strongly depends on the

packet length. That is to say, the FP has the worst delay

performance among the three polling arbitration schemes.

Second, the ETE delay performances of the other two schemes

are almost similar, although the ETE delay performance of EP

is slightly better than that of WP.

VI. CONCLUSION

In this paper, a real-time performance simulation of

SpaceWire router with three polling arbitration schemes such

as FULL polling (FP), EQUAL polling (EP) and WEIGHTED

polling (WP) is researched. According to SpaceWire protocol,

a SpaceWire simulation model based on OPNET Modeler is

proposed, and three polling arbitration schemes FP, EP and WP,

are proposed in router node. After that, an analysis method is

presented to verify the effectiveness of the aforementioned

simulation model. Finally a simulation case on typical

application is presented, and the simulative results indicate that

a suitable polling scheme can obtain better real-time

performance.

ACKONWLEDGMENT

This work was supported by Beijing Natural Science

Foundation (4133089).

REFERENCES

[1] ECSS-E-50-12-C. SpaceWire Engineering: SpaceWire-Links,

node, routers and networks ESA-ESTEC. November 2008.

[2] Q. ZHOU, H. XIN, Y. SHI. Realtime performance of arbitration

scheme for SpaceWire router, Proceedings of the 4th

International SpaceWire Conference, SpaceWire 2011,

University of Dundee, 2011,pp:23-26.

[3] Huawei Shi, Nianjun Zhang, Tongguang lv. Analysis of OPNET

simulation technology and its application[J].Computer

Engineering & Design,2006, (17):3309~3310.

[4] S. Parkes, P. Armbruster. SpaceWire: Spacecraft Onboard Data-

handling Network. Acta Astronautica, 2010,66(1-2): 88-95

[5] SpaceNet-SpaceWire-RT Initial Protocol Definition. Space

Technology Centre School of Computing University of Dundee,

DD1 4HN Scotland, UK. October 2008.

[6] T. FERRANDIZ, F. FRANCES, C. FRABOUL. A method of

computation for worst-case delay analysis on SpaceWire

networks [J]. Institute of Electrical and Electronics Engineers

(IEEE), 2009: SIES '09 ; 8 - 10 July 2009, Ecole Polytechnique

Federale de Lausanne, Switzerland. IEEE, Piscataway, pp. 19-

27. ISBN 978-1-4244-4109-9.

10 15 20 25 30 36
0

50

100

150

200

250

300

350

400

Packet length of LA53 (Kbits)

E
T

E
 D

e
la

y
 o

f
L
A

5
2
 (

u
s
)

47.035
43.13 43.05

329.66

47.05

289.75

44.71 43.51

240.17

43.51

182.46

47.07
44.08

134.87

47.04 47.06

396.71

47.06

EP
WP
FP

10 15 20 25 30 36 0

100

200

300

400

500

600

Packet length of LA53 (Kbits)

E
T

E
 D

e
la

y
 o

f
L
A

5
3
 (

u
s
)

207.04

553.99

205.14

76.85

176.95
152.17

125.17 101.95
99.97

391.57

465.41

75.10

170.58 175.02
149.98

317.75

127.02

243.92

 EP
 WP
 FP

183

The General Situation of SpaceWire Research in China
Missions and Applications, Poster Paper

Chen Xiaomin , Guo Lin, Sun Huixian

National Space Science Center, Chinese Academy of Sciences

Beijing, China

E-mail: chenxm@cssar.ac.cn, guolincug@yahoo.com.cn, shxian@cssar.ac.cn

Abstract—SpaceWire, an on-orbit high-speed network, has lots

of useful characteristics which are high speed, full-duplex,

convenience of setting up, flexible topology and open-protocol.

Now SpaceWire has become the new generation of on-orbit data

bus recommended by ESA and NASA, and was successfully

applied

At present, the space industry in China is developing at high-

speed, and a number of satellites are planning or preparing to

launch. SpaceWire bus with its excellent performance has been

paid more and more attention and studied by Chinese space

scientists. This paper reviews the current research situation of

SpaceWire Technology in China, introduces the possible

application scene of SpaceWire in China spacecraft, and analyses

the requirement of the new generation high-speed bus in Chinese

space missions and the applicable situation of the SpaceWire. In

the end, this paper summarizes the problems which were found

in Chinese researchers work on the SpaceWire, and concludes

their advice and wishes.

key word: SpaceWire, China, Spacecraft Electronics.

I. SPACEWIRE STATE OF THE ART IN CHINA

SpaceWire as an on-orbit high speed network, provides a

unified high speed data-handling infrastructure for connecting

together sensors, processing elements, mass-memory units,

downlink telemetry subsystems and electronic ground support

equipment (EGSE), and has lots of useful characteristics, such

as high speed, reliability, low power consumption, structure

simple etc.[1] SpaceWire protocol is open and flexible to be

compliant with possible future higher demanding needs, has

broad prospects for development.

At present, more than 10 research institutes are carrying out

study on SpaceWire technology, which principally includes

National Space Science Center , Chinese Academy of

Sciences(NSSC,CAS), Beijing Institute of Control

Engineering(BICE), Beijing Institute of Space Mechanics and

Electricity(BISME), Harbin Institute of Technology(HIT),

Capital Normal University(CNU), Xi’an Microelectronics

Technology Institute(XMTI) etc. Through statistics on Chinese

engineering and technology literatures, as recently as five

years, the topics with regard to SpaceWire are more than 40

articles, which involve the field of study as shown in Table 1.

TABLE I. STATISTICS ON CHINESE SPACEWIRE ARTICLES

Fields QUANTITIES

Summarizes 4

Components 13

Test & Verification 3

Upper layer protocols 1

Onboard Equipments 2

Is obvious from the previous table, the research on

SpaceWire is still at primary scenario in China, which is

mainly reflected in the following 2 aspects.

First, a lot of work are still focused on summarizes and

introduction, development on elementary components (such as

Codec, Router), prototype design on point-to-point

transmission application, there are wide gaps compared to

advanced research and application, such as network application

which interconnects with routers, hardware and software

design on SOC.

Second, SpaceWire hardware structure is relatively simple

to Switched Ethernet and IEEE-1394, the current FPGA design

method has been very mature. Many research institutes choose

the Codec IP and Router IP for research objectives, their

production levels are different, but have the widespread

problem is lack of succession and full verification, are far away

from on-orbit space application.

According to the situation which we grasp, currently,

outstanding SpaceWire productions in China are as shown in

Table 2.

TABLE II. REPRESENTATIVE SPACEWIRE PRODUCTS IN CHINA

SpaceWire

productions

research

institutions
Features Description

SpaceWire
Codec IP

NSSC,CAS

FPGA: A3P1000,Std; Function:
Compliance with ECSS-E-ST-50-12C,

configurable low-power consumption

mode; Performance: up to 200Mbits/s

BISME FPGA: Virtex-5 LX110T; Function:
Compliance with ECSS-E-ST-50-12C;

184

Performance: up to 300Mbits/s[2]

SpaceWire

Router IP
NSSC,CAS

FPGA: A3P1000, Std; Function: 8-ports

Router, Compliance with ECSS-E-ST-50-

12C, Priority based, round-robin

arbitration ， Group adaptive routing;

Performance: up to 200Mbits/s, switching

latency is 100~125ns

PCI-
SpaceWire

interface card

NSSC,CAS

FPGA: APA600; Function: transmission of

data and time-codes, monitor and record

status, link fault Injection；Performance:

up to 100Mbits/s

HIT
Function: transmission data; Performance:

up to 100Mbits/s[3]

SpaceWire
communication

prototype
NSSC,CAS

ASIC: AT7911e; Function: Half-duplex
communication, transmission of scientific

data and control commands; Performance:

140Mbits/s

II. MAIN SCRAPE OF SPACEWIRE APPLICATION IN CHINA

SpaceWire has been used in more than 30 space missions.

With the development of comprehensive national strength, a

number of satellites are planning or preparing to launch in

China. But so far, SpaceWire is not yet used in any spacecraft

in China. Toward this situation, we will attempt to investigate

and analyze its reason.

In the present limited demand, the advantage of SpaceWire

is not obvious. In Chinese spacecraft, with the widespread use

of the network structure is high reliable 1553B or dual-CAN as

control bus. 1553B is very mature and almost all satellites are

widely used in China. So it is the first choice of the on-orbit

data network with higher prestige. The CAN often gets the

favour of small satellites. China is also often used RS-422 at

high data rate transmission application scene. When network

needs to further improve the data rate, First choice would be

LVDS connection to constitute several point-to-point links, but

not be SpaceWire. Investigate its reason, currently in Chinese

spacecraft, the demand of high data rate is only limited to a few

imaging science instruments, the data rate of whole network is

not high. Therefore, individual instruments adopt special

“point-to-point” LVDS connection already can meet the

mission, and the need of standard upper layer protocol is

greatly weakened.

Costly and complex design on circuit board. According to

SpaceWire user guide as an example, Each SpaceWire node is

composed of one AT7911e, two dual-port RAMs and one

processor. Although SpaceWire has higher reliability than

LVDS, it has higher cost and complexity. The design fees of

SpaceWire interface might occupy a very high proportion in

whole funds of instruments, which let to the designer difficult

to choose SpaceWire. In addition to expensive besides,

SpaceWire interface also can lead to volume, weight and

power consumption is higher, also can take up the whole

instrument more resources.

The standard maturity is relatively low, especially for

control bus in spacecraft. Compared with 1553B, IEEE-1394

and switched Ethernet, ECSS-E-ST-50-12C only supports the

data link layer of OSI reference model. Despite the RMAP

transport layer protocol has been standardized, continuously

put forward some ideas and design of upper layer protocol,

such as SpaceWire-RT, SpaceWire-D, SpaceWire-PnP,

SpaceFibre etc, but in addition to RMAP, these protocols are

still in draft stage, lack of documents and supported chips. In

addition, the chips integrated RMAP are rarely, therefore,

Although Chinese engineers want to solve practical

engineering problems of reliability and real-time of

transmission, the protocol status greatly restricted the solution

to the problem, leading engineers reluctant to use SpaceWire.

III. THE FUTURE OF SPACEWIRE IN CHINA

Currently in china, for promoting the SpaceWire

application, we believe that there are two ways. On the one

hand, through the integration of protocol control IP and

interface IP, to develop design of SOC, which can save cost

and power, size and weight of circuit board, improve the

availability of SpaceWire. The other hand, SpaceWire as an

open protocol stack, designer and researcher should is not only

as technology trackers and imitators, but also actively involve

in the development of SpaceWire upper layer protocols,

accelerate the standardization of various upper layer protocols

in draft stage.

SpaceWire has been successfully applied in many

spacecrafts from ESA, NASA and JAXA, which indicates its

performance and functionality obtained international

recognition of the major space research institutions, represents

the development trends of on-orbit data network. We have

abundant reason to believe that SpaceWire application in

Chinese spacecraft will be achieved in the near future.

REFERENCES

[1] ECSS, “SpaceWire-links, nodes, routers and networks”, ECSS-

E-ST-50-12C, Junly 2008.

[2] Liu Tao, Huang Wei, Pan Weijun, “Design and Verification of

Spacewire IP Core”, Spacecraft Recovery and Remote Sensing,

Vol.1 NO.32, pp.51-58, 2011.

[3] Qiao Liyan, Chen Libin, Peng Xiyuan, “Design of spacewire-

PCI correspondence card based on IP core”, JOURNAL OF

ELECTRONIC MEASUREMENT AND INSTRUMENT,

Vol.24 No.10, pp.918-923, 2010.

185

NodeA

(High Consumption)

Valued data to send

State:Run

NodeB

(High Consumption)

Unvalued data to send

State:Run

Send CTs: N-chars, Nulls, Time-Codes

Send CTs: FCTs, Nulls

①

NodeA

(High Consumption)

Valued data to send

State:Run

NodeB

(High Consumption)

Valued data to send

State:Run

Send CTs: N-chars, Nulls, Time-Codes

Send CTs: N-chars, Nulls, Time-Codes

NodeA

(High Consumption)

Unvalued data to send

State:Run

NodeB

(High Consumption)

Unvalued data to send

State:Run
Send CTs: FCTs, Nulls

Send CTs: FCTs, Nulls

③

②

A Low-power SpaceWire Codec IP Core
SpaceWire Components, Poster Paper

Guo Lin, Sun Huixian , Chen Xiaomin

National Space Science Center, Chinese Academy of Sciences

Beijing, China

E-mail: guolincug@yahoo.com.cn, shxian@cssar.ac.cn, chenxm@cssar.ac.cn

Abstract—SpaceWire is an onboard data-handling network for

spacecraft which offers high- speed, low power, simplicity, low

cost, and architectural flexibility. SpaceWire coder/decoder

(Codec) which uses the DS encoding method to serialize

SpaceWire characters for communication over the SpaceWire

link. Standard SpaceWire Codec can alter data signalling rate

(DSR) in the Run state, but the data signalling rate is not

adjusted according to the type of transmission character, which

will cause unnecessary Power loss.

We designed and implemented a low-power SpaceWire Codec

IP core, it satisfies the ECSS-E-ST-50-12C protocol, and can

work through the configuration registers in the standard and

low-power modes. In low-power mode, When the transmit

interface does not have N-Chars and Time-Codes to send, the

Codec will automatically adjust the data signalling rate to

10Mbps, thereby reducing the operating power consumption.

The IP core is implemented in an Actel A3P1000

approximately 4% of the logic resources and is up to 200Mbits/s

in Std grade of FPGA, the DSR conversion delay is less than

100ns. By Star-Dundee's SpaceWire PCI-2 and SpaceWire Link

analyser to validate, the IP core has good compatibility with

standard SpaceWire equipment, and can reduce consumption by

about 56%.

key word: SpaceWire, Low-power, Codec, IP.

I. INTRODUCTION

Since 2003, CSSAR, CAS has carried out the widespread

and in-depth research on ESA standard ECSS-E-ST-50-12C.

Currently who has been independently developed products

including multi-port SpaceWire communication terminal

based on AT7911e, Codec IP core and Router IP core,

SpaceWire-PCI interface card, all have obtained successful

application.

This paper introduces a configurable low-power

consumption Codec IP core improved from current IP, it

provides and achieves a low-power consumption design in run

state of codec. The final experimental results show the power

consumption has obvious reduced, meanwhile, the IP has good

compatibility with standard protocol terminal and up to

200Mbits/s data signalling rate.

II. THE ANALYSIS OF EXISTING CODEC POWER CONSUMPTION

According as ECSS-E-ST-50-12C, the standard Codec IP

core or ASIC can operate at any data signalling rate between

the minimum data signalling rate and the maximum possible

data signalling rate. [1] The delivered character is separated

into two types: link-characters (L-Char) and normal-characters

(N-Char). The recover clock from Data-strobe signal through

XOR circuit. Data transfer process shown in Figure 1.

Fig. 1. Data transfer scenes between standard SpaceWire nodes

Figure1 shows three data transfer scenes were simplex, full-

duplex and idle (do not send N-Chars and Time-Codes). Since

the data signalling rate of node A and node B are pre-

configured, therefore in idle scene, nodes still maintained the

same data signalling rate, which will cause unnecessary Power

loss.

In order to reduce the power loss on idle scene, SpaceWire

router AT7910e of Atmel Corporation provides two special

modes to save power, they are request mode and silence mode.

[2] It can automatically start on request mode if the source port

attempts to send data, and disable on silence mode when it no

longer has any data to transfer. The work scene as shown in

figure 2, but through further analyzes shows that this approach

has some drawbacks:

 When the source port has data to be sent, it needs at

least 20us for link initialization, is not suitable for real-

time data and time-codes transmission applications;

186

SpW-10X A
(Low Consumption)

Connection Attempt

State:Non-run

SpW-10X B
(Low Consumption)

Connection Attempt

State:Non-run

Start on request mode

Send CTs: FCTs, Nulls

Send CTs: FCTs, Nulls

2 2Packets

1

SpW-10X A
(High Consumption)

Valued data to send

State:Run

SpW-10X B
(High Consumption)

Unvalued data to send

State:Run

①

Send CTs: N-chars, Nulls, Time-Codes

2 2

Packets
②

Packets

1

 Data transfer on Router A

③

Disable on Silence mode

Link initialization time > 20μS

SpW-10X A
(Low Consumption)

Disconnection

State:Non-run

SpW-10X B
(Low Consumption)

Disconnection

State:Non-run

2 21

Data transfer completed Link

Disabled after timeout period

Link initialization

DSR:10Mbps

Data transfer DSR:

up to 200Mbps

Send CTs: FCTs, Nulls

Unvalued data

transfer Link

DSR:10Mbps

Valued data

transfer Link

DSR: 200Mbps

LP-Node A
(Low Consumption)

DSR conversion

State:Run

LP-Node B
(Low Consumption)

Low send DSR

State:Run

Send CTs: Nulls

Send CTs: Nulls

2 2Packets

1①
DSR conversion time

є [70ns, 80ns, 90ns 100ns]

 Data transfer request on Node A

LP-Node A
(Mid Consumption)

High send DSR

State:Run

LP-Node B
(Mid Consumption)

Low send DSR

State:RunSend CTs: FCTs, Nulls

2 2

 Data transfer on Node A
Send CTs: N-chars, Nulls, Time-Codes

Packets
Packets

1

1

②

LP-Node A
(Mid Consumption)

High send DSR

State:Run

LP-Node B
(Mid Consumption)

DSR conversion

State:Run
Send CTs: FCTs, Nulls

2 2

 Data transfer request on Node B
Send CTs: N-chars, Nulls, Time-Codes

Packets
Packets

1
③

1LP-Node A
(High Consumption)

High send DSR

State:Run

LP-Node B
(High Consumption)

High send DSR

State:Run

2 2

 Data transfer on Node A & B
Send CTs: N-chars, Nulls, Time-Codes, FCTs

 Packets
Packets

1
④

DSR conversion time

є [70ns, 80ns, 90ns 100ns]

 Packets

Packets

 Packets

Send CTs: N-chars, Nulls, Time-Codes, FCTs

DSR conversion

Link DSR:

100Mbps

40Mhz

Unvalued data unit

SDR OUT

DSR conversion unit

SDR OUT

Valued data unit

DDR OUT

PLL up to

100Mhz

10Mhz

TX_DATA

TICK_IN

TIME_IN

OR3

OR3

DO

SO

 When no N-chars have been transmitted after timeout

period, router can disable the link to save power, but it

is only suitable for simplex communication, has

significant limitations.

Fig. 2. AT7910e’s low-power loss strategy

III. A DESIGN METHOD OF LOW-POWER CONSUMPTION

CODEC

The power consumption and operating frequency have

proportional relationship. According to experimental results

indicated that data signalling rate for 10Mbits/s (idle) and

200Mbits/s (full-duplex), the power consumption of single

Codec was higher than about 4mW and 70mW, compared with

standby power consumption. Thus, if no N-chars or time-codes

to send, the codec maintain links through slow data signalling

rate(i.e.10Mbits/s) to transmit Null and FCT, which can also

save power obviously, meanwhile, solve two drawbacks of

AT7910e on request mode and silence mode, one is high link

initialization latency expenses, the other is not suitable for the

duplex communication. The data transfer scenes shown in

Figure3.

By the scene 2 of figure 3, when node A sends data in

simplex communication mode, node B is slow data signalling

rate to send FCT or Null. The FCTs offered by node B need to

ensure non-stop data transmission from node A, thus, data

signalling rate on link both sides must satisfy the formula 1.

Since by the formula, when data signalling rate of node B is

10Mbits/s, Maximum data signalling rate of node A is

200Mbits/s.

In low-power consumption Codec IP core, the output DS

signals generated by three modules, Inc, invalid data generation

module (Unvalued data, Ud), data signalling rate conversion

module (DSR conversion, Dc) and valid data generation

module (valued data, Vd). In Ud module, the input clock is

10MHz, DS signals generated by single data rate (SDR)

encoding method, it only produces Nulls and FCTs characters,

may realize the link initialization. In Dc module, maximum

input clock is 100MHz and has same phase with Ud’s, DS

signals encoding method also is SDR, it can complete

remaining bit-stream from Ud’s to reduce data signalling rate

switching delay. In Vd module, the input clock is the same as

Dc’s, DS signals encoding method is dual data rate (DDR), it

can produce all the SpaceWire characters. Figure 4 is DS

Fig. 3. Data transfer scenes of low-power Codec

Fig. 4. DS signals generator block diagram

IV. IMPLEMENTATION AND RESULT

The IP core is implemented for Actel A3P1000 with std

grade. The main features and performance are as follows:

 The logical resource approximately is 4%,

communication data rates up to 200Mbits / s;

 The IP core can be configured on standard mode and

low-power consumption mode, all have good

compatibility with standard SpaceWire terminal;

 When input clock of Vd and Dc is 100MHz, the data

signalling rate conversion delay is not higher than

100ns, and through testing all 120 kinds of switching

process, the result is correct, Figure 5 is simulation

waveform of a switching process;

 Compared with the existing Codec chips, the power

consumption improve can amount to 56%.

V. CONCLUSION

The low-power codec can adjust data signalling rate

according to the type of transmission characters, when no valid

data to be sent, it can reduce data signalling rate to save power.

Compared with AT7910e, it has better flexibility and

performance, can be used for full-duplex communication

 (8) 10 4 high lowDSR DSR

187

Fig. 6. Time-codes transmission on low-power consumption mode (End A:PCI-2, End B: Low-power -Codec)

70ns

Fig. 5. Simulation waveform of a switching process

especially. Through experiments, its compatibility and

performance parameters are good. Is foreseeable that, if

SpaceWire router IP core uses it, will lead to more substantial

power improvement.

REFERENCES

[1] ECSS, “SpaceWire-links, nodes, routers and networks”, ECSS-

E-ST-50-12C, Junly 2008.

[2] Atmel, “AT7910E SpW-10X SpaceWire Router”, April 2008

188

FORMAL VERIFICATION FOR SPACEWIRE

DECODING BY APPLING THEOREM PROVING

Session: SpaceWire test and verification

Poster Paper

Yupeng Zhang, Zhiping Shi, Yong Guan, Xiaojuan Li

Beijing Key Laboratory of Electronic System Reliability

Technology, Capital Normal University, Beijing, 100048,

China

namoweiguang@126.com, shizhiping@gmail.com,

gxy169@sina.com

Jie Zhang

College of Information Science & Technology, Beijing

University of Chemical Technology, Beijing, 100029, China

jzhang@mail.buct.edu.com

ABSTRACT:

In SpaceWire standard , decoding circuit belongs to the

receiver and it corresponds to the Data-Strobe encoding circuit.

Based on higher-order logic theorem prover HOL4, this paper

applies theorem proving, one of the formal methods, to verify

the SpaceWire decoding circuit. And the paper focuses on the

properties of DataValid in the decoding circuit. Firstly, this

paper extracts the relevant properties of DataValid on the

basis of SpaceWire standards. These properties are described

in higher-order logic. Then analyze the VHDL design codes of

the circuit and model it logically according to the realized

function of the codes. Finally with the aid of HOL4 it is

validated that the model of the circuit design can satisfy the

properties faithfully.

KEY WORDS:

SpaceWire standard; formal verification; theorem proving;

HOL4

I. INTRODUCTION

In recent years, SpaceWire protocol has got wide attention

and rapid development in theory and technology applications.

It can be extensively found in aerospace domain，open field,

mines, nuclear power station and other harsh or dangerous

environment. Because of SpaceWire’s vital importance, any

tiny errors in system design are likely to produce huge

economic losses and casualties. Therefore it is very necessary

to verify the design of SpaceWire. However, the traditional

methods, simulation and testing are based on test cases which

are impossible to cover all the cases for huge and complex

systems [1] [2]. Formal verification which is based on some

specifications or attributes uses mathematical methods to prove

the correctness or incorrectness of system. And the verification

is complete for the properties to be verified. This paper applies

theorem proving, one method of formal verification, to analyze

the behavior of system , model the system logically and then

prove the properties of model mathematically with the aid of

higher-order logic proof tool HOL4.

Decoding circuit is the receiver’s key circuit in SpaceWire

standard. It is related to the Data-Strobe (DS) encoding circuit

in transmitter [3]. The key point of the verification is formal

modeling.

The paper is organized as follows: Chapter Ⅱintroduces

the method of formal verification in details which includes

decoding specification and implementation. Then the result is

shown in Chapter Ⅲ . The paper comes to an end with

conclusions and future work in Chapter Ⅳ.

II. METHOD

In order to ensure the design of DataValid meets the

requirement of SpaceWire standard, the paper converts the

properties of DataValid into logical description by using

higher-order logic language. The process is normally called

decoding specification. Then VHDL design codes are

abstractly modeled by corresponding logical predicates which

can describe the realized functions of the codes [4]. And the

model can explicitly shows the characteristic of clock, the

order of code execution and the behavior. Then the paper

draws logical diagrams which can indicate the relationship

among predicates clearly. This model is called decoding

implementation.

 The paper mainly takes advantage of goal-guiding method

which is one obvious characteristics of HOL4. This approach is

known as strictly logical reasoning [5]. In addition, relevant

189

mailto:shizhiping@gmail.com

tactics and axioms obtained from HOL4 are used to verify

whether the implementation satisfied the requirement of

specification.

A. DECODING SPECIFICATION

Specifications indicate the temporal properties or functions

of the system to be verified. The receiver firstly needs to

decode the data and the decoding process is finished in

decoding circuit. This paper focuses on the specifications of

DataValid in decoding circuit.

DataValid is an important signal. It can check whether the

received link signal is effective and many operations must be

based on its signal value to continue downward [2]. Decoding

circuit obtains the signal DataValid through logical operations

of the signal DataIn and StrobeIn. When the value of

DataValid is high, the received data is valid. On the contrary,

the received data is invalid.

Property 1:

As long as the reset signal is T, the output signal

DataValid is F. “T” means high level and “F ” means low level.

t. reset t ==>（datavalid t = F） (1)

“t ” means for all t ; “==> ”means implication.

Property 2:

There are five clock delay in the output. If reset signal is

T at time t+5 or t+4 or t+3, the output signal DataValid is F.

If reset signal is F at time t+5 or t+4 or t+3 and is T at time

t+2, the output signal DataValid is equal to the logic XOR

gate of the signal DataIn and StrobeIn at time t+2. At other

time DataValid is always equal to the logic XOR gate of

DataIn and StrobeIn each at at time t+2 and at time t+1.

t. datavalid(t+5) =

If reset(t+5) \/ reset(t+4) \/ reset(t+3) then F

else if reset(t+2) then

XOR (d(t+2)) (s (t+2))

else

XOR4 (d(t+1)) (d(t+2)) (s(t+1)) (s(t+2)) (2)

The definitions of predicates “XOR” and “XOR4” in

property 2 is shown as follows.

Definition 1:

|- a b. XOR a b = ¬a /\ b \/ a /\¬b (3)

The predicate “XOR” is used to formalize the logic XOR

gate of two signals.

Definition 2:

|- a b c d. XOR4 a b c d =

 (¬a/\ b/\c/\d) \/ (a /\¬b/\c/\d) \/ (a/\b/\ ¬c/\d) \/ (a/\b/\c/\¬d) \/

(¬a/\ ¬b/\ ¬c/\d) \/ (¬a/\¬b/\c/\¬d) \/ (¬a/\b/\ ¬c/\ ¬d) \/

(a/\¬b/\¬c/\¬d) (4)

The predicate “XOR4” formalizes the logic XOR gate of

four signals. “¬” means negation.

According to the combination of property 1 and property

2 the paper gets the formal descriptions of decoding

specifications.

B. DECODING IMPLEMENTATION

According to the design codes of decoding circuit in

SpaceWire, this paper draws a related structure diagram and

then simplifies it which the output only has signal DataValid.

The structure diagram is shown in Fig 1:

Simple_reco

very_d

Simple_reco

very_d

Simple_reco

very_s

Simple_reco

very_s

Reset

Clock
DataIn

Data

RisingEdge

Data

FallingEdge

Reset

Clock

SrobeIn

Strobe

RisingEdge

Strobe

FallingEdge

DataReconstru

ctor

DataReconstru

ctor
DataValid

ResetClock

DataRising

Edge
DataFalling

Edge

Strobe

RisingEdge

Strobe

FallingEdge

Reset

Clock

DataIn

SrobeIn
DataValid

 Fig 1: The structure diagram

Definition 3:

|- out. ONE out = t. out t = T (5)

The predicate “ONE ” means its output is always true. It

is used to formalize the operation in which the output is 1 at

any time.

 Definition 4:

|- inp out. NOT (inp,out) = t. out t = ¬inp (6)

The predicate “NOT” means its output is the negation of

input.

Definition 5:

|- sw a b out. MUX (sw,a,b,out) = t. out t =

(if sw t then a t else b t) (7)

The predicate “MUX” formalizes the case statement

“IF…THEN… ELSE…”.

Definition 6:

|-inp out. REG (inp,out) = t. out t =

(if t = 0 then F else inp (t – 1)) (8)

The predicate “REG” has the function of register which

has one clock delay.

Definition 7:

|- rst a out. DFF (rst,c,out) = ∃x a b. REG (c,x) /\ MUX

(rst,b,x,d) /\ ONE a /\ NOT(a,b) (9)

The predicate “DFF” has the function of asynchronous D

flip-flop. It is used to formalize the component “FDC” which

is called in design code of simple_recovery in fig 1. The

190

PROCESS (Reset, Clock)

VARIABLE NoX : STD_LOGIC;

BEGIN

IF Reset = '1' THEN

DataValid <= '0';

DataRisingEdge_delayed <= '0';

DataFallingEdge_delayed <= '0';

StrobeRisingEdge_delayed <= '0';

StrobeFallingEdge_delayed <= '0';

ELSIF rising_edge(Clock) THEN

DataRisingEdge_delayed <=

DataRisingEdge;

DataFallingEdge_delayed <=

DataFallingEdge;

StrobeRisingEdge_delayed <=

StrobeRisingEdge;

StrobeFallingEdge_delayed <=

StrobeFallingEdge;

NoX :=

(DataRisingEdge AND NOT

DataRisingEdge_delayed) XOR

(DataFallingEdge AND NOT

DataFallingEdge_delayed) XOR

(StrobeRisingEdge AND NOT

StrobeRisingEdge_delayed) XOR

(StrobeFallingEdge AND NOT

StrobeFallingEdge_delayed);

DataValid <= NoX;

END IF;

END PROCESS;

definition of “DFF” is obtained from the combination of

definition3, 6 and 7. The main code of “FDC” is shown in

Fig2.

Fig 2: The main code of FDC

Definition 8:

|- a b out. AND2B (a,b,out) = t. out t = ¬a t /\ b t (10)

The predicate “AND2B” formalizes the component

“AND2B1” which is also called in design code of

simple_recovery in fig 1. The main code of “AND2B1” is

shown in Fig3.

Fig3: the main code of AND2B1

 This paper contacts the definitions of predicates above

with logical operation “AND”. The signals in design codes are

represented by existential quantifiers. Then the formal model

of simple_recovery_d in Fig1 can be built. For the purpose of

simplicity d, reset, d1, d2 are treated as replacement for

DataIn, Reset,DataRisingEdge,DataFallingEdge respectively.

And the paper uses e0, d0, x0, x1, x2, x3, x4, x5, a1, a2 as

substitutes for the signals in design codes. Based on the formal

model of simple_recovery_d the paper uses line instead of

logical operation “AND”, then draws a logical diagram which

can clearly reflect the relationship among the predicates. The

model of simple_recovery_s in Fig1 can also be got by the

same way. The logical diagram of simple_recovery_d is

shown in Fig 4.

reset

x0 x4x2x1 x3 x5d0R
E

G
R

E
G

M
U

X
M

U
X

R
E

G
R

E
G

M
U

X
M

U
X

R
E

G
R

E
G

M
U

X
M

U
X

R
E

G
R

E
G

M
U

X
M

U
X

AND

2B

AND

2B

AND

2B

AND

2B

d e0

ONEONE NOTNOT

a2

d1

d2
a1

Fig4: the logical diagram of simple_recovery_d

Because of the design code’s length, this paper gives the

main code of DataReconstructor in Fig 5. DataReconstructor

is one part of decoding circuit as Fig 1 shows. Its output is the

signal DataValid .

Definition 9:

|-a b out. AND (a,b,out) = t. out t = a t /\ b t (11)

The predicate “ AND” indicates the logic AND gate.

Definition 10:

|- a b out. XORING (a,b,out) =t. out t = XOR (a t) (b t) (12)

The predicate “XORING” is equal to the function of

logic XOR gate and corresponds to Definition 1.

Definition 11:

|- a b c d out. XOR4ING(a,b,c,d,out) = t. out t =

XOR4 (a t) (b t) (c t) (d t) (13)

The predicate “XOR4ING” corresponds to the Definition

2.

After finishing the definition 9, 10 and 11, the formal

model of DataReconstructor can be establised with the similar

method as Fig 4 shows. At the same time s1, s2, d3, d4, s3, s4,

datavalid are used to replace StrobeRisingEdge,StrobeFalling-

Edge, DataRisingEdge_delayed, DataFallingEdge_delayed，

ARCHITECTURE behavior OF AND2B1 IS

BEGIN

 O <= (NOT I0) AND I1;

END behavior;

ARCHITECTURE behavior OF FDC IS

BEGIN

PROCESS (C,CLR)

BEGIN

IF (CLR='1') THEN

Q<='0';

 ELSIF (C'EVENT AND C='1') THEN

Q<=D;

END IF;

END PROCESS;

END behavior;

191

StrobeRisingEdge_delayed,StrobeFallingEdge_delayed,Data-

Valid respectively. And the paper substitute a3, a4, a5, a6, m1,

m2, m3, m4, n1, n2, n3, n4, n5 for the signals in the design

codes. The logical diagram of DataReconstructor is shown in

Fig 5.

datavalid

R
E

G
R

E
G

R
E

G
R

E
G

R
E

G
R

E
G

R
E

G
R

E
G

M
U

X
M

U
X

N
O

T
N

O
T

M
U

X
M

U
X

N
O

T
N

O
T

M
U

X
M

U
X

N
O

T
N

O
T

M
U

X
M

U
X

N
O

T
N

O
T

AND

2B

AND

2B

AND

2B

AND

2B

AND

2B

AND

2B

AND

2B

AND

2B

XOR4

ING

XOR4

ING

M
U

X
M

U
X

s1

s2

a3

a4

a5

a6

d3

d4

s3

s4

m1

m2

m3

m4

n1

n2

n3

n4

n5

ONEONE NOTNOT

a1 a2

reset

d1

d2

 Fig5: the logical diagram of DataReconstructor

Now the formal model of decoding implementation can

be obtained by combining the model of simple_recovery_d ,

simple_recovery_s and DataReconstructor.

III. RESULT

After having finished the formalization of specification

and implementation, the paper applies goal-oriented reasoning

in HOL4 and the proof is interactive. The initial goal which

implementation can imply specification is set.

According to the definitions, the initial goal is divided

into several subgoals and then the subgoals are proved in turn.

If every subgoal has been proved, the initial goal is proved. In

the meantime, the related tactics and tacticals in HOL4 are

also used. In this paper, the result shows the initial goal is

proved.

IV. CONCLUSIONS AND FUTURE WORK

The paper applies theorem proving to verify that the

design codes of decoding circuit can satisfy the specification

of SpaceWire standards. Besides, the formal model based on

the function of VHDL design codes is effective and it also can

be used in other hardware design verification. Furthermore,

this method can help the designer to find errors in the early

design stage and has important practical significance.

Theorem proving emphasizes man-machine interaction

which is different from model checking and may have the

problem of heavy workload. In the future, the research will use

model checking to prove sub-module. Then gather and process

the results with the aid of theorem proving. That is to say the

research will focus on combing theorem proving with model

checking to verify other key circuits of SpaceWire standard.

ACKNOWLEDGMENT

We appreciate Prof. Jin Shengzhen for his helpful

suggestions. Thanks are also due to all members of our group.

This work was supported by the International Cooperation

Program on Science and Technology (2010DFB10930,

2011DFG13000), the National Natural Science Foundation of

China (60873006, 61070049, 61170304, 61104035); the

Natural Science Foundation of the City of Beijing (4122017),

the S&R Key Program of the Beijing Municipal Education

Commission (KZ201210028036).

REFERENCE

[1] Han Jun-gang, Du Hui-min. Digital Hardware Formal

Verification [M]. Beijing: Peking University press, 2001.

[2] William K. Lam, Sun Microsystems. Hardware design

verification: simulation and formal method-based approaches

[M]. Prentice Hall Professional Technical Reference, 2005.

[3] ECSS Standard ECSS-E-ST-50-12C, SpaceWire-Links, Nodes,

Routers and Networks [S].

[4] Li Li-ming, Liu Li-ya, Guan Yong, et al. A formal method for

verification the implementation of SpW data-strobe encoding

by applying theorem proving [C]. SpaceWire-2010 Proceedings

of the 3rd International SpaceWire Conference .St. Petersburg,

2010 -6-22.

[5] The HOL system TUTORIAL (For HOL Kananaskis-7), 18th.

March. 2012.

192

Latency Jitter Estimation and Control in SpaceWire
Session: SpaceWire Networks and Protocols, poster paper

Nadezhda Matveeva, Elena Suvorova

Saint-Petersburg State University of Aerospace Instrumentation

SUAI

Saint-Petersburg, Russian Federation

n.matveeva88@gmail.com, wildcat15@yandex.ru

Abstract — The SpaceWire networks are broadly used in

embedded and onboard systems, where low latency and jitter are

critical. These characteristics are also important for networks with

SpaceFibre channels. Jitter increases buffer sizes, which memory

volume increases energy consumption, system cost and weight. It is

very important in space applications.

High jitter presence complicates systems, where a synchronization

of different blocks or packets ordering is required. Examples of such

systems are systems of image processing, video stream from cameras

processing and information from groups of sensors collecting.

Jitter reduction in systems of a stream broadcasting or image

processing allows to reduce receiver buffer size and simplify process

of frame restoring. Many factors influence at jitter: network

structure, data processing algorithms of switches, data packet length,

presence and characteristics of other data streams and etc.

In this paper we show dependencies between network parameters

and jitter value. We present a set of rules that allows to minimize

jitter value by adjustable network parameters changing. Jitter

minimization allows to calculate buffer sizes more accurately in

network and network components development.

Index Terms — SpaceWire, jitter, delay, jitter estimation.

I. INTRODUCTION

Delay and jitter are very important in the transmission of

data of different types. For example, it is video and audio

information. These parameters are critical for synchronization

of various system components. Information about jitter and

delay ranges allows to optimize communication system design,

to calculate size of buffers and do not use extra buffer space.

Buffer is required to restore packets order arriving from the

source.

Standard SpaceWire[1] does not define the quality of

service (QoS). Therefore it does not contain methods to control

the parameters defining the QoS. However, if several

constraints in the network are specified and additional terminal

nodes/switches functionality is implemented, the value of the

delay and jitter will be within the prescribed limits.

In this paper, we propose a method that will help to reduce

the value of jitter in data transmission with different

throughput requirements.

II. TERMS

In this paper we will use the following terminology.

Guaranteed class of service – packets for which throughput

on each switch port is guaranteed.

Non-guaranteed class of service - packets for which

throughput is not guaranteed. System allocates throughput for

packets with guaranteed class of service first. The remaining

throughput can be allocated for packets with non-guaranteed

class of service. If remaining throughput is 0, then packets

from non-guaranteed class of service are not processed by a

switch.

Guaranteed period (T) - the time during which the

throughput is guaranteed. It is defined by the network

administrator.

Сi – throughput for class of service with identifier i.

Transmission time of packets with class of service i (Tsci) –

this is part of time, during which packets with class of service i

can be transferred in guaranteed period. This time can be

calculated using the following formula:

100

T*C
T i

sci

III. DESCRIPTION OF THE METHOD

Changes to the standard are not required for use of the

proposed mechanism. It's necessary to determine the limit size

of packet and implement additional functionality in switches.

Let us put that class of service is uniquely determined by

logical address of the packet. On the switch we need to store

additional information about the required throughput.

The total value of the throughput for guaranteed classes of

service on one port of switch must not exceed 100%. If user

plan to employ control codes in system, the required

throughput must be taken into account.

All packets are placed into a single buffer space because

SpaceWire credit scheme does not provide individual credits

for different data streams. The speed of packet (with specified

class of service) moving along the network is not taken into

account here.

193

Input points Output pointsBufferPacket processing

Input link Output link

Fig. 1 Packet processing scheme

Network administrator should also set transmission delay

parameters for each class of service in the ports of switch.

Depending on the required throughput the interval between

transmission of two adjacent packets of a given class of service

is set. If the interval is equal to 0, then the packets are sent one

after another without additional delays in the switch. This will

lead to the packets with one class of service accumulation and

the flow uniformity property will be lost.

bt - transmission time of one Nchar. It depends on the

system frequency and speed of the channels.

SizePacket - packet size in bytes.

btSizePacket

TC
NumPacket - maximum number of

packets to be transmitted in the guaranteed period.

NumPacket

T
Tout - period of time, which is allocated for

one packet transmission.

deltaTime- the time between arrivals of two adjacent

packets with same class of service at the destination.

IV. RESULTS

Researches of the proposed method were performed using

the model DCNSimulator [2]. Several networks were built in

the simulation environment. They are presented in Fig. 2 - Fig.

3.

TN 1_1

TN 1_2

TN 1_3

TN 2_1

TN 2_2

TN 2_3

Hsw 1 Hsw 2

Fig. 2 Network № 1

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

TN 1

TN 7

TN 2 TN 6

TN 3

TN 4

TN 5

TN 8

SW 1 SW 2

Fig. 3 Network № 2

Packets are transmitted via a single output port of the

switch in the network № 1. It allows to explore packet streams

distortion characteristics.

The structure of the network № 2 allows to research

distortion characteristics of packet flows in the input port,

which occurs due to the fact that the preceding packet from the

input port can’t move to the output port immediately because

this port is processing another packet.

These two types of distortions are the main types of data

flow distortions that can occur in SpaceWire network. It’s

possible to calculate packet transmission delay and jitter value

if the information about data flow characteristics change after

passing through sectors of first and second type and number of

such sectors on the path from source and destination is

available. On the other hand, the constraints on these

parameters (transmission delay and jitter value) can be taken

into account during network development process and data

transmission routes determination.

Two types of researches were made using network

structures show above: using mechanism of traffic smoothing

and keeping its characteristic of uniform arriving at the

receiver side and using mechanism of throughput guaranteeing

only.

Research №1. For the structure of the network № 1 (Fig.

2), each of the data sources synchronously generates one

packet every 21 microsecond. Sources identified as TN

1_1,1_2,1_3. Sources send data to the destinations.

Destinations are identified as TN 2_1,2_2,2_3. Data

transmission channels speed is 100Mb/s, devices frequency is

25MHz. Packet size is fixed and its size is 64 bytes. Simulation

time is 8 ms. During this time 1139 packets are transferred.

Packets are generated uniformly every 21 microsecond,

therefore the ideal time between neighboring packets arrival to

the destination is 21 microsecond. In the figures Fig. 4 - Fig.

6. you can see how the time between arrivals of two adjacent

packets at the destination for packets with different classes of

service changes when mechanism of traffic smoothing is used

and when not. Jitter value when using traffic smoothing

mechanism is approximately 6.6 times less then without it.

194

Fig. 4 Research №1. Packets with class of service 0

Fig. 5 Research №1. Packets with class of service 1

Fig. 6 Research №1. Packets with class of service 2

Research №2. For the network structure № 2 (Fig. 3), each

of the sources of the data synchronously generates one packet

every 26 microsecond. Data is transmitted along the routes of

the corresponding color on Fig. 3. The speed of data

transmission channels is 100Mb/s, devices frequency is

25MHz. Packet size is fixed and its size is 64 bytes. Simulation

time is 4 ms. During this time 1232 packets are transferred.

Packets are generated uniformly every 26 microsecond,

therefore the ideal time between neighboring packets arrival to

the destination is 26 microsecond.

In the figures Fig. 4 - Fig. 6. you can see how the time

between arrivals of two adjacent packets at the destination for

packets with different classes of service changes when

mechanism of traffic smoothing is used and when not. Jitter

value when using traffic smoothing mechanism is

approximately 3 times less then without it.

Fig. 7 Research №2. Packets with class of service 0

Fig. 8 Research №2. Packets with class of service 1

Fig. 9 Research №2. Packets with class of service 2

Fig. 10 Research №2. Packets with class of service 3

0

10

20

30

40

1 7 13 19 25 31 37 43

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 0

without
smoothing

smoothing

0

10

20

30

40

1 7 13 19 25 31 37 43

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 1

without
smoothing

smoothing

0

10

20

30

40

1 7 13 19 25 31 37 43

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 2

without
smoothing

smoothing

0

10

20

30

40

50

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 0

without
smoothing

smoothing

0

10

20

30

40

50

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 1

without
smoothing

smoothing

0

20

40

60

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 2

without
smoothing

smoothing

0

20

40

60

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 3

without
smoothing

smoothing

195

Fig. 11 Research №2. Packets with class of service 4

Fig. 12 Research №2. Packets with class of service 5

Fig. 13 Research №2. Packets with class of service 6

Fig. 14 Research №2. Packets with class of service 7

V. CONCLUSION

According to the Research 1 and 2, it can be concluded that

the proposed mechanism can reduce jitter, to keep the data

flow characteristics. Thanks to this mechanism jitter in

SpaceWire network can be made predictable and customizable.

ACKNOWLEDGMENT

The investigations and results presented in the current

paper are performed under the financial support of the

Ministry of Education and Science of the Russian Federation.

REFERENCES

[1] Space engineering. SpaceWire – Links, nodes, routers and

networks ECSS-E-ST-50-12C, 31 July 2008.

[2] A. Eganyan, L. Koblyakova, E. Suvorova, “SpaceWire network

simulator. SpaceWire-2010” in Proceedings of international

SpaceWire conference St.Petersburg 2010, pp.403-406, 2010.

0

20

40

60

80
1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 4

without
smoothing

smoothing

0

20

40

60

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 5

without
smoothing

smoothing

0

20

40

60

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 6

without
smoothing

smoothing

0

10

20

30

40

50

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

 d
e

lt
aT

im
e

, u
s

number of packet

Class of service 7

without
smoothing

smoothing

196

PHY Components for perspective SpaceWire-2

interface prototyping and evaluating
Components (Poster), Short Paper

Dmitri Skok, Sergey Kondratenko, Aleksey Zaicev, Alexander Glushkov, Tatiana Solokhina, Vladimir Gusev,

Jaroslav Petrichkovich

«ELVEES» R&D CENTERof Microelectronics

Zelenograd, Moscow 124460, Russia

E-mail: tanya@elvees.com

Abstract—The results of simulation and measurement of

the physical implementation of the SpaceWire-RT compatible

transceiver units are discussed. These transceivers work at

rates ranging from 5 Mbps up to 1.25 Gbps. The issues of

electrical isolation, implementation, impedance matching and

the selection of the physical transmission medium are

considered. Different variants of the transmitter

implementation in terms of power consumption to meet the

requirements of impedance matching are compared.

Transceivers are manufactured in CMOS 180 nm technology

at JSC Mikron (Russia), employing topological approaches

used for radiation-tolerant circuits. The variants of the

implementation of transceivers with data rates up to 20 Gbps

are proposed, including the use of 130-90 nm technologies.

IndexTerms—SpaceWire-RT, Transceivers, Physical Layer,

Technology Scaling, Impedance Matching.

I. INTRODUCTION

Currently «ELVEES» R&D CENTER works hard on the

next-generation SpaceWire-RT standard specification and

implementation.

The first thing that attracts attention in the analysis of new

requirements for transceiver of SpFi-CML subsystem [1] – is

an exceptionally large range of rates - from 0.1 to 20 Gbps in

the medium term and up to 50 Gbps in the longer term at the

data transmission over twisted-pair cable up to 5 m.

Apparently, building transceivers for various sub-ranges of

rate may differ. The draft protocol SpaceWire-RT actually

fixes this situation, sharing LVDS transceivers (optional SpFi-

LVDS) with rates up to 600 Mbps and CML transceivers

(optional SpFi-CML) with the above rates. Some

implementations of transceivers[2], [3] in CMOS technology

with standards130 nm –250 nm suggests that the required

data rates of up to 1.25 Gbps and up to 5 Gbps (depending on

space and power constraints) are feasible.

An important objective is to limit the power consumption

of the transceivers at no more than 200 mW. This is a strict

requirement, because given the transmitter output voltage of

2 V just the power output to the line (100 Ohm) would be 40

mW, not including the losses in the matching circuit. Analysis

of characteristics of the transceivers, available from Texas

Instruments with the rate of up to 3.125 Gbps [4], showed, that

their power consumption is in the range of 400 ... 700 mW.

Another goal is to extend the communication range up to

100 m, at least for selected configurations. While SpW itself is

a relatively lightweight protocol, it is strongly preferable to

keep SpaceWire-RT also such. It suggests keeping up with

two-level signaling and avoiding power and space hungry

complicated digital signal processing. In this case, the protocol

would be suitable for inter-chip communication on-PCB as

well.

This implies the following activities:

 selection of the transmitter circuit solutions (line driver

namely) that provide greater efficiency;

 analysis of the possibility of decreasing the output signal

level of the transmitter, which can simultaneously improve

the electromagnetic compatibility of the system;

 seeking for solutions to further simplify cabling.

II. CABLE CHARACTERIZATION AND SYSTEM SIMULATION

In order to estimate the practical limits of the

communication range and available data rates, different

samples of common cables have been S-parameters measured

and their linear models developed. Samples include:

 8 m CAT5 STP;

 6 m RG-58;

 1 m 50 Ohm thin coax.

For all samples S11, S12, S21, S21 were recorded in the

frequency range of 300 kHz – 13 GHz. For STP also cross-

talk at near and far end was measured.

With the media models at hand, a number of analyses were

carried out:

 eye diagram based estimate of the maximum

communication range for different data rates and

media types;

197

 TX side pre-emphasis and RX side equalization in

order to increase range and rate;

 feasibility of duplex communication over the single

coax cable.

Simulation results of the ideal TX and RX blocks then

used to verify their respective implementations.

Simulation results of the transmitter is shown on fig. 1.

The simulation involves also the 8 m UTP transmission line

and the matched receiver.

Fig.1. Eye diagram at the output of the transmitter, PEX

model, 1250 Mbps

Eye diagram at the receiver input is shown on fig. 2. One

can see that the eye is open at 1250 Mbps. Other simulations

show that the practical limit of the UTP line length at this

speed, without equalization and pre-emphasis, is about 20 m.

These results are in good agreement with the experimental

ones.

Fig. 2. Simulated eye diagram at the input of the receiver.

Media: 8 m CAT5 UTP

In order to justify the requirements to the input

characteristics of the receiver in the absence of decoupling

transformer and to estimate the symmetry of the transmitter

output, common mode signal was also simulated (fig.3). The

common mode may also be critical to electromagnetic

compatibility depending on application.

Fig. 3. Common mode signal at RX input

III. POSSIBLE IMPLEMENTATIONS OF CML-COMPATIBLE

DRIVER COMPOSED OF WITH REDUCED POWER

CONSUMPTION

In the transmitter-receiver pair the driver in the transmitter

has the most significant power consumption.

Common SpaceWire-RT transmitter physical layer

implementation is based on CML logic. Despite the obvious

advantages, this circuit has relatively high power

consumption, as the considerable part of the supply current

passes through the terminating resistors. At the same time, the

performance requirements for transceivers SpFi-CML at the

physical layer can be fully satisfied by using CML-logic as

well as VML-logic. Equivalent output circuit of CML- and

VML-drivers are identical and both exhibit a voltage source

with the output impedance of 100 Ohms.

Another VML-style driver advantage, compared to CML

drivers, is the possibility to decrease the supply voltage down

to 1 V and below while maintaining sufficient output voltage

swing. This facilitates utilization of deeper sub-micron

technologies (90-130 nm) in order to further increase the

communication rate.

IV. STRUCTURES AND CHARACTERISTICS OF THE DEVELOPED

TRANSCEIVERS

The transceivers were designed for the SpFi-CML

subsystem of SpaceWire-RT protocol, which contain digital

parts with a supply voltage of 1.8 V. All designed devices

manufactured with CMOS 180 nm technology.

A. The analog part of the transmitter and receiver

The adjustable driver was designed for research purposes

(fig.4). Output signal level can be changed by varying supply

voltage AVDD of VML-cascade in the 1.8-3.3 V range. The

designed VML-driver has the Data Rate (DR) of up to 1.25

Gbps. Line impedance matching achieved with the external

circuitry.

198

Fig.4.The adjustable driver

Although is not optimal for production, this approach

allows independent variation of both output swing and line

impedance matching for testing and investigation purposes.

The receiver is capable of 1.25 Gbps data rate with the

sensitivity of ±30 mV.

Total estimated dissipating power (TDP) of both

transmitter and receiver analog blocks is from 85 mW to

170 mW, depending on operation conditions. Power

consumed by these units at the lower boundary supported

transceivers speed range is less than 100 mW.

B. The structure and characteristics of the transmitter

Block diagram and interface of transmitter IP block

shown in fig.5. The composition and functions of the main

blocks of the transmitter:

 BR – parallel 10-bit buffer register. Takes TXD [9:0]

code group at the rising edge of CLK –provided

EN=1. If EN = 0 BR contents does not change.

 PLL – frequency synthesizer of bits Fbit.

 P2S –converts the content of BR into a sequence of

DATA bits, starting from bit 9 (MSB).

 C – switch. In normal mode (LB_EN =0) Data =

DATA, LB_OUT = 0. In LoopBack mode

(LB_EN=1) Data=LB_IN, LB_OUT=DATA.

 TX – output driver. Converts the sequence of digital

bit Data to differential pair of analog signals TXP,

TXN. If PWDn =0 or EN = 0 outputs TXP, TXN are

set to high -Z.

Data rate is selected by the code at on the control inputs

SPEED:

DR =5, 10,...(step5) ...125 Mbps- the lower rate range;

DR = 312.5,625, 1250Mbps-upper rate range.

The frequency of the characters (parallel 10-bitcode

groups) - DR/10. Reference frequency- CLK =125 MHz.

Fig.5. The structural circuit and interface of the transmitter

C. The structure and characteristics of the receiver

Block diagram and interface of receiver IP block shown in

fig. 6.The composition andfunctions of the mainblocksof the

receiver:

 RX–input differential amplifier. Converts the

differential signal RXP, RXN to digital DATA.

While PWDn =0 or when the input signal is absent

(RXP ≈ RXN) is set DATA to 1.

 C –switch. In normal mode (LB_EN = 0) Data0 =

DATA, LB_OUT = 0. While LoopBack (LB_EN =

1) Data0 = LB_IN, LB_OUT = DATA.

 CDR –restores CLK = Fbit and synchronized bit

sequence Data from the input bit sequence Data0

("Clock and Data Recovery"). Controls the

synchronization mode (using REFCLK = 125 MHz):

CDR_MODE [1:0] - management, LOCK [1:0] –the

indicator of capture frequency and phase. Restores

CLK = Fbit and synchronized bit sequence Data

from the input bit sequence Data0 ("Clock and Data

Recovery").

 ALG – contains a 10-bit shift register that stores the

current sequence of bits Data (basic function block).

Synchronizes (CLK/10) output data parallel code.

With permission (ALIGN_MODE), detects

COMMA sequence, aligns the boundaries of 10-

bitcode groups (cyclic shift numbers of digits) that

has a flag COMMA_DET =1 and the error signal

ALIGN_ERROR =1 (before alignment boundaries

are not aligned).

 BR –buffer 10-bit register of output data RXD [9:0].

Fig.6.The structural circuit and interface of the receiver

The total estimated power consumption of the digital part

of the transmitter and the receiver is less than 30mW, that fits

well the total SpFi-CML power budget.

D. Topology and the placement of the transceivers on chip

Dimensions of IP blocks of the transmitter and receiver on

the chip are the same - 470 × 395 μm ², square - 0.186 mm
2

(including 2 elements of ESD protection). Block sizes and pin

locations allow for direct attach each of them standing side by

side with two analog pin elements (fig.7).

199

Fig.7. Topology of the transceivers on chip

V. PHYSICAL LAYER PROFILES SPECIFICATION PROPOSAL

The ongoing SpaceWire-RT standard specification

combines, from the one hand, the wide range of transmission

rates, and from the other, the requirement of galvanic isolation

between transmitter and receiver.

Readily available transformers don't provide sufficient

bandwidth (~ 1 MHz — 5 GHz) to cover the entire rate range.

On the other hand, different data rates suggest different media

types and application conditions. It seems natural to identify

and denote the set of parameters, nominating those conditions,

and specify them as a separate profiles withing the same

standard.

Profile A. Most suited for standard CAT5 UTP/STP media

and communication range of up to 60 m @ 125 Mbps data

rate.

Profile B. Similar to Profile A, but with increased data rate

and reduced range. As the transformer is a limiting factor to

data rate range, the minimum rate is also increased.

Profile C. Is targeted the to data transmission within the same

PCB or between PCB's of the same device. As the galvanic

isolation requirements mostly eliminated in this configuration,

simple capacitor decoupling may be used. Hence the

maximum data rate and wide rate range, if needed.

Profile D. This profile is distinct from the others in that it uses

a single coaxial cable (RG-58 or like) for full duplex data

communication. Unlike UTP/STP, this cable is specified over

a much wider frequency range, has lower insertion loss and

dispersion. Together these provide for higher data rates at

longer distances. Depending on the cable model, its weight per

meter may also be substantially lower than that of UTP. As a

drawback, this profile requires echo cancellation circuitry at

each side. Also, voltage difference between the ends should be

limited for human safety reasons.

Profile E. Implies data transmission over the optic fiber.

Galvanic isolation is intrinsic and the rate is virtually

unlimited.

VI. CONCLUSION

This article presents analysis of the SpaceWire-RT

protocol requirements for SpFi-CML subsystem on twisted

pair. The possibility and feasibility of VML-transceivers

compliant physical layer transceivers with CML-transceivers

and have compared them with several advantages, including

the power consumption. The results of development of

transceivers with data rates in the range of 5 Mbps ...1.25

Gbps, overlapping needs of SpFi-CML subsystems of second

generation. The directions of further development of the

standard are offered.

REFERENCES

[1] “D2.1 - SpaceWire-RT Outline Specification”, SPACEWIRE-

RT Consortium, 06.09.2012.

[2] S. Habinc, J. Gaisler, “GR712RC – A multiI-processor device

with SpaceWire Interfaces”, International SpaceWire

Conference 2010, June 2010, pp 153-157.

[3] S. Kondratenko, V. Baikov, Yu. Gerasimov, T. Solokhina,

“LVDS IP-blocks for high speed data transmission in

SpaceWire systems”, International SpaceWireConference 2010,

June 2010, pp 153-157.

[4] www.ti.com,site of Texas Insruments company.

200

http://www.ti.com/

SpaceWire Traffic Generator: a highly-scalable
packet generation device

SpaceWire test and verification, Poster
Takayuki Yuasa, Tadayuki Takahashi

Institute of Space and Astronautical Science, JAXA,
3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210, Japan

Masaharu Nomachi
Osaka University,

1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

Iwao Fujishiro, Fumio Hodoshima
Shimafuji Electric,

8-1-15 Nishi-kamata, Ohta, Tokyo 144-0051, Japan

I. BACKGROUND: SPACEWIRE BACKPLANE FOR GROUND
TEST EQUIPMENTS

JAXA, Osaka University, and Japan Space Systems have
been developing a SpaceWire backplane system for ground test
equipments based on Micro Telecommunications Computing
Architecture (hereafter, uTCA) as explained in Nomachi et al.
(this conference). Development involved not only a uTCA
shelf but also a generic SpaceWire FPGA card and 28-port
SpaceWire router card which can be inserted to the ordinary
AMC (advanced mezzanine card) slot the dedicated controller
slot (i.e. MicroTCA Carrier Hub slot), respectively. Typical
outlook of this backplane system is presented in Figure 1.

Each AMC slot provides 4 SpaceWire links connected to
the 28-port router via the backplane tracks, and therefore,
inserted SpaceWire FPGA cards can communicate each other.
The backplane link topology is shown in Figure 2. Our generic
SpaceWire FPGA card also provides 4 external SpaceWire
connectors on the front panel. Since the number of cards can be
easily increased just by inserting a new card to available slots,
this system is highly modular and scalable. The maximum
operational link rate of all the SpaceWire links in the
SpaceWire Backplane system is 200 MHz.

Combined with the generic SpaceWire FPGA card, this
backplane system can be used as a development platform for
SpaceWire-based ground support electronics and/or a simulator

for a large-scale SpaceWire network.

II. SPACEWIRE TRAFFIC GENERATOR
As an application of the SpaceWire uTCA Backplane

system, aiming at a packet injection test for a multi-port
SpaceWire router or a large-scale network, we implemented a
traffic generation logic on the generic SpaceWire FPGA card.
One or more Traffic Generator modules inserted to a uTCA
shelf compose a SpaceWire Traffic Generator system together
with control software on a computer. The system block
diagram of SpaceWire Traffic Generator is presented in
Figures 3. Development of SpaceWire Traffic Generator is
supported by JAXA and the product is available from
Shimafuji Electric.

Commercially available uTCA shelves typically offer 6 or
12 AMC slots, and therefore, the number of external
SpaceWire ports can be extended, with a step of 4, up to 24 or
48 depending on the shelf. These numbers allow SpaceWire
Traffic Generator to be used for high-traffic tests of a large
SpaceWire router or even a network. These external SpaceWire
ports support Tx link frequencies of 200/n MHz where n is a
natural number. SpaceWire links over backplane operate at 200
MHz by default for providing small latency and high data
transfer speed for control purposes.

A typical operation flow of Traffic Generator is presented
in Figure 4. In the following sections, we describe details of

Fig.1 An example outlook of SpaceWire Traffic Generator
enclosed in a 6-slot uTCA shelf. In this picture, 5 SpaceWire
Traffic Generator modules are inserted, i.e. 20 external test ports
are available. Two modules connected by a thick cable are
power supply and distribution modules.

Fig.2 Topology of the backplane SpaceWire connection for a
typical 6-slot backplane rack. 4x6=24 links from the backplane
and 4 from the front panel of the router module are interconnected
by the 28-port router shown in purple. A picture of the generic
SpaceWire FPGA card is also shown.

Sp
ac

eW
ire

 2
8x

 R
ou

te
r

1 2 3
Slots for AMC form factor

(Advanced Mezzanine Card)

4 5 6

Backplane side:
4 SpaceWire links

Front-panel side:
4 external SpaceWire links

201

packet transmission, reception, triggering functions, and
dedicated control software.

III. PACKET TRANSMISSION
Packet transmission from the Traffic Generator external

SpaceWire port is controled by Tx packet descriptors whose
structure is shown in Figure 5. Figure 6 illustrates an overview
of packet transmission procedure. The control software on the
computer writes Tx descriptors to the Tx Descriptor FIFO of
the Traffic Generator, and the Tx logic will send packets by
consuming and interpreting the descriptors stored in the FIFO.
The Tx Descriptor FIFO has a depth of 1024 descriptors, and
can be further updated during packet transmission.

Packet content should be written to the onboard SDRAM
before starting packet transmission. The Traffic Generator does
not manipulate packet content, and therefore, users should
construct valid packets on the control computer when any
upper layer protocol, sucha as RMAP or GRDDP, is necessary.
In addition to ordinary SpaceWire packets, Timecode
characters can be emitted by setting the “Mode flag” field
properly.

The “Tx Wait” paramter in the descriptor which defines
wait duration between the completion of packet transmission
for the current descriptor and start of the next descriptor. In
addition to this descriptor-to-descriptor interval, there are
several types of parameters can be modified via registers to
globally control transmission speed, i.e. configurable NULL

Traffic Generator module

Sp
ac

eW
ire

 u
TC

A
Ba

ck
pl

an
e

MCH (28-port Router + SpaceWire-to-GigabitEther)

SpaceWire-to-GigabitEtherRouter

RMAP Port

Ro
ut

er

RMAP Port

128 MB SDRAM (Packet Data + Scenario)

SpW Codec

SpW Codec

SpW Codec

SpW CodecConfig
Port

Trigger Manager

Tx/Rx Manager

Tx/Rx Manager

Tx/Rx Manager

Tx/Rx Manager

RMAP Port

Ro
ut

er

RMAP Port

128 MB SDRAM (Packet Data + Scenario)

SpW Codec

SpW Codec

SpW Codec

SpW CodecConfig
Port

Trigger Manager

Tx/Rx Manager

Tx/Rx Manager

Tx/Rx Manager

Tx/Rx Manager

Traffic Generator module

...
... UUT or

Network under test

4 External SpaceWire Ports
(Max 200MHz)

Control PC

SpW

SpW

GbE
SpW

Fig.3 A block diagram of SpaceWire Traffic Generator. Each Traffic Generator card is attached to the
backplane, and has 4 SpaceWire links connected to the router in the MCH module.

(Up to 6 or 12 modules depending on shelves.)

Write packet content
to SDRAM.

Write Tx descriptors.

Set packet
transmission trigger.

Read Rx descriptors.

Read received packet
content from SDRAM.

Write packet content
t o S D R A M (i f
necessary).

Write Tx descriptors
(if necessary).

Clear packet
transmission trigger.

If there is more packets
to be transmitted.If packet transmission

is completed.

Fig.4 A flow chart of a typical operation of Traffic Generator.

202

interleaving and fixed wait interval for Tx descriptor
consumption.

Definitions of individual fields of the Tx descriptor are as
follow:
• Tx Descriptor ID: 7-bit arbitrary number which can be used

to identify Tx descriptor. This ID is recorded, combined with
time information, in the Tx Log FIFO when packet
transmission defiend in this descriptor is completed.

• Tx Memory Address: A pointer to packet content stored in
the SDRAM Tx packet area.

• Mode Flag: A 2-bit flag that determines end-of-packet
marker type or Timecode. 00 = no EOP/EEP, 01 =
terminated with EOP, 10 = terminated with EEP, 11 =
Timecode.

• Timecode value: Timecode with this value will be emitted
instead of ordinary packet when Mode flag is 11.

• Tx Length: Length of packet content.
• Tx Wait: A 2-bit flag and a 14-bit counter. The flag

determines resolution of the counter. 00 = 5ns, 01 = 1us, 10
= 1ms, 11 = 1s. Extraction of next descriptor will be delayed

Tx Descriptor

Tx Descriptor FIFO
(depth = 1024)

Control
Software

on PC

via RMAP Write

Tx
Manager

Tx Descriptor

via on-chip bus
Trigger

Tx FIFO

SpaceWire CODEC

Packet Content

SDRAM
(Tx Data area 128MB)

via RMAP Write

Packet Content

via on-chip bus

(1) Write packet content (2) Write Tx descriptors

Fig.6 A flow chart of the packet transmission procedure.

Rx Descriptor

Rx Descriptor FIFO
(depth = 1024)

Control
Software

on PC

via RMAP Read1

Rx
Manager

Rx Descriptor

via on-chip bus

Rx FIFO

SpaceWire CODEC

Packet Content

SDRAM
(Rx Data area

16-48MB per port)

via RMAP Read

Packet Content

via on-chip bus

(3) Read packet content (2) Read Rx descriptors

(1) Arrival of packet

1Delayed reply can be used
as an option for emulate
interruption (and to avoid
frequent polling by software).

Fig.7 A flow chart of the packet reception procedure.

Fig.5 Structures of Tx and Rx packet descriptors. Tx descriptors are generated by the control software and
written to the Tx descriptor FIFO on the Traffic Generator module. Rx descriptors are created by the receiver
logic when a packet (or timecode) is reived, and read out by the control software. Data contained in a packet
is stored in SDRAM, and addresses are pointed by the “Tx Memory Address” or the “Rx Memory Address”
fields.

203

by 14-bit counter * resolution (2-bit flag).
• Tx Repeat Count: A 16-bit counter that specifies the

number of repeated execution of the current descriptor.
Every outgoing packets will be time-tagged (times of

emission of first and last bytes), and recorded as Tx Log. Local
time has a 5ns resolution and 32-bit width (0-21.4s).

Note that the Traffic Generator is designed to operate over
the Packet layer of the SpaceWire standard, and therefore, it is
not capable of Character/Signal level manipulation such as bit-
error injection or DS-signalling error injection.

IV. PACKET RECEPTION
Packet receive process is described in Figure 7. When a

packet is received at Traffic Generator, an Rx descriptor which
has the structure presented in Figure 5 will be created, and
stored in the Rx Descriptor FIFO which has 1024 descriptor
depth. Received packet content will be stored in the SDRAM
which is used as a 16-MB ring buffer by default (the size can
be modified from 0-48MB). Reception of a timecode character
also results an Rx descriptor that has Mode flag = 11 and
timecode value in the “Timecode value” field. No data will be
written to the SDRAM.

To read the received packet content, control software should
read the Rx descriptors from the FIFO, and then read the data
from the SDRAM. When the Rx Descritptor FIFO is full, the
either of the following operations are performed by the receive
logic depending on a configuration (changeable via register) ;
(1) received packets are simply discarded, and number of
discarded packets are recorded (i.e. sink mode), or (2) the
SpaceWire link is blocked by not replying FCTs.

V. CONTROL SOFTWARE
Shimafuji Electric developed control software for Traffic
Generator whose screenshot is presented in Figure 8. The
software provides GUI interfaces for each functions of Traffic
Generator, such as filling Tx Descriptor FIFO, filling Tx
packet content to the SDRAM, triggering packet transmission,
reading Rx Descriptor FIFO, and reading received packet
content from the SDRAM.

The software also provides an easy scripting language to
generate Tx Descriptors for fast test case generation, and an
example script is shown in Figure 9.

The software has been deployed together with Traffic

Generator for testing the realtime performance of SpaceWire
Middleware implemented on the SpaceCard flight computer
(Mitsubishi Heavy Industry) in Feb. 2013. The flexible packet
transmission functions which is also fairy accurate in time (5-
ns resolution) was very effectively used in the test.

VI. CONTROL SOFTWARE
JAXA, Osaka University, and Shimafuji Electric have been

developing a SpaceWire Traffic Generator system which is
highly-scalable in terms of SpaceWire port number (e.g. 4-24
in 6-slot uTCA rack).

We consider that SpaceWire uTCA Backplane and
SpaceWire Traffic Generator are potentially useful test beds for
all SpaceWire-related developers, and will make these
available internationally through our collaborators.

TxDescriptor Mode=EOP TxAddress=0x00000800 Length=100 Repeat=1 Wait=0ms

TxDescriptor Mode=Continuous TxAddress=0x00001000 Length=100 Repeat=3 Wait=10us

TxDescriptor Mode=EEP TxAddress=0x00002000 Length=10 Repeat=1 Wait=0ms

TxDescriptor Mode=Timecode Timecode=0x03 Wait=0ms

Fig.8 A screenshot of the Traffic Generator control software.

Fig.9 An example script which generates 4 Tx descriptors. Three of them are for a 100-byte packet terminated with an
EOP, a 100-byte packet with no end-of-packet marker (repeated 3 times, wait 10us after single transmission), a 10-
byte packet terminated with an EEP. The last line generates a timecode character with a time-code value of 0x03.

204

A Scheduling Method of RMAP Packets for
SpaceWire-D

Poster Paper

Yang Chen, Mitsutaka Takada, Ryo Kurachi, Hiroaki Takada
Center for Embedded Computing Systems,
Graduate School of Information Science,

Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
chenyang@ertl.jp, mtakada@nces.is.nagoya-u.ac.jp, kurachi@nces.is.nagoya-u.ac.jp, hiro@ertl.jp

Abstract— SpaceWire-D is a time-triggered protocol developed

for SpaceWire to provide deterministic transmission and real-
time constraint for RAMP packets. According to SpaceWire-D,
any RMAP packet has to be assigned into a time slot; and
transmission of the packet is required to meet the real-time
constraint—the transmission has to be completed before the end
of the time slot.

The assignments of the packets constitute a schedule table that
should be predetermined and held by the nodes in a SpaceWire
system. However, because of the complexity of the network
communications and the massive packets in a real SpaceWire
system, a schedule table that ensures all the packets meeting the
real-time constraint is hard to be determined. To take this issue,
we propose a Simulated Annealing based scheduling method of
RMAP packets for SpaceWire-D. The method choses paths for
the packets, assigns packets to the time slot with respect to the
real-time constraint. The proposed method is evaluated by the
simulations and the effectiveness is shown in the experimental
results.

Index Terms— Relevant indexing terms: SpaceWire,
Networking, Spacecraft Electronics, Real-time scheduling.

I. INTRODUCTION
SpaceWire has been developed as a network standard for

spacecraft, and widely used by aeronautical organizations and
companies. Within a SpaceWire network, the nodes are
connected through low-cost, low-latency, full-duplex, point-to-
point serial links and packet switching wormhole routing router.
It utilizes asynchronous communication and allows speeds
between 2 Mbit/s and 400 Mbit/s [1].

SpaceWire provides a means of sending packets of
information from a source node to a target node. Remote
Memory Access Protocol (RMAP), a standard communication
protocol for SpaceWire network, is used to specify the
packets[2]. However, transmission of the RMAP packets on a
spacecraft always has high real-time requirement. Hence the
need for deterministic transmission of information arises, and
providing this determinism for SpaceWire networks is essential.
For this reason, SpaceWire-D, a time-triggered protocol
developed for SpaceWire, has been proposed to provide the
deterministic real-time transmission [3].

Based on SpaceWire-D, a schedule table is constructed, in
which the system time is divided into time slots, and any
packet in the system is assigned to a deterministic time slot
with the real-time constraint—transmission of the packet must
be completed before the end of the time slot.

However, because of the complexity of the network
communications and the massive packets in a real SpaceWire
system, such a schedule table that ensures all the packets
meeting the real-time constraint is obviously hard to be
determined without an efficient scheduling method.

To take this issue, in this paper we propose a scheduling
method of RMAP packets for SpaceWire-D. In detail, first, we
provide an algorithm to calculate the worst-case latency (WCL)
of packets in a time slot to guarantee the real-time constraint.
Second, we propose a Simulated Annealing (SA) based
scheduling method to obtain a schedule table with respect to
the real-time constraint. Particularly, considering the
redundancy requirements, both the WCL calculation algorithm
and the scheduling method allow the system to hold redundant
path for packets transmission. The proposed method is
evaluated by the simulations and the effectiveness is shown in
the experimental results.

The remainder of this paper is organized as follows.
Chapter II introduces the system model. Chapter III presents an
algorithm for calculating the WCL of packets in a time slot.
Chapter IV proposes the scheduling algorithm. Evaluation of
the proposed scheduling algorithm is shown in Chapter V, and
followed by Chapter VI that concludes the paper and discusses
future works.

II. SYSTEM MODEL
We assume an object system is composed of nodes, routers

and links, as the format specified in [1], in which each node is
able to send and receive packets. Based on SpaceWire-D, time
code is used to distribute system time over a SpaceWire
network. The interval between two adjacent time codes is
defined as a time slot. A packet has to be transmitted during a
pre-determined time slot. The deterministic transmitting
information of all packets is included in a scheduling table,
held by each node that may send packets in the system.

205

In general, a time slot will be used by different applications
to send their packets. To classify their transmissions, we
define a channel as a logic group that holds the information
used by an application to transmit its packets [4]. A channel
has a unique source node that sends packets of the application,
whereas it may have multiple targets node for receiving the
packets. Packets of a channel can be sent from the source to
any one of the targets. The path from a source to target is the
sequence of the links between the source and target. It is
assumed that a path must be pre-determined.

In order to avoid that the fault of one link breaks all the
transmission, redundant paths are usually configured between a
source and a target, which are the paths between the source and
target without sharing any links. The redundancy is the number
of the redundant paths, which is determined by the application
and limited by the links. For example, if there are 3 paths θ1, θ2,

θ3 between a source and a target without sharing any links, the
maximum redundancy from the source to target is 3. While if
the application configures paths with redundancy 2, then there
are 3 candidates can be chosen—{θ1, θ2}, {θ1, θ3} and {θ2, θ3}.

The following steps give a method to obtain all the
redundant paths candidates with redundancy n from a source to
a target (it is assumed that n is less than the maximum
redundancy):

1) Search for all the paths from the source to the target
according to Algorithm 1.(The parameters, paths, passedLinks
and passedRouters, are initialized to empty)

2) Group every n paths of the result of setp 1. For each
group, if its paths do not have sharing links, add the group of
paths into the candidates.

III. CALCULATION OF THE WORST-CASE LATENCY
In a time slot, a packet is sent to any target of the channel

stochastically. Hence the latency spent on transmitting all
packets of a time slot is not unique. In order to guarantee the
real-time constraint for a time slot, it has to obtain the worst-

case latency (WCL) spent on transmitting all packets of the
time slot.

Calculation method of the WCL is illustrated in this chapter.
We will first explain calculation of latency of transmitting a
single packet with a deterministic path. Then it is extended to
show calculation of WCL of all packets in a time slot.

A. Latency of Transmitting a Single Packet
Assume a packet τi is transmitted with a deterministic path.

The latency of τi is the sum of following elements:
• i

smdtT : The delay occurred at the source before
transmission of τi.

• i
srtT : The time spent on sending τi completely.

• i
rmdtT : The delay occurred at the target, which is the

interval between τi is received and the reply of τi is
started to send.

• i
rrtT : The time spent on sending the reply of τi

completely.
i
smdtT and i

rmdtT are determined by the source and target. i
srtT and

i
rrtT are calculated by following formulas according to the type

of τi, referring to the packet format specified in [2].
1) when τi is a RMAP write packet

Tsrt
i = 10 × (Ri + Pi + Di +17)

S
+TpdRi

Trrt
i = 10 × (Ri + 8)

S
+TpdRi

 (1)

2) when τi is a RMAP write packet

Tsrt
i = 10 × (Ri + Pi +16)

S
+TpdRi

Trrt
i = 10 × (Ri + Di +13)

S
+TpdRi

 (2)

3) when τi is a RMAP write packet

Tsrt
i = 10 × (Ri + Pi + 25)

S
+TpdRi

Trrt
i = 10 × (Ri +17)

S
+TpdRi

 (3)

In the formulas, Di is the transmission data length. S is the
minimum line speed (M bit/s) in the transfer section. Ri, Pi and
Tpd are obtained according to the deterministic path of τi. Ri is
the number of routers between the initiator and the target. Pi is
the number of reply addresses (greater than Ri, and a multiple
of 4). Tpd is network transmission delay time when packets are
passing through the router.

B. WCL of Packets in a Time slot
When more than one packet exist in a time slot, according

to the definition of channel, each packet may be transmitted
according to different paths stochastically. Therefore,
calculation of the WCL has to consider the combination of all
the paths. For example, assume that a time slot has N channels
C1, C2, … CN; each channel CI has a set of packets {τi}I, and
paths {θi}I. The combination thus is the Cartesian product of
{θi}1, {θi}2, ..., {θi}I.

Algorithm 1 Algorithm of searching all paths from
 source to target
pathSearch(paths, passedLinks,
 passedRouters, source, target):
1: for all links starts from source do
2: passedLinksNew ← passedLinks appends link
3: if link connects to target then
4: paths ← paths appends passedLinks
5: else if link connects to router then
6: if router is not in passedRouters then
7: passedRoutersNew ← passedRouters
 appends router
8: paths ← pathSearch(paths, passedLinksNew,
 passedRoutersNew, router, target)
9: end if
10: end for
11: return paths

206

In each member of the combination, the packets are
transmitted to a unique target according to a deterministic path.
To calculate the WCL, first, we define segment as a group of
packets, in which any packet has shared links with at least one
anther packet. Therefore, the time spent on sending all the
packets, defined as WCL of the segment, is the accumulation
of their single latency, which is calculated by following
formula.

WCL = max
0≤i≤n

Tsmdt
i + Tsrt

i

i=0

n

∑ +max
0≤i≤m

Tdrmt
i + Trrt

i

i=0

m

∑ (4)

In the formula, n is number of the packets; m is number of their
replies.

Second, because the packets of different segment can be
transmitted simultaneously without any interference on each
other, the WCL of the time slot is calculated by obtaining the
maximum of the WCL of the all segments.

Summarize above, we propose the calculation of WCL as
follows:

1) Calculate the Cartesian product of {θi}1, {θi}2, ..., {θi}I.
2) Divide segments for each member of the Cartesian

product.
3) For each segment, calculate its WCL based on formula

(4).
4) Maximum of these WCL of segments thus is the WCL of

the time slot.

IV. PROPOSED SCHEDULING METHOD
In this chapter, we propose the Simulated Annealing (SA)

based scheduling algorithm. The scheduling algorithm choses
redundant paths for the packets, assigns them to the time slot
with respect to the purposes that it guarantees the packets in
each time slot meeting the constraint, and keeps the number
occupied slot number and the utilization as small as possible.

First, we give a brief introduction of the SA algorithm. It
shows that the neighbor searching and evaluating are the two
main parts of the SA for achieving the scheduling. The
neighbor searching explores new solutions of the paths and
time slot assignment, whereas the evaluating utilizes a function
to judge the new solutions and decide which one is the best.
Therefore, in the second and third part of this chapter, we will
explain how the neighbor searching is conducted, and what is
the function selected for the evaluating, respectively.

A. Simulated Annealing Algorithm
The SA algorithm is a generic probabilistic metaheuristic

algorithm for the global optimization problem. The advantage
of SA is that it can locate a good approximation to the global
optimum from a given evaluating function in a large search
space[5].

The pseudo code of the SA algorithm is given in Algorithm
2. It starts with an initial solution S0 and performs a maximum
of kmax steps. At each step, it utilizes neighbor(S) to generate a
new solution Snew, and Snew will be evaluated by EF(S). If the
result of EF(Snew) is smaller than that of EF(Scur) (Enew < Ecur),
current solution Scur is replaced by Snew. Otherwise, it decides
whether or not to replace Scur with Snew probabilistically. The
probability is usually according to the Metropolis principle [6]

that accepts Snew depending on the difference between Enew and
Ecur, as well as on a global parameter T (line 7 of Algorithm 2).
T denotes the temperature, and it is gradually decreased with α
(0 < α < 1) during the algorithm.

In general, the probability of selecting Snew will be
decreased as the temperature T is reduced. This feature of SA
algorithm is effective to move away from a local optimal
solution and improve the probability of finding the global
optimal solution. Finally, Sbest corresponding to the Ebest is
generated as the best solution.

B. Neighbor Searching
Although there are two searching objects of the

scheduling—redundant paths and time slots assignment, it is
possible to conduct them in the different round of the
neighbor(S). For example, neighbor(S) searches for a new
solution of redundant paths for a packet when the counter
parameter k of SA is odd, whereas it searches for a new
solution of time slot assignment when k is even.

To search for new redundant paths of a packet, it chose a
packet randomly, then randomly changes its redundant paths
from its redundant path candidates obtained by the method of
Chapter II. On the other side, when searching for a new
solution of time slot assignment, it choses a packet randomly,
then move this packet to another randomly selected time slot.

C. Evaluating Function
Evaluating function is responsible for determining how

“good” a solution is with respect to the optimization
purposes— guarantee the packets in each time slot meeting the
constraint, and keep the number of occupied time slot and the
utilization as small as possible. Let us start from analyzing the
effects that a solution may affect on the results. According to
the neighbor searching approach, a new solution can be
classified to positive and negative. A positive solution may has
one of the following 4 effects:

1) Number of overflow time slots decreases.
2) Utilization of overflow time slots decreases.

Algorithm 2 Simulated Annealing Algorithm
1: T ← T0, Scur ← S0, Ecur ← EF(S0)
2: Sbest ← Scur, Ebest ← Ecur
3: k ← kmax
4: while k < kmax do
5: Snew ← neighbor(Scur), Enew ← EF(Snew)
6: Δ ← Enew − Ecur
7: if random[0, 1) < exp(Δ/T) then
8: Scur ← Snew, Ecur ← Enew
9: end if
10: if Enew < Ebest then
11: Ebest ← Enew
12: end if
13: k ← k + 1, T ← αT
14: end while
15: return Sbest

207

3) Number of normal using time slots decreases.
4) Utilization of normal using time slots decreases.

In contrast, a negative solution may has one of the following 4
effects:

1) Number of overflow time slots increases.
2) Utilization of overflow time slots increases.
3) Number of normal using time slots increases.
4) Utilization of normal using time slots increases.

In the above, the normal using time slots are the time slots their
utilization ≤ 1; and overflow time slots are the time slots their
utilization > 1. The utilization of time slot i is ratio of the WCL
to the length of time slot i.

The evaluating function should be able to precisely reflect
the solution effects according to its results. Therefore, we
chose it as follows.

EF(S) = (Nl +1) Ui
S

i∈lo
∑ + Nlu

+ Ui
S

i∈lu
∏ (5)

In the formula, Ui
S is the utilization of time slot i in solution S.

l, lu, lo denote all time slots, normal using time slots, and
overflow time slots, respectively. Nl, Nlu denote the number of
all time slots and normal using time slots, respectively.

According to formula (5), positive 1) is corresponding to
the best result—the smallest value of the formula among the 8
situations, and then is the positive 2). The worst is the negative
4).

V. EXPERIMENTS AND RESULTS
To evaluate the effectiveness of the proposed scheduling

method, we utilize the method to schedule packets of a
SpaceWire system and show the results in this chapter. The
evaluated SpaceWire system is provided by a Japanese
aeronautical organization, which is composed of 4 routers and
4 nodes. There are 4 channels in the system, which transmit
total 86 packets. Each of the channels has one source and 2
targets. For the source to each target, redundant paths with
redundancy 2 are provided.

The results are shown in TABLE.I. It is assumed that the
system time is divided into 8 time slots and repeats infinity.
Length of each time slot is 5ms. The left two columns are the
results of randomly scheduling—paths and time slots of all the
packets are assigned randomly. The right two columns are the
results of the proposed scheduling method. The results show
that two time slots, time slot 3 and 7, do not meet the real-time
constraint under randomly scheduling. Whereas the proposed
scheduling method guarantees the constraint for all the time
slots, and the occupied time slots number is decreased— time
slot 4 has not been used.

TABLE I. RESULTS OF THE PROPOSED SCHEDULING METHOD

Randomly Scheduling Proposed Scheduling
Time slot Utilization Time slot Utilization

0 0.724 0 0.9156
1 0.913 1 0.7728
2 0.532 2 0.9488

3 1.139 3 0.87
4 0.471 4 0

5 0.631 5 0.959
6 0.588 6 0.991
7 1.265 7 0.657

VI. CONCLUSION
In this paper, we proposed a Simulated Annealing (SA)

based scheduling method for RMAP packets. The method
choses redundant paths for the packets, assigns them to the
time slot with respect to the real-time constraint. The method is
evaluated by the simulations. The results show that the
proposed scheduling method guarantees the constraint for all
the time slots, and decreases the number of occupied time slots
as well as the utilization.

In future work, we plan to examine the scheduling
algorithm in more complex systems. Moreover, the
investigation of configuring the SA parameters in order to
obtain better performance is also considered.

VII. REFERENCES
[1] ECSS, “SpaceWire – Links, nodes, routers and networks”

ECSS-E-ST-50-12C, 31 July 2008.
[2] ECSS, “SpaceWire – Remote memory access protocol”, ECSS-

E-ST-50-52C, 5 February 2010.
[3] S. Parkes, A Ferrer, S. Mills, A. Mason, “SpaceWire-

D:Deterministic Data Delivery with SpaceWire”, International
SpaceWire Conference, St Pertersburg, Russia, June 2010.

[4] M.Takada, H.Takada, Y.Chen, T.Yuasa, T.Takahashi,
M.Nomachi, “Development of Software Platform Supporting a
Protocol for Guaranteeing the Real-Time Property of
SpaceWire”, International SpaceWire Conferenece, Gothenburg,
Sweden, June 2013.

[5] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi: Optimization by
simulated annealing,Sci., vol.220, no.4598, pp.671-680(1983).

[6] Metropolis, Nicholas; Rosenbluth, Arianna W.; Rosenbluth,
Marshall N.; Teller, AugustaH.; Teller, Edward.: Equation of
State Calculations by Fast Computing Machines.The Journal of
Chemical Physics 21 (6): 1087. doi:10.1063/1.1699114.

208

Copyright © Akihiro Ikeshita

Fig. 1. HAYABUSA2 asteroid probe (image drawing)

Real-time Data Recording System with SpaceWire

for Asteroid Sample Return Mission HAYABUSA2
SpaceWire onboard equipment and software, Poster Paper

Satoko Kawakami, Yasuhiro Takeda, Hiroki Hihara

NEC TOSHIBA Space Systems. Ltd.

10, Nisshin-cho 1-chome, Fuchu, Tokyo, Japan

s-kawakami@bk.jp.nec.com, y-takeda@ei.jp.nec.com,

h-hihara@bk.jp.nec.com

Ryu Funase

Department of Aeronautics and Astronautics

The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

funase@space.t.u-tokyo.ac.jp

Tetsuya Masuda, Masatoshi Ebara

Space Systems Division

NEC Corporation

10, Nisshin-cho 1-chome, Fuchu, Tokyo, Japan

masuda@jd.jp.nec.com, m-ebara@cw.jp.nec.com

Takahiro Yamada

Institute of Space and Astronautical Science (ISAS)

Japan Aerospace Exploration Agency (JAXA)

Sagamihara, Chuo-ku, Kanagawa 229-8510, Japan

tyamada@pub.isas.jaxa.jp

Abstract—A real-time recording system which adopted

SpaceWire and RMAP (Remote Memory Access Protocol) has

been developed for an asteroid probe HAYABUSA2. It exploits

the deterministic scheduling scheme formalized for SpaceWire by

SpaceWire-D draft standard. Since the captured precise image

of the surface of a target asteroid is to be recorded during

autonomous touch-down sequence, the recording system

synchronized with the attitude and orbit control subsystem

(AOCS) with the deterministic scheduling scheme. The scheme

has also enabled the data recorder to inherit the priority based

packet recording function developed for prior HAYABUSA

without any change.

Index Terms— SpaceWire, Data Recorder, Networking,

Spacecraft Electronics.

I. INTRODUCTION

HAYABUSA2 is an asteroid probe planned to be launched

in 2014, and aims at sample-return from a C-type asteroid

considered to contain organic or hydrated materials. Figure 1

shows the image drawing of HAYABUSA2 on an asteroid.

The precise captured image of the surface of a target

asteroid is to be recorded in the onboard storage during the

autonomous touch-down and take-off sequence in parallel.

Therefore the real-time recording capability synchronized with

the attitude and orbit control subsystem (AOCS) is required.

The transmission system between the data recorder and

AOCS are based on the network design criteria developed for

JAXA/ISAS scientific satellites [1], [2], [3], [4]. The

deterministic implementation scheme of SpaceWire, which has

been established by SpaceWire-D draft standard, enabled

synchronous operation between satellite bus system and

mission payload.

Real-time synchronized image capturing system with

optical sensors developed for scientific purposes and a data

recorder is realized by adopting deterministic implementation

scheme.

II. DATA RECORDER ARCHITECTURE

Data Recorder (DR) design is closely tied to the mass

memory modules, which are high-density memory modules

with unique stacking technology and optimized for

SpaceWire/RMAP interface devices. The stack structure of

DR is fabricated with bus connectors, which resulted in

eliminating back planes.

209

mailto:s-kawakami@bk.jp.nec.com
mailto:y-takeda@ei.jp.nec.com
mailto:h-hihara@bk.jp.nec.com
mailto:funase@space.t.u-tokyo.ac.jp
mailto:masuda@jd.jp.nec.com
mailto:m-ebara@cw.jp.nec.com
mailto:tyamada@pub.isas.jaxa.jp

Fig. 3. The outlook of DR

User Application

PTP PnP

SpaceWire-R

(Retry/Redundancy)

RMAP

SpaceWire-D (Scheduling)

SpaceWire

Spacecraft Monitor and Control Program

(SMCP)

Space Packet Protocol (CCSDS)

Retry/Redundancy

(Implemented with attached onboard computer)

RMAP Read / RMAP Read reply

/ TID management

Scheduling

(Implemented with attached onboard computer)

SpaceWire

SpaceWire-D protocol stack The Data Recorder protocol stack

Fig. 2. The communication protocol layer of DR

Figure 2 shows the outlook of DR. Its A6 size has been

realized by exploiting following technologies;

- Stack memory module was developed and qualified

through JAXA programs. The memory module

comprises eight 512Mbit SDRAM chips manufactured

by ELPIDA, and stacked

through NEC’s low profile

JAXA-authorized stacking

technology.

- A6 size memory board

provides 16Gbits on a single

board with additional memory

modules for Reed-Solomon

CODEC equipped on the same

board. Single symbol (8 bits)

error in SDRAM induced by

radiation effects is corrected

automatically and

transparently by scrubbing the

memory (i.e., reading out

values and rewriting correct

ones).

- Priority based file access

function through simultaneous

record and reproduce operation

are provided.

- Each module has built-in

current monitoring circuitries

against single event latch up.

- Fully SpaceWire compatible

interface with RMAP function

has been realized with an embedded SpaceWire router,

which enables congestion-free data collection both for

pull and push scheme.

The data recorder has an original protocol stack which is

complied with the SpaceWire-D draft standard protocol stack

[5], [6]. Figure 3 shows the data recorder protocol stack and

the SpaceWire-D draft standard protocol stack. The figure

shows that the data recorder handles RMAP in deterministic

way. The data recorder has no implementation for SpaceWire-

D and SpaceWire-R in itself, and these two protocol layers are

accommodated in the optical navigation camera electronics

(ONC-E) and the sensor digital electronics (DE). ONC-E and

DE compile mission data collection plan, and the plan is

delegated to the DR for its initiator mode operation.

In order to exploit the deterministic implementation scheme

with SpaceWire and RMAP protocol, the priority based file

system is provided. The data structure consists of a volume

group (or record), a memory manager, logical volumes (or

files), physical extents (or partitions) and blocks (or sectors).

These are configurable by commands prior to the onboard

operation of the DR through ground station operation. The

architecture is shown in figure 4. Volume group (or record) is

an entire region to compose a system. This supports

subordinate concepts of logical volumes and is implicitly given.

Memory manager configures its recording memory area. It also

arranges volume groups. Logical volumes (or files) are

variable length storage area which consists of physical extents.

Physical extents (or partitions) are continuous region of

variable length area, which are composition elements of logical

volumes. Physical extent consists of blocks. Blocks (or

sectors) are fixed length size memory are, and they are

minimum recording units and composition element of physical

extents.

Since the priority based packet recording function are

inherited from prior HAYABUSA asteroid probe, the file

system is configured as fixed length partitions. Each partition

210

Memory Manager

・ ・ ・

Logical Volume:
- variable length
- Size is adjusted automatically as required
- The unit of the size is an extent.
- Physical extent is assigned for logical volume.

Physical Volume
(Partitions)

Instruction

Physical Extent #00
(Cluster #00)

Block (Sector)
:128B

Logical Volume
(File)

Volume Group
(Records)

・ ・ ・

Physical Extent: variable length
- handled as fixed length in operation (the same as cluster)
- Blocks are assigned in ascending order continuously.
Blocks are always fixed length.

Physical
Extent

・
・
・

Assign

Physical
Extent

Physical
Extent

Category #00

Logical Volume
(File)

Category #01

* Size 0 is permitted

Logical Volume
(File)

Physical
Extent

・
・
・

Physical
Extent

Physical
Extent

Category #00

Block (Sector)
:128B

・
・
・

Block (Sector)
:128B

Physical Extent #01
(Cluster #01)

Block (Sector)
:128B

Block (Sector)
:128B

・
・
・

Block (Sector)
:128B

Physical Extent #7F
(Cluster #7F)

Block (Sector)
:128B

Block (Sector)
:128B

・
・
・

Block (Sector)
:128B

Fig. 4. The data structure configuration of DR

corresponds to a category number, which is shown in the

secondary header of Space Packets. The category number is

associated with the priority for recording and reproducing. The

priority mechanism is developed for prior HAYABUSA

asteroid probe with its original communication protocol.

Whereas thanks to the deterministic scheme of the data

recorder, its inherited priority based recording and reproducing

function of prior HAYABUSA are applied without any change

with SpaceWire/RMAP protocol..

Technical features of DR are shown in table 1.

TABLE I. DATA RECORDER TECHNICAL FEATURES

Parameter Value

Memory Size

Synchronous DRAM:

16Gbits at BOL

12Gbits at EOL

Recording data rate
39Mbps [Effective value]

15Mbps [Requirement]

Reproducing data rate
25Mbps [Effective value]

15Mbps [Requirement]

SpaceWire port

Telemetry/Command: 2ch

Recording: 7ch

Reproducing: 2ch

Size 142(W) x 150(D) x 107(H) (mm)

Mass < 2.32kg

Power consumption < 11.5W

III. REAL-TIME RECORDING SYSTEM

Figure 5 shows the diagram of the real-time recording

system of HAYABUSA2. The data handling subsystem of

HAYABUSA2 inherits the prior HAYABUSA asteroid probe.

HAYABUSA employed original onboard communication

protocol PIM (Peripheral Interface Module transmission

protocol). So we developed protocol bridges for the translation

between PIM and SpaceWire. The protocol for accessing the

interface of each components and the scheduling scheme is

close to RMAP (Remote Memory Access Protocol) and

SpaceWire-D, so the development of those protocol bridges

were straight-forward.

Although the AOCS of HAYABUSA2 accommodates

SpaceWire interfaces and connected to legacy onboard devices

with PIM interfaces through protocol bridges, the operation

scheme is the same as its predecessor. As a result the ground

station operation is the same as that for prior JAXA/ISAS

scientific satellites.

Sensors are controlled by the DE and ONC-E. DE and

ONC-E have communication lines with the attitude and orbit

control processors (AOCPs) and the DR. These lines features

the deterministic implementation specified in SpaceWire-D

draft standard. DE and ONC-E are working synchronously

with AOCPs and which enables synchronous operation of

sensor control functions and data recording. The scheme has

been established through the activity of the SpaceWire user’s

group, Japan [7].

Thanks to SpaceWire backplane implementation fabricated

211

AOCU

PIM

Sensor I/F Image
Processor

Data
Recorder

Flash
Memory

SpaceWire port

PIM

Data Handling Unit
Peripheral Interface Module (PIM) bus

Sensor Digital Electronics (DE)

Space Cube2 CPU
TAOCP-A (SpC2)

AOCP-B (SpC2)

,

UART

Drive Unit
(DRV)

SpaceWire

Navigation Status

Filter Wheel Control Command

Record / Reproduce

T

H H H H

Navigation Command, AE Control Command

Navigation Processing Result

Optical Navigation Camera Electronics (ONC-E)

DR control

DR HK telemetry

Local Bus

PIM bus
ONC-E HK Command

ONC-E HK Telemetry
Navigation Dump Image

T T

H H H H

T T

H H H H

T

T

H

H

N
av

ig
at

io
n

P
ro

ce
ss

in
g

R
es

ul
t

PIM bus

N
av

ig
at

io
n

C
om

m
an

d
A

E
C

on
tro

l C
om

m
an

d

Filter Wheel Control

Proprietary Line
Proprietary Line

SpaceWire port

Local Bus

PIM

Sensor I/F Image
Processor

Flash
Memory

Space Cube2 CPU
T T

H H H H

UART+Proprietary Line

DR control
Science Data

DR HK telemetry

DE HK Command
Science Observation
Control Command

PIM bus
DE HK Telemetry

AE control right
arbitration

Optical Navigation
CameraFilter Wheel Deployable

Camera

Near Infrared
Sensor

Fig. 5. Synchronous communication block diagram of AOCS and DR

in the DE and the ONC-E, image buffer memory located inside

the sensor signal processor is connected with mass memory

modules in the data recorder through SpaceWire and RMAP

protocol. Even though the size of the scientific mission image

captured by optical sensors are changed, the synchronization

scheme between image memory buffer inside the sensor signal

processor and the data recorder is maintained through the

deterministic communication implementation, and no image is

to be lost with the priority based flexible file system of the data

recorder

ACKNOWLEDGMENT

Authors thank ASTRO-H project people for their valuable

suggestions for implementing real-time system for asteroid

probe mission.

REFERENCES

[1] Tadayuki Takahashi, et al., ”The ASTRO-H Mission”, SPIE,

7732, 77320Z, 30 July 2010.

[2] Takahiro Yamada, and Tadayuki Takahashi, “Standard Onboard

Data Handling Architecture Based on SpaceWire”, International

SpaceWire Conference 2008, 4-6 November 2008, p.253-256.

[3] Takayuki Yuasa, Tadayuki Takahashi, Masanobu Ozaki and

Motohide Kokubun, “A Deterministic SpaceWire Network

Onboard the ASTRO-H Space X-Ray Observatory”,

International SpaceWire Conference 2011, 8-10 November

2011, p.348-351.

[4] Hiroki Hihara, Toshiaki Ogawa and Kenji Kitade, “NEXTAR:

Small Satellite Bus Based on SpaceWire Deterministic

Implementation”, International SpaceWire Conference 2011, 8-

10 November 2011, p.344-347.

[5] Satoko Kawakami, Kazuyuki Yamada, Hiroki Hihara, Masaharu

Nomachi, Takahiro Yamada, Motohide Kokubun and Tadayuki

Takahashi, “Deterministic Implementation of SpaceWire on

Data Recorder and Payload Interface Units”, International

SpaceWire Conference 2011, 8-10 November 2011, p.182-185.

[6] Takahiro Yamada, “Proposal for Defining Standard Services

Over SpaceWire –Revision A -”, The sixteenth SpaceWire

working group meeting ESTEC, Netherlands, 22 March 2011.

[7] SpaceWire User’s Group, Japan, “SpaceWire Network Design

Guideline”, Version 1.0, 13 May 2010.

212

Radiation Tolerant SpaceWire Remote Terminal

Controller ASIC (RMR-02P)
SpaceWire Components, Poster Paper

Aleksey Sakharov, Dmitri Skok, Vladimir Gusev,

Tatiana Solokhina, Jaroslav Petrichkovich

“ELVEES” RnD Center

Zelenograd, Moscow, Russian Federation

asaharov@elvees.com, dskok@elvees.com,

vgoussev@elvees.com, tanya@elvees.com,

slava@elvees.com

Yury Sheynin, Elena Suvorova

St. Petersburg University of Aerospace Instrumentation

St. Petersburg, Russian Federation

sheynin@aanet.ru, suvorova@aanet.ru

Abstract—The paper considers radiation tolerant remote

terminal controller with serial SpaceWire communication

channel, that used for connection of peripheral devices to

SpaceWire network. Its architecture, main features and various

system applications are presented. The results of tests are

introduced.

Index Terms— Remote terminal controller, SpaceWire,

peripheral interfaces.

I. INTRODUCTION

The, SpaceWire technology [1] is getting the most used

and intensively developed technology for spacecraft computer

networks as it enables to build a communication infrastructure

for all onboard equipment on basis of single network.

Design of on-board systems on the SpaceWire technology

developers has to solve the problem of connecting different

peripheral devices to a SpaceWire network. Usually modern

(all the more the old ones) electronic devices do not have

opportunity to connect into SpaceWire network directly. So,

the first question that engineers ask is “What should I use to

integrate my nice device into a SpaceWire network?” After

some investigation, in many cases the second question rises

itself: “Why should I use this big bridge to integrate my very

nice device into a SpaceWire network? Ok, this bridge is very

intellectual and even has a microprocessor inside, but it’s n-th

times bigger and heavier than my very very nice device…”

In this article a simple Remote Terminal Controller ASIC

RMR-02P is suggested to solve the problem of integrating

peripheral devices in SpaceWire network. The controller

provides very efficient, low power opportunity to provide

connection of a wide range of peripheral devices, such as

ADC, DAC, FLASH memory, different controllers and

sensors, to high throughout, noise-immune SpaceWire

network without using extra components (microcontrollers,

memory circuits, FPGA, receiver-transmitters etc).

II. APPLICATION

The SpaceWire remote terminal controller ASIC RMR-

02P provides light-weight SpaceWire connectivity for simple

slave devices: ADC, DAC, peripheral controllers, sensors,

actuators, etc. Due to hardware implementation of the

protocols and flexible slave device interfaces the RMR-02P

does not require external memory and glue logic chips. No

special software programming is needed as well.

The RMR-02P has the following features:

 Dual-port ECSS-E-50-12С SpaceWire controller

 SpaceWire data rate from 2 to 300 Mb/s

 Built-in ANSI/TIA/EIA-644 LVDS transceivers with

100 Ohm impedance matching resistors

 Built-in hardware implemented RMAP (ECSS-E-ST-

50-52С) and Distributed Interrupt Protocol

 Two programmable universal 16-bit parallel ports,

supported different modes: master, slave (mailbox),

GPIO/SPI-master

 Maximum data rate of the parallel port 32 MB/s

 Maximum data rate of the SPI-master port 25 Mb/s

 16-bit Intel/Motorola microcontroller interface

 Maximum data rate of the microcontroller interface 32

MB/s

 Ceramic 112-pin package 26.7x26.7 mm

III. DESCRIPTION

The simplified functional diagram of the RMR-02P is

shown on the figure 1.

213

Figure 1: RMR-02P functional diagram

The RMR-02P contains the followingfunctional blocks:

 SpaceWire – dual-port SpaceWire controller

 UPP – universal parallel ports

 µP – microcontroller interface

 MX – IO multiplexer

 CTRL – control circuitry

 SPI – debugging slave serial port interface

The dual-port SpaceWire controller provides connectivity

to the SpaceWire network. Built-in ANSI/TIA/EIA-644

LVDS transceivers with 100 Ohm impedance matching

resistors simplify system integration. The controller supports

two protocol for control and data transfer implemented in

hardware: Remote Memory Access Protocol (RMAP) [2] and

Distributed Interrupt Protocol (DIP) [3].

Two SpaceWire ports are designed to be used in high

reliable systems with redundant SpaceWire connections. Both

ports are equivalent. An internal router transfers data between

the SpaceWire ports and chip’s internal bus as well as between

the SpaceWire ports themselves. This allows to build different

redundant connection structures, e.g. Star (see figure 2) and

Ring (see figure 3). In the both cases, single hop failure does

not fail system connectivity. The main advantage of the Ring

connection structure is much smaller cable-ware than for the

Star one.

Figure 2: Star connection

Figure 3: Ring connection

Two 16-bits universal programmable parallel ports (UPP)

provide connectivity to a wide range on external passive (i.e.

without microprocessor or microcontroller) devices. Each of

them can be independently programmed in the following

modes:

 Master mode

 Slave mode (mailbox)

 GPIO/SPI mode

In the Master mode, the UPP operates as a 16-bit

bidirectional parallel master ports with Intel-style control

signals, ready signal and interrupts request signal. The

waveform of the port is programmable: setup and hold times,

CS signal duration, idle time between accesses, access timeout

can be configured via the SpaceWire ports. A 128-entry

internal FIFO allows RMAP packets of up to 256 byte

payload. Another FIFO related feature is early read by request

or FIFO readiness. The distributed interrupts can be generated

by the number of events: external interrupt signal, FIFO

readiness, FIFO overflow/underflow error, access timeout

expired.

In the Mailbox mode, the UPP operates as a 16-bit

bidirectional parallel slave ports with Intel-style control

signals, ready signal and interrupts request signal. Many

features of the Master mode - programmable waveform,

internal FIFO, external interrupts request are similar to the

Master mode. The difference is that in Mailbox mode the

external device writes to and reads the RMR-02P port.

In the GPIO/SPI-master mode, the UPP operates as SPI

master and 16 general purpose IO signal. Each of the 16

GPIOs can be independently configured as an input, output or

SPI chip select signal (i.e. up to 16 chip select signals can be

used for SPI). The distributed interrupts can be generated on

state changing of any GPIO signal configured as an input as

well as SPI operation finishing.

The microcontroller interface of the RMR-02P has 16 bit

data bus, 16-bit address bus, Intel or Motorola-style control

signals with a READY/ACK signal, two chip select signals

and two external interrupts signals. The interface operated as a

master such that the RMR-02P can simply replace

microcontroller. The interface shares the same pins as the

Server

RMR-02P

RMR-02P

RMR-02P
SpaceWire

HUB

Server

RMR-02P

RMR-02P RMR-02P

RMR-02P

Space

Wire

network

CLKO

RSTO

 IRQ

 Addr

 Data

Ctrl

AHB

CTRL

 UPP:

GPIO/SPI,

PPORT,

MBOX

µP:

Intel,

Motorola

 SPI local

host

MX

Space

Wire

SPI

214

parallel ports, so either the microcontroller interface or the

parallel ports can be used. The waveform of the interface is

programmable like in done in the parallel master port: setup

and hold times, CS signal duration, idle time between accesses

and access timeout are configurable.

The microcontroller interface of the RMR-02P supports

RMAP packets of up to 256 byte payload with address

increment and without address increment.

The RMR-02P has two special signals controlled via the

SpaceWire ports which facilitate system integration. The

RSTO output signal is pulse generating signal under

SpaceWire control. It is designed as a reset signal for external

devices. The duration and the polarity of the RSTO signal are

programmable.

The CLKO output is continues clock generating signal. It

is designed as a clock signal for external devices. The period,

on and off state are controlled via the SpaceWire port. The

maximum and minimum period of the CLKO is 25 MHz and

0.4 MHz.

The ancillary SPI-slave port is designed as a debugging

interface. It can be used to control the RMR-02P instead of the

SpaceWire ports.

IV. RESULTS

The RMR-02P was designed on Radiation Tolerant

standard cell and memory libraries of R&D Center ELVEES.

It was manufactured on 180 nm CMOS process and assembled

in 112-pin ceramic package (see figure 4).

The chip has a small area and low power consumption (see

table 1). Power consumption was measured at maximum

SpaceWire data rate and at supplies voltage of peripheral

buffers and digital core equal 1.8 and 3.3V consequently.

Testing of the chips demonstrated full functionality and

good performance results (see table 2 and table 3). The TID

and SEU/SEL test are to be done as the next step.

The RMR-02P chips are available for evaluation.

Figure 4: RMR-02P in CQFP-112 package

TABLE I. AREA AND POWER CONSUMPTION

Instance Area, mm Power, mW

SpaceWire

RMAP IP
CORE

2.1×2.0 95

RMR-02P 4.0×4.0 230

TABLE II. SPACEWIRE LINK DATA RATE

Cable

Length,

m

Maximum SpaceWire rate, Mbit/s

Receive Transmit

1 300 300

10 300 300

20 200 100

TABLE III. PERIPHERAL INTERFACES DATA RATE

Peripheral interface Maximum data rate, Mbit/s

SPI-master 25

Parallel port 256

Mailbox 200

µP 256

V. CONCLUSION

The article presents the RMR-02P ASIC which has been

designed for connecting a wide range of peripheral devices

into SpaceWire networks. The RMR-02P ASIC has been

manufactured on 180 nm CMOS process and successfully

tested.

Currently, the RnD Center ELVEES works on the next

generation of a remote terminal ASIC. In particular, it will

include support of the Streaming Transport Protocol [4] for

high efficient integration devices which generate or consume

continuous data flow, e.g. fast ADC and DAC.

REFERENCES

[1] ECSS_E_50_12C. SpaceWire – Links, nodes, routers and

networks. – European Cooperation for Space Standardization

(ECSS), 2008

[2] ECSS-E-ST-50-52С. SpaceWire – Remote memory access

protocol. – European Cooperation for Space Standardization

(ECSS), 2010.

[3] Sheynin Y., “Distributed Interrupts in SpaceWire

Interconnections”, 8th SpW WG meeting, Noordwijk, January

2007

[4] Yuriy Sheynin, Elena Suvorova, Felix Schutenko, Vladimir

Goussev, “Streaming Transport Protocols for SpaceWire

Networks”, Proceedings of the 3rd International SpaceWire

Conference, June 2010.

215

DCNSimulator – Software Tool for SpaceWire

Networks Simulation
Session: SpaceWire networks and protocols

Poster Paper

Artur Eganyan*, Elena Suvorova*, Yuriy Sheynin*, Alexey Khakhulin**, Igor Orlovsky**

*) Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, Russian Federation

artfla@rambler.ru, suvorova@aanet.ru, sheynin@aanet.ru

**) Rocket and Space Corporation Energia after S.P. Korolev

4A Lenin Street, Korolev, Moscow area, 141070, Russia

Alexey.Hahulin@rsce.ru, Igor.Orlovsky@rsce.ru

Abstract — In the paper we present the Digital Communication

Network Simulator (DCNSimulator) – a tool for design, system-

level simulation and analysis of networks. We show how we have

used this tool to simulate and analyze a real onboard SpaceWire

network from Russian missions and projects.

I. INTRODUCTION

The Digital Communication Network Simulator

(DCNSimulator) is a tool for design, system-level simulation

and analysis of networks.

DCNSimulator is based on Qt and SystemC. It consists of

the simulation engine and libraries of network components.

The simulation engine is the general part that could work for

simulation of any network. Libraries of network components

are specific for particular network standards and could

represent network components at various details level – from

general virtual components to cycle-accurate models of

particular devices. Simulated device models are written in

C++. Application software algorithms could run at end nodes

thus generating realistic traffic for the simulated network. The

simulator also allows users to design networks graphically in

MS Visio. The DCNSimulator runs in Windows and doesn’t

require any other third party software for its operation.

The previous version of this tool was described in more

details in [1]. In the current DCNSimulator version we have

improved simulator efficiency, performance and usability. We

have also added more detailed information of channels

workload and search of particular packet by different

parameters: content, sending or receiving time, latency interval.

An example of a real spacecraft network investigation with the

DCNSimulator is presented in the article.

II. SPACEWIRE NETWORKS

The DCNSimulator with its library completely supports

SpaceWire networks. It implements all levels of the SpaceWire

standard (excluding signal and physical ones) and provides

models of a terminal node, a routing switch and a channel

(parameterized point-to-point link), from which networks can

be composed. It also supports error imitation for channels and

devices.

With this tool, SpaceWire networks can be analyzed at the

levels of characters and packets. So one can analyze control

codes and data packets propagation, channel workload and all

errors occurred in channels. The simulator displays appropriate

charts, statistics and information about every transferred code

and packet.

III. CASE STUDY

Here we show an example of the real network which was

analyzed with the simulator. This is a fragment of a spacecraft

network shown in fig. 1. Its photo is in fig. 2, and traffic of this

network is described in table 2. The abbreviations are

explained in table 1.

216

CBOCCBOC

CBOC

ORECOMS

CBOC
CBOC

BS
CC

RRV4

RRV5

RRV1

TS

EB

RMS

CBOC

RV

OS1

RRV2

CRRV

RRV3

REB1

CBOC
CBOC

CBOC

REB2

OS2

CEB

CREB

...

...

...

CS

CCM

CBOC
CBOC

CBOC

...

CBOC
CBOC

CBOC

...

CBOC

CBOC

CBOC ...

CBOC

CBOC
CBOC

...

ATS

ISS

Figure 1 Fragment of spacecraft network (rectangles are terminal nodes and rounds are routers)

Figure 2 A fragment of a conventional spacecraft network cabling (photo)

217

TABLE I. ABBREVIATIONS

ATS Automated Test System

OREC Onboard Radio Engineering Complex

OS Onboard Systems

CBOC Control Block of Onboard Complex

RV Re-entry Vehicle

EB Engine Bay

CEB Computer of the EB

RRV Router of RV

REB Router of EB

ISS International Space Station

CC Cosmonaut Consoles

OMS Onboard Measurement System

RMS Radiation Monitoring System

BS Bearing System

CS Communication System

TS Telemetric System

CCM Central Computing Machine

CRRV Central RRV

CREB Central REB

TABLE II. NETWORK TRAFFIC, IN MBIT/S

 Receivers

Senders
ATS OREC CBOC CEB ISS CC OMS TS CCM

ATS - - - - - - - - -

OREC - - - - - 2 - - 5

OS - - - - - 1 1 - 3

CBOC - - - - - - 0.5 - 0.08

CEB - - - - - 0.1 2 - 2

ISS - - - - - 25 3 - 2

CC 25x3 - - - - - 2 - 0.2

OMS 5 - - - 3 0.1 - - 5

RMS - - - - - 1 1 - 1

BS - - - - - - 0.1 - -

CS - - - - - - 0.2 - -

TS - 25 - - 25 25 0.1 - 0.01

CCM 5 5 0.08 2 2 5 1 0.01 -

Channels rate is 125 Mbit/s. Any 25 Mbit/s and 25x3

Mbit/s in the table is a maximum video traffic which is

generated all the time (uniformly) and transferred as frames

of 1 Kbyte length. The rest traffic is generated every 200 ms.

Packets between CBOCs and CCM have the highest priority.

Each CBOC sends and receives to/from CCM one packet of

64 byte length, every 200 ms. There are 4 CBOCs on each

RRV and 5 CBOCs on each REB.

Our goal was to verify that:

1. Latency of packets between CBOCs and CCM is ≤

10 ms.

2. Latency of video frames is ≤ 100 ms.

3. The network is not overloaded.

We have created the network model with the

DCNSimulator and simulated it for 1 second. We supposed

that any big message is transferred as a group of 1 Kbyte

218

packets. The general chart which displays latency of all

packets is shown on fig. 3. This chart was expected because

a lot of traffic is simultaneously sent every 200 ms. It also

shows that the network is highly loaded every 200 ms but not

overloaded – otherwise we would see continuously

increasing latency.

Video frames (which are sent all the time) are transferred

as shown on fig. 4. So latency of any video frame doesn’t

exceed 100 ms, but it “jumps” because video has no priority.

In larger scale (fig. 5) and by statistic (fig. 6) we can see that

the most of the frames are transferred even no longer than

0.5 ms (0.14 ms in average).

Figure 3 Latency of all transferred packets

Figure 4 Latency of video frames

219

Figure 5 Latency of video frames in larger scale

Figure 6 Statistic for latency of video frames

Figure 7 Latency of packets for CBOCs -> CCM (on the left) and CCM -> CBOCs (on the right)

The statistics for packets from CBOCs and the CCM (fig.

7) shows that these packets are transferred for no longer than

10 ms (4 ms in the worst case), as required. We can also see

that packets from CBOCs have much worse average latency.

This is basically because CCM receives not only short

packets from CBOCs but also 1 Kbyte packets from other

terminals. And in spite of the priorities, packets from CBOCs

can be delayed (for example, because some packet has

220

occupied the CRRV -> CCM channel before anyone else).

So one of the weak places in the network is the CRRV ->

CCM channel; it can be improved by adding one more link

along with a group-adaptive routing, [2].

We have also found that every 200 ms workload of some

channels goes down for a while, and then grows back. It can

be explained because some packets simply stop and wait in

the CRRV until a lot of generated traffic passes. For

example, the channel between the RRV2 and the CRRV is

shown on fig. 8. But there is no such thing for CRRV’s

output channels because traffic goes out of this router

continuously (fig. 9).

Figure 8 Workload of the channel RRV2 -> CRRV, in percent

Figure 9 Workload of the channel CRRV -> RRV5, in percent

IV. CONCLUSION

The DCNSimulator is intended for system-level

simulation of different networks. Here we have used it to

simulate a fragment of the spacecraft network, and verified

that it works as required. Its utilization in practical spacecraft

networks design and investigation showed its efficiency and

usefulness.

REFERENCES

[1] A. Eganyan, L. Koblyakova, E. Suvorova. “SpaceWire

network simulator”. SpaceWire-2010. Proceedings of the 3rd

International SpaceWire conference, St.Petersburg, 2010, pp.

403-406.

[2] L. Koblyakova, Yu. Sheynin, D. Raszhivin. Real-Time

Services in Networked Embedded Systems. 7th Conference of

Open Innovations Framework Program FRUCT, SPb, Russia,

2010. ISBN 978-5-8088-0529-3, pp.64-67.

221

Implementation and use of SpaceWire in the EPD

instrument for Solar Orbiter
SpaceWire missions and applications, Poster Paper

Ronald Castillo, Javier Almena, Alberto Carrasco, Aaron Montalvo, Oscar Gutiérrez, Manuel Prieto,

 Sebastián Sánchez

Space Research Group, Computer Engineering Department, University of Alcala

Ctra. Madrid – Barcelona, Km. 33,600. Alcala de Henares (28805), Spain

{rcastillo, jalmena, acarrasco, amontalvo, ogm, mpm, chan}@srg.aut.uah.es

Abstract—In this paper the cold redundant SpaceWire link

used to communicate the Energetic Particle Detector onboard

Solar Orbiter with the spacecraft is described. The main

objective of the Solar Orbiter mission is to address the central

question of heliophysics: How does the Sun create and control the

heliosphere? The spacecraft is equipped with a comprehensive

suite of ten instruments including in-situ and remote instruments.

The Energetic Particle Detector or EPD is part of the in-situ

payload. EPD is responsible for studying suprathermal and

energetic particles with different energy ranges, covering from

2keV to 200 MeV/n. This instrument is composed of four sensors,

developed by universities and research centers across Europe

and USA. All sensors are connected to the Instrument Control

Unit or ICU, which acts as an interface among them and the

spacecraft. The ICU is made up of a Common Data Processing

Unit and a Low Voltage Power Supply. The CDPU processes and

temporarily stores data captured by the EPD sensors, and also

processes telecommands sent by the spacecraft. The LVPS

provides a switchable power source for the CDPU and the EPD

sensors. Communications between the satellite’s computer and

EPD instrument will be carried out using the CCSDS protocol

over SpaceWire. This work explains the implementation of the

EPD instrument, including the use of SpaceWire and other

higher-level protocols in order to ensure correct communications

with the satellite.

Index Terms—ESA, Solar Orbiter, Energetic Particle Detector.

I. INTRODUCTION

In order to better understand the impact of the Sun’s

behavior in the inner Solar System, the European Space

Agency has devised the Solar Orbiter mission. Solar Orbiter

will study the inner Solar System, studying not only the Sun

but also the particles surrounding the spacecraft during the

mission, performing a series of remote and local observations

while facing extreme environmental conditions. This study will

be carried out while the satellite develops an elliptical orbit

around the Sun [1]. For complying with the mission objectives,

the satellite contains ten instruments, which will perform the

aforementioned observations and the study of the interstellar

conditions and the Sun activities. One of these instruments is

the Energetic Particle Detector (EPD), which will study the

characteristics of the suprathermal and energetic particles

surrounding the spacecraft. This instrument is composed of

four sensors that will study particles with different ranges of

energy. Control of the instrument is performed using an

Instrument Control Unit (ICU). Some of the tasks of this unit

are to receive and process data fed by the sensors and to

process telemetry and telecommands. Data communications

between the ICU and the satellite’s computer is carried out

using a SpaceWire link. This link is also used for

synchronizing the data transfer between the EPD sensors and

the ICU.

II. OVERVIEW OF EPD

As mentioned earlier, EPD is composed of four sensors that

measure the energy of particles located nearby the satellite. In

detail, the range of energy levels that each EPD sensor is able

to measure is as follows:

 SupraThermal Electrons, Ions, and Neutrals (STEIN):

Approximately 3 to 100 keV for suprathermal particles,

approx. up to 40 keV for ions and approx. up to 10 keV

for neutrals [2].

 SupraThermal Ion Spectrograph (SIS): Approx. 0.008 to

10 MeV/nucleon for He to Fe [3].

 Electron and Proton Telescope (EPT): 20 to 400 keV

for electrons, 60 to 7000 keV for protons [4].

 HET: 300 keV to 20 MeV for electrons, 10 to 100 MeV

for protons and approx. 20 to 200 MeV/nucleon for

heavy ions (species dependant) [5].

Data generated by these sensors are fed to a set of two cold-

redundant Instrument Control Units (ICU) using Universal

Asynchronous Receiver-Transmitter (UART) links where

Low-Voltage Differential Signaling (LVDS) is used as the

standard for the physical level signaling. LVDS was chosen

because of its improved noise performance over standard (non-

differential) connections and due to its low power

consumption.

Figure 1 shows how the components of the EPD instrument

are connected to each other and to the spacecraft. Each EPD

sensor is connected to both ICU units (nominal and redundant),

which are enclosed in the ICU Box. Data connections from the

sensors go to the Common Data Processing Unit (CDPU) and

222

power connections to the Low Voltage Power Supply (LVPS).

The CDPU not only receives power from the LVPS, it also

controls the power supply of the sensors and reads the LVPS

status. Both ICUs are connected to the spacecraft using two

SpaceWire links, one for each unit.

CDPU

LVPS

REDUNDANT ICU

EPT_HET 1

EPT_HET 2

SIS

STEIN

Sp
ac

ec
ra

ft

Data connection lines (Nominal + Redundant)

Power supply lines (Nominal + Redundant)

CDPU

LVPS

NOMINAL ICU

ICU BOX

Fig. 1. Connection of the components of the EPD instrument inside Solar

Orbiter.

III. ICU HARDWARE

 Each ICU unit is composed of two parts: the CDPU and

the LVPS. Two ICU units are present in the EPD instrument

operating as cold-redundant system. The CDPU receives,

processes and temporarily stores data generated by the EPD

sensors. In addition, it also receives telecommands from the

spacecraft, processes them and sends telemetry data as a reply.

Connection between each CDPU and the satellite is carried out

using SpaceWire links operating at 10 Mbit/s. More

information about the use of SpaceWire in EPD can be found

later in this document.

Each CDPU unit is composed of the following components:

 A 32 Kbyte PROM memory, which stores the boot

software.

 A 1 Mbyte EEPROM memory that stores the

application software and the data required for the

correct operations of the EPD sensors.

 A 2.5 Gbit SDRAM memory. The application

software is deployed in this memory during the boot

process and after that it is executed from here. In

addition, the data provided by the EPD sensors are

stored in this memory until it is transmitted to the

Earth. This memory also contains the information

necessary for implementing the Error Detection and

Correction (EDAC) functionality.

 A radiation-tolerant FPGA, where all data processing

and communications will be performed.

 LVDS drivers and receivers for the UART and

SpaceWire interfaces.

 Additional interfacing components.

FPGA

PROM EEPROM SDRAM

LVDS
DRIVER &
RECEIVER

LVDS
DRIVER &
RECEIVER

(DATA)

LVDS
DRIVER
(1PPS)

FOR EACH SENSOR

LVPS
CONTROL
& STATUS

SPACEWIRE
(TO SPACECRAFT)

DATA
(TO

SENSOR)

1PPS (TO
SENSOR)

Fig. 2. FPGA Block diagram.

The FPGA handles data exchange between the EPD sensors

and the spacecraft. For this reason, it contains the logic of

several UART interfaces, a LEON2 processor and a SpaceWire

interface, along with additional interconnection logic and

memory controllers as shown in Figure 2. Connection of the

LEON2 processor and the necessary peripherals is carried out

using an Advanced Microcontroller Bus Architecture (AMBA)

bus. In detail the FPGA, which operates at 20 MHz, performs

the following tasks:

 Reception of data from the EPD sensors.

 Processing and compression of the received data.

 Temporary storage of the resulting data in the

SDRAM memory.

 Reception of telecommands from the spacecraft.

 Telecommand processing and replying. This includes

transmitting data provided by the sensors to the Earth.

 Control of the LVPS unit. This allows switching the

power supply of the EPD sensors.

To relieve the processor from the task of managing data

transfer operations to and from the EPD sensors, an IP core has

been developed. It provides a configurable amount of UART

interfaces and an AMBA master peripheral interface with

DMA capabilities. This makes it possible to maximize the

resources dedicated to the sensors’ data processing.

The LVPS adapts the spacecraft’s +28V power supply to be

used by the EPD instrument. In addition, the power supplied by

the LVPS to the EPD sensors can be switched on or off

individually, following a command received from the CDPU.

The LVPS also provides protection mechanisms, such as short-

circuit and under-voltage protection [6].

IV. EPD SPACEWIRE IMPLEMENTATION AND DATA TRANSFER

Communications between the spacecraft and its instruments

is carried out using SpaceWire links. Specifically for EPD, two

SpaceWire links are provided by the spacecraft, one for each

cold-redundant ICU. These SpaceWire links operate at 10

Mbit/s. SpaceWire is not only used for data exchange,

Timecode characters are used for synchronizing the data

223

transfer from the EPD sensors to the ICU. In addition,

communications among different Solar Orbiter’s instruments is

also performed over this link.

The SpaceWire codec used in the ICU EPD has been

developed by our group [7]. This SpaceWire codec has been

tested to work correctly at bitrates up to 300 Mbit/s and

provides the basic functionality specified in the SpaceWire

standard [8]. A wrapper component was implemented over this

SpaceWire codec that provides the interface with the AMBA

bus, DMA functionality for direct data exchange with the

external memory without CPU intervention and improved data

packet and Timecode handling. A block diagram of this

component is shown in Figure 3.

SPACEWIRE
CODEC

CONFIGURATION
& STATUS

REGISTERS

PROCESSING
LOGIC

DIRECT MEMORY
ACCESS (DMA)

APB
INTERFACE

AHB MASTER
INTERFACE

TIMECODE
INTERFACE

IRQ

SPACEWIRE
DATA/STROBE

Fig. 3. Block diagram of the SpaceWire core used in the CDPU FPGA.

Data exchange and error reporting in this component is

based on transmission and reception descriptors. For data

transmission, the software being executed in the LEON2

processor prepares descriptors in external memory, which

contain information such as the starting address of the data to

be transmitted and its length. The software then configures the

IP core so it knows that there are descriptors pending

processing and where to find them. For data reception, a

similar process is followed, but in this case the descriptors

contain the position in memory where each received

SpaceWire packet is to be stored and the maximum length

allowed.

After the component processes these descriptors, it updates

them to report any errors that occurred during the data transfer.

Exchange of telecommands and telemetry through the

SpaceWire link is carried out using the CCSDS packet transfer

protocol [9]. CCSDS data management is implemented in

software.

V. USE OF TIME-CODES IN EPD

SpaceWire Timecode characters sent periodically by the

spacecraft play an important role in the communication process

between the ICU and the EPD sensors. A mechanism that

allows synchronizing the transmission of data from the sensors

to the ICU has been implemented.

When the ICU receives a valid Timecode character over the

SpaceWire link (one is expected each second), another IP core

included in the FPGA is notified. This IP core then generates a

1 Pulse-Per-Second (1PPS) pulse that is sent to each EPD

sensor over dedicated LVDS lines. The 1PPS is used to notify

the sensors that they are authorized to send data. By defining

the maximum amount of data that a sensor can send each time

they receive a 1PPS pulse, we can determine the maximum

amount of data that the ICU has to process in a period of time

and, as a consequence, the amount of processing resources

necessary in the system.

VI. INTER-INSTRUMENT SYNCHRONIZATION AND BURST

MODE

In Solar Orbiter, instruments can share scientific data if

necessary. This is possible thanks to the implementation of

Packet Utilization Standard (PUS) Services [10] in the

Spacecraft’s computer and its instruments. In this

implementation, the instruments send scientific data to the

Spacecraft using Service 3 packets. The satellite’s computer

then processes the information received from all the

instruments and sends them Service 20 packets with the

resulting data. For EPD, this information may include a request

to activate Burst Mode for one or more EPD sensors.

Before explaining the functionality behind the Burst Mode,

it is important to know that the EPD sensors capture scientific

data with a fixed cadence (each second, samples are taken by

these sensors and sent to the CDPU). For sending this data to

the Earth, the CDPU composes telemetry packets by compiling

ten samples taken by a sensor for each packet, which is then

sent to the spacecraft. It must be noted that the compiling

process, that basically is a data integration operation, reduces

the amount of data that must be sent to the Earth. This mode of

operation is called Nominal Mode.

In addition to the telemetry data sent in Nominal Mode,

during some specific periods of time, the CDPU may send high

cadence scientific data from one or more EPD sensors. This

mode of operation is called Burst Mode, and can be activated

independently for each sensor for which this functionality is

supported. In this scenario, the CDPU generates telemetry

frames with high cadence data from a single sensor, so more

information is available about that sample than in Nominal

Mode. Figure 4 shows the difference between Nominal Mode

of telemetry reporting and Burst Mode.

CDPU

SAMPLE 1

SAMPLE 2

SAMPLE 3

SAMPLE 4

SAMPLE 5

SAMPLE 6

SAMPLE 7

SAMPLE 8

SAMPLE 9

SAMPLE 10 SENSOR
SAMPLES

(NOMINAL MODE)
TO

SPACECRAFT

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

DATA FROM
SAMPLES 1 TO 10

DATA FROM SAMPLE ‘x’

(BURST MODE)

TELEMETRY FRAME

Fig. 4. Telemetry frame generation using Nominal and Burst Modes

Burst Mode can also be activated internally by one of the

sensors present in the EPD instrument or remotely as a

telecommand sent from the Earth.

224

VII. ICU TESTING ENVIRONMENT

In addition to the development and implementation of the

instrument’s hardware and software, a testing environment has

been set up with the purpose of testing the CDPU’s

functionality.

A Unit Tester application has been developed for execution

in a Personal Computer (PC). This application, combined with

embedded software also developed specifically for testing

purposes (which is executed by the CDPU), is a powerful tool

to assist in testing the CDPU’s peripherals during and after the

implementation process.

In this test scenario, commands are sent from the test PC to

the CDPU under test using a SpaceWire link. The content of

these commands follows a protocol also developed specifically

for testing the CDPU. This protocol not only allows specifying

different tasks to be carried out using the set of peripherals

available in the CDPU, but also allows ordering tests where

several peripherals are interconnected. For example, a possible

test could be to read data from the SPI interface (which is used

for reading the LVPS status) and send it using one of the

UART interfaces, while another possibility would be to tell the

CDPU that, for each SpaceWire packet it receives, it should

send an amount of reply packets specified in the received

packet. More complex tests can be implemented if so desired.

The PC application loads tests to be carried out from XML

files. These files are human-readable, which eases the process

of implementing tests or reading what an existing test is

programmed to do. This application has been developed using

the LabView environment [11]. To provide the PC used as a

testing station with SpaceWire connectivity, a SpaceWire-USB

Brick [12] from Star Dundee is used.

CDPU

UARTS
(LVDS) +

OTHER I/O

XML
FILE

TEST PC

TEST
APPLICATION USB-

SPACEWIRE

REPORT
FILE

CDPU
DIAGNOSTICS

DAUGHTERBOARD

UNIT TESTER

UARTS (RS-232)

Fig. 5. CDPU testing environment.

Figure 5 shows the complete testing environment. The Unit

Tester is connected to the CDPU through the SpaceWire

interface as well as indirectly through its UART interfaces. An

additional diagnostics board is used, which allows reading the

values of the CDPU’s output signals or setting value to its

input signals. This board also converts the LVDS signals used

for the UART interfaces in the CDPU to the RS-232 standard

for connection to the test PC.

VIII. CONCLUSIONS

Solar Orbiter will let us acquire a greater knowledge of the

Sun’s behavior and the environmental conditions of the inner

Solar System. This knowledge is very important for

understanding the consequences of the Sun’s environmental

conditions in Earth, and for better preparing future space

missions for the hazards of the interstellar medium. SpaceWire

plays a key role in this mission, providing a robust, high-speed

link for data transmission that also allows for synchronization

of the exchange of information between the CDPU and the

EPD sensors.

ACKNOWLEDGMENTS

This work has been supported by the Spanish government,

MINECO grant AYA2012-39810-C02-02.

REFERENCES

[1] ESA Science & Technology. Solar Orbiter.

http://sci.esa.int/solarorbiter. Retrieved on March 7th, 2013.

[2] Solar Orbiter's Energetic Particle Detector (EPD) – STEIN.

http://www.ieap.uni-kiel.de/et/solar-orbiter/STEIN.php.

Retrieved on March 7th, 2013.

[3] Solar Orbiter's Energetic Particle Detector (EPD) – SIS.

http://www.ieap.uni-kiel.de/et/solar-orbiter/SIS.php. Retrieved

on March 7th, 2013.

[4] Solar Orbiter's Energetic Particle Detector (EPD) – EPT.

http://www.ieap.uni-kiel.de/et/solar-orbiter/EPT.php. Retrieved

on March 7th, 2013.

[5] Solar Orbiter's Energetic Particle Detector (EPD) – HET.

http://www.ieap.uni-kiel.de/et/solar-orbiter/HET.php. Retrieved

on March 7th, 2013.

[6] Solar Orbiter's Energetic Particle Detector (EPD) – ICU.

http://www.ieap.uni-kiel.de/et/solar-orbiter/ICU.php. Retrieved

on March 7th, 2013.

[7] R. Castillo, J. A. Martín, J.Almena, M. Prieto, D. Guzmán and

S.Sánchez, “Validation and testing of an IP codec for high

bandwidth SpaceWire link”. SpaceWire-2010. Proceedings of

the 3rd International SpaceWire Conference, pp. 179-183.

[8] European Cooperation for Space Standardization. ECSS-E-ST-

50-12C. Space engineering. SpaceWire – Links, nodes, routers

and networks. 2008.

[9] European Cooperation for Space Standardization. ECSS-E-ST-

50-53C. Space engineering. SpaceWire - CCSDS packet transfer

protocol. 2010.

[10] European Cooperation for Space Standardization. ECSS-E-70-

41A Ground systems and operations - Telemetry and

telecommand packet utilization. 2003.

[11] National Instruments. LabVIEW System Design Software.

http://www.ni.com/labview/. Retrieved on March 13th, 2013.

[12] Star-Dundee. SpaceWire-USB Brick. http://www.star-

dundee.com/products/spacewire-usb-brick. Retrieved on March

11th, 2013.

225

Network Management Algorithm For High Speed

Onboard Systems
SpaceWire networks and protocols, Poster Paper

Koblyakova Ludmila

SUAI

Saint-Petersburg, Russia

luda_o@rambler.ru

Oleynikova Stanislava

SUAI

Saint-Petersburg, Russia

o.stanislava@gmail.com

Khramenkova Ksenia

SUAI

Saint-Petersburg, Russia

ksu.khramenkova@gmail.com

Abstract— High speed evolution of onboard technologies

leads to increasing of requirements to the algorithms, which

provide administration, configuration and monitoring of

network. The significant rise of number of devices in networks is

caused by developing new algorithms for automatic network

configuration without human intervention. During interworking

huge sets of devices it is necessary not only to initialize it. Log-

tracing and reconfigure every node and whole network are also

urgent task. Therefore, the developing of algorithm for automatic

network configuration and monitoring is high priority task.

The paper gives the overview of configuration, administration

and monitoring algorithms for modern onboard data transfer

standards: InfiniBand, Fibre Channel, AFDX, MIL-STD-1553,

SOIS and SPA. Definitions of terms of configuration,

administration and monitoring are in the first and second part.

The review of data transfer standards is in the third part. We

consider only algorithms of administration, configuration and

monitoring. Advantages and disadvantages are particularly

explored. Also we analyze how it can be used with SpaceWire

technology.

Index Terms—Administration, configuration, monitoring, Plug

and Play, InfiniBand, Fibre Channel, AFDX, MIL-STD-1553,

SOIS, SPA, SpaceWire.

I. INTRODUCTION

The onboard network evolution and growing the number of

devices in networks leads to creating new algorithms. Also

need to take into account the wide variety of hardware, which

may have a different interfaces, performance, features and

capabilities.

The algorithms respondent to the administration, monitoring

and reconfiguration of the onboard network should not only

initialize all the devices, but also track the status of each

device during the all network working time, providing to the

operator a log about whole network and each device.

Algorithms can be completely different: centralized,

decentralized, with input data and without, taking into account

the error statistics, the presence of redundant channels and / or

devices.

But they are used a number of requirements and restrictions,

such as:

 Configure and network scan should not cause

deadlocks;

 The algorithm should work correctly on any network;

 The algorithm should not significantly affect the ability

of computer networks.

According to the structure the algorithms can be divided into

several stages: administration, monitoring and reconfiguration

onboard computing network.

Under the term of administration we understand that, if there

is information about network devices send command for direct

recording settings in them. If there is no input data, then to the

administration stage the network discovering is added.

After the first stage the tracking of the network state and

each device begins. During the monitoring the output log file

is created, reflecting the status of the devices, links, and error

statistics occurring in the network. The monitoring includes

testing devices and making conclusion on the base of the

receiving results about their efficiency.

If errors are found, it is necessary to take the decision about

trying to restore settings or to transfer the management to the

redundant device, if first device cannot be restored or the

device is out of order. About the choice and actions are

reported to the network operator through log files. All this

actions are called reconfiguration of the network. This

function will be called in the case of detection or disable

devices, needs to input or output device in standby mode.

II. MONITORING AND ITS SERVICES

The monitoring function represents tracking the network

state. It is executed continuously after network initialization.

The monitoring checks intactness of network devices,

backtraces the appearance new devices in network, guides

statistical parameters which can be interested for network

administrator, forms error report.

Also one of the monitoring functions is tests, for example,

device interrogating for detection fails or new devices. In case

of finding out the fail, the message is sent to network

administrator and forms an output report file.

226

For example, during test the terminal node, the connected

ports (connection, speed) and possibility device to send packets

are checked. During test the router, the connections and

possibility to send packets are checked as well. In addition the

router table, adaptive group registers are checked.

In case of some fails the monitoring tries to dispose them

by using configuration and administration tools and informs

the network administrator. This stage is named network

reconfiguration. Its initiator is signal from monitoring stage

about appearance or disappearance device or several devices.

This leads to creating new parameters and adjustments.

III. OVERVIEW OF STANDARDS

A. MIL-STD-1553

This standard was developed for military purposes, and

describes 1-megabit bus with time-division. Its special feature

is the dual redundant data bus built on a "command-response"

scheme. The second bus is backup bus, it is using when the

primary fails.

Fig. 1 Scheme of MIL-STD-1553 bus

All the actions that occur on the bus are controlled and

executed by the main bus controller. Remote terminals are

connected to the bus and asked for the commands the

controller. Remote terminals can be up to 31. Also in the

network can be a monitor bus.

The main function of the bus controller is controlling the

flow of data for all transactions on the bus. The exchange of

the data is taken place in the "command-response" mode; the

device fully monitors the data transfer. It also detects and

corrects errors that occurs on the bus and keeps log of errors.

The controller records the changes in the network, and

performs the appropriate actions, for example, connects the

redundant devices. The bus can support several controllers,

but at one time just one can work.

The remote terminal is the interface intended for connection

of the bus and a subnet. The subnet is connected through such

remote terminal and can contain up to 31 subaddresses.

Terminal cannot begin transmitting data until doesn’t asked be

the bus controller. The remote terminal must be properly

handles the protocol and electrical errors.

The monitor of the bus listens to all messages on it and

writes some. It can store data for analysis in real time or after

some time. The monitor can store all bus traffic or only a part,

including protocol and electrical errors. The monitor is usually

used for bus testing [1].

Considering possibility of application of methods of the

MIL-STD-1553 standard for the onboard systems constructed

on the basis of SpaceWire devices, it is possible to draw the

following outputs:

 The standard MIL-STD-1553 controller analyzes and

monitors the network. Algorithm is centralized, only

one controller at the time can work.

 The bus MIL-STD-1553 monitor is the passive device

which realizes traffic and history storage and bus tests.

In the on-board network Space Wire will be useful to

apply such device to gather information about current

changes in the network (connecting and disconnecting

devices, errors).

 Network built according to MIL-STD-1553, has a

well-defined topology and the restriction on the

number of devices. This condition is not reasonably to

the Space Wire network.

 Initially the network built according to MIL-STD-1553

already set up and run. The main task is maintaining its

performance. This condition is not always reasonably

for Space Wire network.

B. InfiniBand

For the administration and monitoring of the network, the all

network structure is divided into subnets.

Fig. 2 IB Network and Subnetwork

For the process of administration, configuration and

monitoring, there are managers and agents that support a range

of services.

Fig. 3 IB Subnet Components

A Subnet Manager is an entity attached to a subnet that is

responsible for configuring and managing switches, routers,

and channel adapters. And each node provides a Subnet

Management Agent that the Subnet Manager access through

an interface called the Subnet Management Interface.

The manager can be in one of the following statuses: study,

waiting, master or non-active.

227

Fig. 4 IB Manager Stages

The first step is determining the master manager of subnet. If

manager find out a node with a bigger ID then manager goes

into waiting mode. In this mode it doesn’t configure the

network. It only checks once in some time the operability of

the master. If for some reason the master fails or doesn’t

respond, then the manager again enters to the study state. He

also enters this mode when receive a packet “study”. If he gets

the package “disable”, then he needs to go into the "non-

active" state. In this case, it does not perform any action. He

can go into a waiting state when receiving an appropriate

packet.

The master manager makes study of topology of a subnet,

distribution of local addresses to the devices, compilation of

paths to these devices, executes configuring of devices of a

subnet and all subnet in case of appearance of new devices or

switch-off the operating.

Subnetwork agents are contained in everyone subnet

devices, in channel adapters, routers and switches. They

provide the opportunity to interact between the device and

manager. By means of the agent the access to the configurable

parameters is made.

Control of IB provides a configuration and information

collection about channel adapters, switches and routers,

determination of topology and a subnet configuration.

InfiniBand management defines a common management

infrastructure for

 Subnet administration - provides nodes with

information gathered by the subnet manager and

provides a registrar for nodes to register general

services they provide.

 Communication establishment and connection

management between end nodes.

 Mechanisms to discover and manage I/O devices

“behind” channel adapters.

 Configuration management - an authority for assigning

I/O resources to hosts.

 Performance management - monitors and reports well-

defined performance counters.

 Baseboard management - provides for power & chassis

management.

 SNMP Tunneling (SNMP) - provides method for

sending and receiving information between

management agents and management applications.

This includes Simple Network Management Protocol

(SNMP), Desktop Management Interface (DMI), and

Common Information Model (CIM) [2].

Fig. 5 IB Management

It is possible to draw the following outputs about the

InfiniBand standard:

 The InfiniBand standard is centralized for subnets and

decentralized for all system.

 No restrictions on the topology, devices can be

duplicated if it is necessary.

 There is no need of continuous or periodic survey of

devices, the agent being on the device reports about it.

 Each subnet must support at least two managers, and

each network device must support the work of the

agents. Directly from the device manager does not

work.

At the InfiniBand standard is a row of advantages which can

be used to implementation of algorithms of Space Wire. The

using the agents in the network Space Wire are difficult

because often terminal nodes are the sensors which aren't

supporting installation on them the additional software.

However, the switches may contain such software, adding to

its function the monitoring of terminal nodes. The simple

circuit of network monitoring can be created by the adding of

manager to the network topology, which can process

information from agents.

C. Avionics Full Duplex Switched Ethernet (AFDX)

AFDX combines concepts taken from asynchronous transfer

mode and applies them to a variant of IEEE Std 802.3

(Ethernet). At the physical layer, AFDX consists of a star-

topology, full duplexed switched Ethernet.

In order to improve the reliability AFDX provides a

redundant network scheme.

Each frame is transmitted in parallel over two redundant

networks and afterwards filtered by Redundancy Manager at

the receiving End System. This shall reduce the probability of

loosing frames and enable further operation even in presence

of one faulty network [3].

228

Fig. 6 AFDX Network

Management of an AFDX network is handled via a network

management function that communicates with each AFDX

network component (equipment, subscriber, and switch) to

monitor the health and status of the network.

Network health is monitored via simple network

management protocol (SNMP) agents running on each

subscriber (line-replaceable unit (LRU)/partition) and end

system (including the switch end system). Health status and

errors are logged to the local MIBs, with status messages sent

as requested by the network management function [4].

The main concept of SNMP protocol is that all necessary

information for manage device is stored on that device in

Management Information Base (MIB).

MIB is the set of variables characterized the state of

management object. These variables can reflect such

parameters as number of packets, processed by device; state of

its interfaces; time period of function this device, etc.

For process the inquiries from control station received as

SNMP packets the special module, named Management

Agent, is existed. Agent receives SNMP packets and performs

corresponding actions, for example, set value to parameter,

update information in MIB.

The Control Station can be workstation of network

administrator, if there run some management module which

supporting the SNMP protocol.

The feature of this protocol is its simplicity. It includes just

several commands.

 The command GetNext-Request is used by manager to

get value of the next object (without its name) during

the several reviews the table of the objects.

 The command Get-Response is used by SNMP agent

for transmit to manager the answer on command Get-

Request or GetNext-Request.

 The command Set is used by manager to change the

value of some object. By using this command the

device management is occurred.

 The Trap command is used by agent to send the

massage to manager about raising the special situation.

 The SNMPv.2 adds to this set command GetBulk,

which allows manager get several values of variables

in one request [5].

This standard shows the high fault-tolerance by duplicate the

flow of packets, but it demands the big hardware resources,

because all devices between two end nodes are duplicated.

Such approach can be used for SpaceWire networks. However

the duplication all network can involve difficulties, because

for onboard network is important to minimize the weight and

power consumption, thus only very important parts of network

can be duplicated.

In network must exist and permanently function the

Redundancy Manager.

This standard doesn’t discuss where the network manager

realized configuration and monitoring should be hosted.

The SNMP protocol consists the minimum number of

commands, offers the full access to variables of MIB different

network devices and monitoring functions.

The concept of storage information about device state on

that device can be successfully applied to SpaceWire

networks. In this case devices should hold self-testing

software and the network manager produces interrogation its

parameters.

D. Fibre Channel

Fibre Channel is the set of protocols for high-speed data

transfer. Fibre Channel is complex protocol consisted of 5

layers. On layer FC-3 the Management Services is placed. This

is set of tools for access for management application to Fibre

Channel network, its inner topology and configuration data.

The management applications placed on network devices can,

for example, indicate which ports can interact with each other.

Other services allow management applications discover the

behavior of interactions in Fibre Channel network.

The standard Fibre Channel supports 3 types of topology

defined the principles of interaction between devices:

 Point-to-Point topology;

 Arbitrated loop topology;

 Switched-fabric topology.

Physically, the Fibre Channel is an interconnection of

multiple communication points, called N_Ports,

interconnected either by a switching network, called a Fabric,

or by a point-to-point link. A Fibre Channel "node" consists of

one or more N_Ports. A Fabric may consist of multiple

Interconnect Elements, some of which are switches. An

N_Port connects to the Fabric via a port on a switch called an

F_Port. When multiple FC nodes are connected to a single

port on a switch via an "Arbitrated Loop" topology, the switch

port is called an FL_Port, and the nodes’ ports are called

NL_Ports. The term Nx_Port refers to either an N_Port or an

NL_port. The term Fx_Port refers to either an F_Port or an

FL_port. A switch port, which is interconnected to another

switch port via an Inter Element Link (IEL), is called an

E_Port. A B_Port connects a bridge device with an E_Port on

a switch; a B_Port provides a subset of E_Port functionality.

Many Fibre Channel components, including the fabric, each

node, and most ports, have globally-unique names. These

globally-unique names are typically formatted as World Wide

Names (WWNs).

The configuration is realized also with SNMP protocol

which is described earlier in AFDX section.

MIB Fibre Channel consists of 11 groups:

 Instance Basic Group contains basic information about

a Fibre Channel managed instance, including its name

and description, the Fibre Channel function(s) it

performs, and optional pointers to hardware and/or

software components;

229

 Switch Basic Group contains basic information about a

Fibre Channel switch, including its domain-id and

whether it is the principal switch of its fabric;

 Port Basic Group contains basic information about a

Fibre Channel port, including its port name, the name

of the node (if any) of which it is a part, the type of

port, the classes of service it supports, its transmitter

and connector types, and the higher level protocols it

supports;

 Port Stats Group contains traffic statistics, which are

not specific to any particular class of service, for Fibre

Channel ports;

 Port Class23 Stats Group contains traffic statistics that

are specific to Class 2 or Class 3 traffic on Fibre

Channel ports, including class-specific frame and octet

counters and counters of busy and reject frames;

 PortLc Stats Group defines low-capacity (Counter32-

based) equivalents for the Counter64-based statistics in

the Port Class23 Stats Group;

 Port ClassF Stats Group contains traffic statistics that

are specific to Class F traffic on the E_Ports of a Fibre

Channel switch;

 Port Errors Group contains counters of various error

conditions that can occur on Fibre Channel ports;

 Switch Port Group contains information about ports on

a Fibre Channel switch. For an Fx_Port, it includes the

port’s timeout values, its hold-time, and its capabilities

in terms of maximum and minimum buffer-to-buffer

credit allocations, maximum and minimum data field

sizes, and support for class 2 and class 3 sequenced

delivery. For an E_Port or B_Port, it includes the

buffer-to-buffer credit allocation and data field size;

 Switch Login Group contains information, known to a

Fibre Channel switch,about its attached/logged-in

Nx_Ports and the service parameters that have been

agreed with them;

 Link Basic Group contains information known to a

local Fibre Channel management instance, and

concerning Fibre Channel links including those which

terminate locally [6].

The Fibre Channel standard unlike other standards allows

organize high-performance network without redundancy.

This standard is use the SNMP protocol for configuration

and monitoring network devices. The 11 MIB groups are

existed which provide all information about network and each

device. The management applications are placed on devices.

The using of management applications worked on devices for

SpaceWire networks is not always possible, because some

terminal nodes cannot support the addition software.

E. Space Plug-and-Play Avionics (SPA)

The Air Force Research Laboratory is developing a system

for rapidly building spacecraft based on adapting “plug-and-

play” (PnP) approaches for use in space. This space plug-and-

play avionics (SPA) system is based on an interface-driven set

of standards intended to promote the rapid development of

spacecraft busses (platforms) and payloads. As such, SPA is

an open systems framework, combining commercial standards

with carefully chosen hardware and software extensions

necessary for modern real-time embedded systems (e.g. fault

tolerance, higher power delivery, self-description).

Space plug-and-play avionics (SPA) is defined as an

interface-driven standard (or set of standards) intended to

promote the rapid development of spacecraft busses

(platforms) and payloads. The SPA standard comprises an

open systems framework, which combines core commercial

standards (such as USB) with carefully chosen hardware and

software extensions necessary for modern real-time embedded

systems.

Fig. 7 Vertically-layer software engineering model for PnP

One abstraction of software engineering for PnP follows a

vertically-layered, reminiscent of the well-known seven-layer

open system interconnects (OSI). At the bottom of this stack

are the PnP components themselves. The component layer

connects into a “middleware” layer referred to as the satellite

data model (SDM). Above this middleware is the application

layer. Applications access the PnP object-services through

API calls to the SDM, which enforces an insular discipline in

systems development. It is not, for example, necessary to write

code to control specific thermometers, which might require

modification when different thermometers are chosen. Rather,

this layered approach encourages device independence in

application design, which is one of the principles that permit

more rapid integration of components. It is possible to define a

final mission layer, potentially as a script-driven interface to

the application set.

The key innovation in the PnP software architecture is the

SDM. The goal of rapid satellite design, integration, and test

requires that established, but time consuming, concepts be

rethought and revamped. The SDM does not focus on the

electrical transport mechanism, so in principle any number of

SPA-x interfaces could be devised. Rather, the SDM is based

on the transport of data.

Ontology plays an important role in SDM. For the various

aforementioned processes to understand each other, they must

speak the same language. To do this, SDM requires a public

Common Data Dictionary (CDD) whose contents are created

by the community of process developers and managed as a

public resource. The CDD concept is key to a data-oriented

model, and it enables disparate teams to develop processes in

230

different places and times that are able to understand what

data each produces or requires. It permits a community

understanding for the development of the device xTEDS, as

well as the applications that exploit them in the various SPA

components.

The SDM defines a series of interacting “function

managers”:

 Processor Manager – resident on each processor and is

responsible for keeping that processor busy;

 Data Manager – keeps track of all data available at any

given time and supports data queries;

 Task Manager – keeps track of active and pending

tasks;

 Sensor Manager – provides the PnP interface to the

processing network; and

 Network Manager – explores the network and

maintains routing tables.

The managers are logically a single function even though

they can have a multi-instantiated distributed implementation.

These “managers” support data access, task management, and

network discovery. Data access accumulates descriptions of

what data is produced by system processes and how that data

can be accessed. Task management keeps track of what

processes are executing on what processors and their statuses

along with what additional tasks are needed. Network

discovery determines what components are connected to the

network, their addresses, and associated routing tables.

The processor manager bears special mention. It is a special

process resident on each processor (since SDM is intrinsically

designed to be distributed onto networks) that handles task

acquisition and execution along with providing basic support

functions. These functions include messaging between

processes, maintaining a real-time clock, and providing a

periodic heartbeat to the system (i.e., the task manager). The

special “per processor” process continuously monitors activity

of the parent processor and periodically checks for the

existence of pending tasks that can be executed by the parent.

If any are found, the appropriate executables are loaded and

run. While no operating system is required per se, the process

can be multithreaded, handle interrupts, and utilize an

operating system as appropriate based upon the specific

processor [7].

The functions of administrating are divided between several

managers: processor manager, data manager, task manager,

sensor manager and network manager. Each manager is

responsible for restricted set of functions, which increase the

data processing. Also the stability of single manager increases.

SPA use its own format of the packets, received information

is described by xTEDS.

SPA use its own logical addressing which have to be

modified to use in other subnetwork.

On SPA managers is placed the main work of service the

network, storage data, paths and routing tables for different

subnetworks.

SPA has the SPA-S realization special for SpaceWire.

F. Spacecraft Onboard Interface Services (SOIS)

The SOIS standardized services are intended to be

applicable to all classes of civil missions, including scientific

and commercial spacecraft, and manned and un-manned

systems. These standardized services may apply to military

missions, although military security requirements have not

been considered in their specification.

On any given spacecraft, several types of data subnetworks

may be used between specific data systems. The actual type of

subnetwork used is determined by the required characteristics

of the interaction between those entities. These may typically

be categorized as:

 Multidrop Buses providing connection to a central bus

master and a number of slaves. Communication is

generally asymmetrical and often involves low-level

read and write access to slaves. The central control of

bus traffic results in a highly stochastic traffic profile

well suited to applications requiring bounded

communications timing.

 Point-to point serial interfaces used for instrument

connection, possibly for bulk data transfer but also

combined with instrument control. Again, these

interfaces usually operate in a master/slave mode.

 LANs used on larger infrastructures where hosts have

generally equal computing power and have a diversity

of communication requirements. Communication is on

a peer-to-peer basis with a level of variability in delay

due to resource queuing.

 Point-to-point sensor and actuator interfaces used for

gathering sensor readings or controlling spacecraft

equipment.

Onboard applications should not be concerned with the

nature of these subnetworks, and so the SOIS concept aims to

provide a solution by recommending that applications interact

only with a well-defined set of standard onboard data services.

Fig. 8 SOIS Layers

SOIS services exist at three service interfaces:

 An Application Support Layer service interface.

 A Transfer Layer Service interface.

 A Subnetwork Layer service interface.

The Application Support Layer services provide a number of

capabilities commonly required onboard a spacecraft, which

231

need not be limited to communications. The Application

Support Layer services make use of the Subnetwork Layer

services either locally or remotely over a network. The

services are defined in terms of protocols, procedures,

protocol data units and a Management Information Base

(MIB).

The Transfer Layer is assumed to be composed of extant

CCSDS recognized protocols and services.

The SOIS Subnetwork provides a set of SOIS-defined

services which support upper-layer Application-Support and

Transfer-layer entities.

The services identified at the Subnetwork Layer are:

 Memory Access (memory location read/write, includes

block move)—providing direct access to device

memory.

 Time Distribution—providing transmission and

reception of spacecraft time.

 Packet—providing packet delivery over a single

subnetwork.

 Device Discovery—providing dynamic device

recognition.

 Test Service—providing establishment of subnetwork

functionality and availability.

As you can see, services attached to administration,

monitoring and reconfiguration place on different layers.

Consider it in details.

On Application Support Layer the function Device

Enumeration Service (DES) is placed. It supports a dynamic

configuration.

On Subnetwork Layer the functions Device Discovery and

Test are located.

The SOIS device discovery service provides the capability to

detect devices becoming active following a change in the

hardware configuration of the spacecraft. This may occur

when a cold redundant device is powered on, for example.

The Test Service is intended to be used for checking data

system functionality and connectivity of the subnetwork. The

service is used to check operation of the subnetwork aspects of

the local data system as well as subnetwork connectivity to

other data systems [8].

The present standard doesn’t have limitation on topology

given an opportunity to create any topology in depend on

network function.

In standard is presented such services as detection of

connection the new device, tests, dynamic configuration and

network discovering.

The adoption of automatic detection of connection new

devices, dynamic configuration and test services are not

unreasonable to add to SpaceWire network, this give us more

opportunities for automation a network functions.

IV. CONCLUSION

Possibility of automatic network configuration is important

factor in selection standard for onboard network.

In depend on goals and resources the different standards

and protocols, different algorithms of administration,

configuration and monitoring can be used.

During review the different standards, the set of addition

for SpaceWire was detected. For example, efficiently to have

the additional passive device which gather information about

changes in network; the functions of router software responded

to tracking the router state and connected to it nodes; the

addition several managers greatly simplify administration,

configuration and monitoring. For increasing the fault-

tolerance it is possible to duplicate important parts in the

network.

REFERENCES

[1] AIM GmbH Avionics Databus Solutions, “MIL_STD_1553

Tutorial v 2.3”, pp. 1–82, November 2010. (references)

[2] InfiniBandSM Trade Association, “InfinBand Architecture

Specification Volume 1”, Release 1.2 Final Release, October

2004, pp.709-930.

[3] Jan Taubrich and Reinhard von Hanxleden, “Formal

Specification and Analysis of AFDX Redundancy Management

Algorithms,” 26th International Conference, SAFECOMP 2007,

Nuremberg, Germany, September 2007, pp. 1-3.

[4] Ian Land and Jeff Elliott, “Architecting ARINC 664 Part 7

(AFDX) Solutions”, XILINX, XAPP1130(v.1.0.1) May 2009,

pp. 1-11.

[5] ERLANG, “Simple Network Management Protocol (SNMP),”

Ericsson AB., February 2013, pp. 1-20.

[6] K. McCloghrie, “Fibre Channel Management MIB,” Network

Working group, Category Standards Track, May 205, pp. 1–5.

[7] Jim Lyke, Don Fronterhouse, Scott Cannon, Denise Lanza,

Wheaton Byers, “Space Plug-and-Play Avionics”, 3rd

Responsive Space Conference, April 2005, pp.1-13.

[8] CCSDS, “Spacecraft Onboard Interface Services – Information

Report”, CCSDS 850.0-G-1, Green Book, Issue 1.0, 2007,

pp. 1-49.

232

SpaceWire backplane for ground equipment
SpaceWire test and verification, Poster paper

Masaharu Nomachi, Shuhei Ajimura
Osaka University

1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
nomachi@rcnp.osaka-u.ac.jp

Takayuki Yuasa, Tadayuki Takahashi
Institute of Space and Astronautical Science, JAXA,

3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210, Japan

Iwao Fujishiro, Fumio Hodoshima
Shimafuji Electric,

8-1-15 Nishi-kamata, Ohta, Tokyo 144-0051, Japan

Abstract— SpaceWire backplane for ground equipment has
been developed based on micro TCA. Micro TCA is an industrial
standard. It has a backplane for LVDS point-to-point data links.
SpaceWire is implemented on the data links. Micro TCA system
provides not only SpaceWire data links but also reliable power
and cooling. It is applied to ground equipment such as test
systems and prototype modules.

Index Terms—Backplane, micro TCA.

I. INTRODUCTION
To develop satellite data handling systems, ground

equipment has important roll. Prototyping of the modules,
emulator modules and test equipment are needed. We have to
handle many modules for testing the data handling system.
Power cables and SpaceWire cables connecting those modules
are often being mess. Compact system to hold those modules is
needed to make the test and evaluation easy and reliable.

COTS (commercial off-the-shelf) backplane systems are
concerned for ground equipment. COTS backplane systems
provide wide variety of products in cost effective way. They
should provide LVDS point-to-point data link, good power
supply and reliable cooling system. There are several
backplane with differential point-to-point connections. Those
are used for PCI express, Giga-bit Ethernet, Serial ATA and
other serial protocols. Micro TCA is one of such backplane
system [1]. We implemented SpaceWire on the differential
point-to-point connection of micro TCA backplane. This work
is supported by Jaxa and Japan Space Systems.

We have been used Advanced TCA system, which is also
serial backplane [2], for particle physic experiments on the
ground. SpaceWire-microTCA is designed based on this
experience.

II. MICRO TCA
Micro TCA is an industrial standard [1]. Micro TCA hosts

AMC (advanced mezzanine card) modules. It can handle up to
12 AMC modules. Each module has point-to-point connection
to the dedicated controller (MCH: MicroTCA Carrier Hub).

An AMC module has 20 AMC ports. Each port has LVDS
transmitter and receiver connections. First 4 AMC ports are

called “common option”. They are used for Gigabit-Ethernets
and SATA connections. The next 4 AMC ports are called “Fat
pipe”. They are usually used for PCI express or other standards.
We assigned two SpaceWire port to Fat pipe region. The next 4
AMC ports are called “Extended fat pipe”. They are also used
for PCI express or other standards. We assigned two
SpaceWire port also to Extended fat pipe region. The last 8
AMC ports are called “Extended option”. They are not
supported in COTS backplanes. Custom made backplane is
needed to use Extended option region. So, we don’t use
Extended option region for our application. Consequently, each
AMC module has 4 SpaceWire connections, two in Fat pipe
and two in Extended fat pipe. The port connection is shown in
the table I.

TABLE I. AMC PORT ASSIGNMENTS

 AMC
port Signal Primary

MCH
Redundant

MCH

Common
option

0 1000BASE-BX A
1 A
2 SATA etc. B
3 B

Fat pipe

4 SpaceWire-0 D D1-D12

 5 S E1-E12
6 SpaceWire-1 D F1-F12
7 S G1-G12

Extended
fat pipe

8 SpaceWire-2 D

D1-D12
9 S E1-E12

10 SpaceWire-3 D F1-F12
11 S G1-G12

Extended
option

12

 13
14
15
17

 18
19
20

An AMC port of even port number is assigned to “D” in D-

S link. An AMC port of odd port number is assigned to “S” in
D-S link. Fat pipe is connected to a primary MCH. Extended
fat pipe is connected to a redundant MCH. Each MCH has 24
(2ports × 12 AMC modules) SpaceWire connections. Figure 1

233

shows schematic view of SpaceWire connection on COTS 12
slot micro-TCA backplane.

Figure 1. SpaceWire backplane using commercial
micro TCA backplane. Two MCHs are placed at
the both end.

In order to house less number of modules, 6 AMC slot

system was developed. One MCH has 24 SpaceWire ports.
One MCH can handle up to 6 AMC modules. However, in
micro-TCA standard, Extended fat pipe is not connected. It
goes to a redundant MCH. Therefore, we developed custom
backplane so as to connect all SpaceWire to one MCH. The
port connection is shown in the table II.

TABLE II. AMC PORT ASSIGNMENTS (CUSTOM BACKPLANE)

 AMC
port Signal MCH

Fat pipe

4 SpaceWire-0 D D1-D6
5 S E1-E6
6 SpaceWire-1 D F1-F6
7 S G1-G6

Extended
fat pipe

8 SpaceWire-2 D D16-D7
9 S E16-E7

10 SpaceWire-3 D F16-F7
11 S G16-G7

Figure 2 shows schematic view of SpaceWire connection

on the custom 6-slot micro-TCA backplane.

Figure 2. 6-slot SpaceWire backplane using
custom micro TCA backplane. All SpaceWire
links are connected to one MCH on the left hand
side.

The 6-slot custom SpaceWire backplane was developed by

UBER [3]. Figure 3 shows the system.

Figure 3. 6-slot SpaceWire backplane system
using micro TCA system

III. SPACEWIRE ROUTER
All SpaceWire links are connected to MCH. A SpaceWire

router is placed at the MCH. We have developed custom MCH
which has SpaceWire router. Figure 4 shows MCH with 28
ports SpaceWire router. The MCH is developed by
SHIMAFUJI Electric.

Figure 4. MCH with 28-port SpaceWire router.

28 port router is placed on a FPGA（Xilinx XC6VLX75T-

3FFG784）. 24 ports are connected to the backplane. Up to 4
ports are connected to external port. SpaceWire ports work up
to 200 Mbps data rate. We also developed MCH with
SpaceWire-to-GigabitEther is also available.

MCH controls power of AMC modules and cooling.

IV. AMC MODULE
Several kinds of AMC modules with SpaceWire interface

are developed. General-purpose module is developed. The
module has 4 SpaceWire ports to backplane and 4 SpaceWire
ports to front panel connector. 128 MB SDRAM is attached to
the FPGA. Figure 5 shows SpaceWire interface module.

234

Figure 5. General-purpose SpaceWire Interface.

V. APPLICATIONS
The micto TCA system will be used for test equipment.

Micro-TCA system has high reliability. It is ideal for the test
equipment. Traffic Generator system using General-purpose
SpaceWire interface is presented by Yuasa et al. [4]

The micro TCA system will be also used for emulator of
data handling system. General-purpose interface can emulate
the sensor nodes or a data handling system by changing the IP

on the FPGA. Reusing existing hardware, development time
can be saved.

The micro TCA system will be also used for prototyping of
payload electronics. A small form factor of the micro TCA
system provides compact development system.

The SpaceWire backplane on micro TCA system will be
applied for most of ground applications for SpaceWire.

REFERENCES
[1] MTCA.0 R1.0 specification, Short Form is available at PCI

Industrial Computer Manufacturers Group (PICMG) Web cite,
http://www.picmg.org/pdf/MicroTCA_Short_Form
_Sept_2006.pdf

[2] Serial Data Link on Advanced TCA Back Plane, M. Nomachi
and S. Ajimura, IEEE TRANSACTIONS ON NUCLEAR
SCIENCE, VOL. 53, NO. 5, OCTOBER 2006S

[3] http://www.uber-corp.co.jp/ (in Japanese)
[4] SpaceWire Traffic Generator: a highly-scalable packet

generation device, T. Yuasa et al., contribution to this
conference.

235

A Software SoCWire Protocol Handler

 for NoC Management
Missions and Applications, Poster Paper

Adrian Belger, Björn Fiethe, Frank Bubenhagen, Holger Michel, Harald Michalik

Institute of Computer and Network Engineering (IDA)

TU Braunschweig

Braunschweig, Germany

belger@ida.ing.tu-braunschweig.de

Abstract— Limited telemetry rates combined with large

amounts of information retrieved from the sensor systems of

scientific space instruments demand that classical ground

processing steps like determination of scientific parameters

need to be performed already on-board. FieldProgrammable

Gate Arrays (FPGAs) with large logic density provide a highly

flexible platform to implement sophisticated data processing.

Specifically, radiation tolerant space qualified SRAM-based

FPGAs allow to build dynamically and even partially

reconfigurable hardware designs, offering significantly

improved flexibility for high reliable systems. Our own

SpaceWire based System-on-Chip Wire (SoCWire)

communication architecture and the RMAP inspired SoCWire

Protocol (SoCP) provide an adequate Network on Chip (NoC)

communication infrastructure. In this paper a software

SoCWire Protocol Handler (SoCPH) implementation for SoCP

is presented. This handler contains autonomous mechanisms

for determining current network state to provide valid and up

to date network state information to the high level software.

Additionally, the SoCPH provides autonomous packet header

generation. It supports concurrent network interactions from

multiple tasks with an automatic response dispatching routine.

Synchronous and asynchronous message transfers are

supported. These key features significantly lower the otherwise

necessary network management overhead for the application

software developer and provide easy access to the existing

processing nodes.

Index Terms— SpaceWire, SoCWire, protocol, network on

chip.

I. INTRODUCTION AND HERITAGE

Limited telemetry rate combined with the large amount

of scientific raw data retrieved from modern sensor systems

demand that classical ground processing steps like scientific

parameter extraction and subsequent data evaluation already

need to be performed on-board. To cope with these

sophisticated on-board processing capabilities, state-of-the-

art radiation tolerant space qualified SRAM-based

FieldProgrammable Gate Arrays (FPGAs) with large gate

count offer an attractive solution to speed up processing by

utilizing the parallel structures of FPGAs. Usually, these

processing steps need to be revised during a space mission

and therefore the scientists request that on-board processing

needs to be adaptable to changing mission specific

requirements. Fortunately, this type of FPGA provides the

capability for in-flight dynamic partial reconfiguration, i.e.

exchanging parts of user logic while the remaining user logic

is still operating. Therefore an advanced System-on-Chip

(SoC) can be implemented with such devices, however

overall system availability and qualification has to be

guaranteed in the harsh space environment.

We have already demonstrated the successful usage of

SRAM-based FPGA devices for scientific instruments with

e.g. the Venus Monitoring Camera (VMC) on ESA’s Venus

Express mission launched 2005 [1] and the Dawn Framing

Camera on NASA’s Dawn mission launched 2007 [2]. VMC

was the first European SoC computer in space and to date is

operational since more than 7 years, with only a few

numbers of predicted resets due to radiation induced Single

Event Effects (SEEs). But, the reconfiguration ability was

only used during the development phase on ground and no

support for in-flight reconfiguration was built-in. To be able

to update the processing modules, the reconfigurability of

these SRAM-FPGAs has to be used also in space. This is a

major improvement in terms of maintenance and

performance, which is essential for future space instruments

because of its ability to adapt to unforeseen situations and

events.

Since complete parallel real-time processing is not

achievable in most cases and not all of the functional

modules need to operate concurrently, it would be sufficient

if a Partial Reconfigurable Module (PRM) could be

requested to be instantiated and run in a FPGA on demand.

The ability of SRAM-based FPGAs to support dynamic

partial reconfiguration allows this flexible use of the

available HW platform in a Time Space Partitioning (TSP)

manner even for complex algorithms.

236

II. SOCWIRE

The SpaceWire based System-on-Chip Wire (SoCWire)

communication network has been developed by IDA as a

fault tolerant high-speed Network-on-Chip (NoC)

architecture, which is able to connect PRMs to a host system

with the capability to isolate these PRMs logically and

physically from the system [3]. This means that glitch

effects, which may occur during the reconfiguration process

of PRMs, do not affect the operation of the host system and

thus SoCWire provides a safe way to dynamically

reconfigure parts of the FPGA during flight.

A SoCWire link is always a point to point connection of

two CODECs with receiver and transmitter interface. Since

normally more than two nodes need to be connected, a

simple path addressing SoCWire switch with round robin

scheduling is placed between them, see figure 1. The data

transfer in a SoCWire network is controlled and supervised

by a host system. Typically the host system consists of a

variant of the space qualified LEON processor. As a bridge

between the AMBA based host processor bus and the

SoCWire network, the AHB to SoCWire bridge

(AHB2SOCW) was developed [4], supporting 16bit and

32bit SoCWire networks. To provide highest data rates with

low host processor involvement, the AHB master of the

bridge is controlled by two Direct Memory Access (DMA)

engines. FIFO buffers establish the connection between

DMA controller and SoCWire CODEC.

Figure 1. Basic SoCWire Network

III. SOCWIRE PROTOCOL

Whilst the pure SoCWire network represents only the

physical link and enables the data transmission between

several SoCWire nodes within the on-chip network, a

protocol is required to define rules and conventions for the

communication between the different nodes. The nodes have

to know how to interpret the meaning of received data. Our

SoCWire protocol (SoCP) presented in [5] is inspired by the

Remote Memory Access Protocol (RMAP), but adapted to

the requirements for on-chip data processing chains and

considerably simplified to limit resource consumption.

Whereas RMAP is mainly used for remote memory accesses

to nodes in a SpaceWire network, the processing nodes

within a SoCWire network rather process the data on

consecutive data blocks. In the context of a macro pipeline

one processed data block is directly transmitted to further

processing nodes or into mass memory.

The setup is such that the hardware protocol controller is

placed between the SoCWire CODEC and the actual

processing core as depicted in figure 2. The core creates

replies to requests send, supplies the processing core logic

with streaming data, and provides read and write registers to

set and read parameters from the processing core. The

implementation of user registers is optionally set by generics,

which helps to avoid FPGA resource consumption when not

needed. To make the protocol efficient and limit the registers

in the protocol handler, the network must not have more than

3 switches and port 0 in every switch must be the route to the

host processor.

Figure 2. Detailed SoCWire Hardware Node

The general protocol structure is shown in figure 3. Every

packet begins with up to 3 address descriptors, which

contain the outgoing port number of one SoCWire switch on

the path to the destination node. The destination is system

wide uniquely determined in the Hardware ID field. The

Transaction ID contains a counter in order to assign a

response to a request, while Instruction tag identifies the

packet type and additionally contains some flags for error

handling. Each packet ends with an end of packet (EOP)

behind the payload data.

Figure 3. SoCWire Protocol Structure

IV. SOFTWARE SOCWIRE PROTOCOL HANDLER

The NoC and processing nodes need to be controlled and

supervised by software on a host processor system.

Depending on the number of nodes in a NoC, frequency of

node replacement and maximum hop count generating

 Address

Address

Address

Hardware ID

Transaction ID

Instruction

Data

Data

EOP

. . .

237

suitable routing information the network management should

not be underestimated in terms of complexity. Furthermore,

developers of scientific application software have to keep

track of initial NoC configuration and necessary changes

over time. The host processor is in charge of all register

reads, register writes, process requests and reception of plug

and play messages, however streaming packets can be

passed between nodes autonomously. Before nodes can pass

streaming packets the path has to be set by the host processor

otherwise all packet would be sent to the host processor by

default. In principle high level software must be aware of the

forwarding path to every PRM. Every node device driver has

to be set up and updated separately. If reconfiguration is

done this leads to the necessity of updating one or a whole

set of software entities at the same time.

The main focus of the software SoCWire Protocol

Handler (SoCPH) is on abstracting the NoC complexity and

management overhead from the application software

development. Therefore, the basic SoCPH design consists of

four main components:

 Packet Header Generator,

 Response Dispatching Machine,

 NoC State and Routing Information Database (SRID),

 NoC State Surveillance Score.

The overall integration scheme and components are

shown in figure 4. The SoCPH obtains control over the NoC

by accessing the low-level SoCW interface driver. The

SoCWire driver communicates with the hardware itself via

shared circular DMA buffers. Towards the device node

driver, the SoCPH provides a set of procedures mapping the

SoCP.

Packet header

generation

Current NoC State /

Routing information

data base

NoC state

surveillance

U
p

d
a

te

Response

dispatching machine

NoC

SoCW

Interface

Driver

Device Node Driver

Figure 4. SoCPH Integration Scheme and Components

A. NoC State & Routing Information Database

SRID is allocated in memory of the host processor. It

reflects the currents state of NoC configuration. Based on

unique Hardware ID information as primary key it contains

corresponding network path information from the host

processor to destination PRM, including responsible SoCW

interface driver instance.

B. NoC State Surveillance

After system power on and initial FPGA configuration or

partial reconfiguration, initiated PRMs generate a Plug and

Play Initialization Notification (PPIN) and transmit it via

SoCP to the host processor. The PPIN contains the unique

Hardware ID of a PRM. This information is received and

interpreted by the NoC state surveillance monitor core,

which updates the SRID by adding changed node

information accordingly. In order to keep the database up to

date, the monitor is triggered each time an invalid Hardware

ID flag is set within incoming packets. Furthermore, SoCW

switches transmit Plug and Play Link Error Notifications

(PPLENs) in case of discontinuation of an established link,

comparable to the PPIN. Any PPLEN or invalid Hardware

ID flag set forces the NoC state surveillance monitor to

remove or update the link information in SRID. The

surveillance monitor is able to poll periodically for node

status register information within an adjustable interval. So

otherwise unrecognized errors might be detected and

corrected in SRID.

C. Packet Header Generation

With regard to the SoCP design described in [6] every

successfully configured PRM in the NoC setup is uniquely

identified via its Hardware ID. So data can easily be

transmitted to the corresponding PRM by calling the SoCPH

primitives with the corresponding Hardware ID and the

information to be send without knowledge of any routing

information. Data is automatically split to fit into separate

packets. Address descriptors are added accordingly to the

current NoC state available in the SRID. Transaction IDs are

prepared by the SoCPH and the Instruction Code is set

correctly.

D. Response Dispatching Machine

Every packet received by one of the SoCW interface

drivers is accepted by the dispatching machine and

forwarded to the destination task depending on the

Transaction ID, Instruction Code or Error Flags. In case of

direct register read or write access, the interaction is mapped

onto a synchronous network communication, which blocks

calling task as long as register content is not responded from

the PRM. This capsules NoC access, so the request appears

to be satisfied locally for the developer. The SoCP

processing and streaming requests are implemented as

asynchronous transfers since computation might consume

some time or results are not transmitted back to the host

238

processor in a direct manner. For such asynchronous

transfers, the SoCPH provides an internal buffer

management which allows tasks to allocate incoming data

buffers if a response is anticipated from a dedicated PRM.

This will enable the software to process different tasks

instead of being stalled. Since in SoCP each network node is

treated equally including host processor, streaming case is

not limited in the direction towards a PRM. Streaming data

from PRM to host processor is also possible. The SoCPH

allows registering a so called input stream handler function

to every PRM existing in the current NoC. If streaming

packets are received, the SoCPH autonomously invokes a

registered handler to process the incoming packet. This

avoids buffer overhead and the need to continuously poll for

streaming information in the device node driver.

Depending on the underlying platform the SoCPH can be

easily extended with more sophisticated functions by

combining the previously described operations to hide

complex setup procedures from high level software

developer, e.g. reconfiguration of the whole FPGA platform

or a single PRM.

V. CONCLUSION

In-flight reconfigurability enhances space applications

with both, maintenance and performance improvements.

Dynamic reconfiguration enables mission specific

adaptability on demand and adds significant operational

flexibility to the instrument. Thus, this is a favorable solution

for the sophisticated data processing requirements within the

very tight power and thermal constraints of scientific space

missions.

SoCWire combined with SoCP supplies a highly flexible

hardware and NoC platform solution. It enables on the fly

partial reconfiguration of PRMs to accomplish changing

processing demands over time without interfering any

concurrently active PRM. The described SoCPH

implementation on top provides an easy to use management

and communication framework for SoCP based NoC.

Processing modules s can be accessed without knowledge of

network setup. Included functionality widely hides the

overall network complexity and necessary administration

workload from the high level application developer and user.

In symbiosis with autonomous path determination and NoC

surveillance it provides an easy to use framework for partial

reconfigurable systems without loss of flexibility.

REFERENCES

[1] B. Fiethe, H. Michalik, C. Dierker, B. Osterloh, G. Zhou,

Reconfigurable System-on-Chip Data Processing Units for

Miniaturized Space Imaging Instruments, Proceedings of the

conference on Design, automation and test in Europe

(DATE), pp. 977-982, ACM, 2007, ISBN 978-3-9810801-2-4

[2] H. Sierks, H. Keller, R. Jaumann, H. Michalik, T. Behnke, F.

Bubenhagen, I. Büttner, U. Carsenty, U. Christensen, R.

Enge, B. Fiethe, P. Gutierrez Marques, H. Hartwig, H.

Krüger, W. Kühne, T. Maue, S. Mottola, A. Nathues, K.-U.

Reiche, M. Richards, T. Roatsch, S. Schröoder, I. Szemerey,

and M. Tschentscher, The Dawn Framing Camera, Space

Science Reviews, vol. 163, pp. 263–327, 2011

[3] B. Osterloh, H.Michalik, B. Fiethe, “SoCWire: A SpaceWire

inspired fault tolerant Network-on-Chip for Reconfigurable

System-on-Chip Designs in Space Applications”, ISC, Nara,

Japan, 2008

[4] H. Michel, F. Bubenhagen, B. Fiethe, H. Michalik, “AMBA

to SoCWire Network on Chip Bridge as a Backbone for

Dynamic Reconfigurable Processing Unit“, AHS, San Diego,

California, USA, 2011

[5] F. Bubenhagen, H. Michel, H. Michalik, B. Fiethe, B.

Osterloh, W. Sullivan, A. Wishart und J. Ilstad,

"IMPLEMENTATION OF THE SOCWIRE PROTOCOL

(SOCP) WITHIN THE DYNAMIC RECONFIGURABLE

PROCESSING MODULE" in Proceedings of the 4th

International SpaceWire Conference (Space Technology

Centre, Ed.), San Antonio, United States, 2011.

[6] H. Michel, A. Belger, F, Bubenhagen, B. Fiethe, W. Sullivan

A.Wishart and J. Ilstad, “The SoCWire Protocol (SoCP): A

Flexible and Minimal Protocol for a Network-on-Chip”, in

Adaptive Hardware and Systems (AHS), 2012 NASA/ESA,

2012

239

MASCOT On-Board Computer Based on
SpaceWire Links

SpaceWire Onboard Equipment and Software
Poster

Sandi Habinc, Anandhavel Sakthivel, Jonas Ekergarn,
Arvid Björkengren
Aeroflex Gaisler AB
Gothenburg, Sweden

info@gaisler.com

Richard Pender
Pender Electronic Design GmbH

Zurich, Switzerland
richard@pender.ch

Sven Landström
Hirel Design

Oegstgeest, The Nederlands

Federico Cordero, Jose Mendes
Telespazio VEGA Deutschland GmbH

Darmstadt, Germany

Tra-Mi Ho, Kai Stohlmann
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Bremen, Germany

Abstract— Aeroflex Gaisler (SE) has together with Pender
Electronic Design (CH) and Hirel Design (NL) has under DLR
(D) contract and VEGA (D) management developed the Onboard
Computer (OBC) engineering model (EM) for the MASCOT
asteroid lander.

Index Terms—SpaceWire, Networking, Spacecraft Electronics

I. INTRODUCTION

The general concept of the “Mobile Asteroid Surface
Scout” (MASCOT) is to provide a small landing system
intended to be deployed from a supporting main spacecraft. It
is specifically designed to be compatible with JAXA’s
Hayabusa 2 (HY2, scheduled for launch in 2014) mission
design and the environment given by the target asteroid
1999JU3.

Two major mission phases can be defined for MASCOT: A
cruise phase, attached to the main-SC, lasting about 5 years,
and a nominal phase, detached from the main-SC, lasting about
16 hours.

The design foresees an on-board computer (OBC) for
gathering, processing, compressing and storing of the scientific
payload and the housekeeping data and to run system and
subsystem tasks.

II. OVERALL CONCEPT

The MASCOT OBC comprises two fully redundant CPU
and IO boards, where the CPU boards are operated in cold
redundancy and the IO boards in hot redundancy.

The OBC is composed by a set of boards in the common
electronics box.

The two sides of the OBC are named OBC-M (Main)
section and OBC-R (Redundant) section and are power by two
independent power supply lines from the PDCU.

The OBC has the following main functions:
• Interfacing with the payload instruments for

commanding, housekeeping and science data
acquisition.

• Interfacing with the lander’s equipment, like the power
subsystem, mobility mechanism, attitude sensors for
commanding and housekeeping data acquisition.

• Interfacing with the RF communication equipment
(COM) to transmit CCSDS telemetry packets to and
receive CCSDS telecommand packets from HY2 SC,
which routes the packets to/from the ground.

• Execution of specific algorithms for science data
processing, data reduction into scientific data products
for storage into mass memory and downlink.

• Execution of specific algorithms for the mobility
equipment and guidance/navigation on the asteroid.

• Overall autonomous control and management of the
lander: Due to the nature of the mission and its short
lifetime, operations will be highly automated on-board
with no ground intervention. This includes the
nominal mission timeline, which will be mainly event
driven, and the Failure Detection, Isolation and
Recovery (FDIR). Command and control capability
from the ground, via HY2 SC is however foreseen, but
its nominal use is limited during the cruise phase,
mainly for updating the on-board software and mission
parameters

240

PDCU

COM

MMC

MARA

MAG

EGSE Umbilical

RAM

LEON-FT
CPU

M
ux

7 x UARTs

7 x UARTs

1 x SpW

1 x SpW

OBC-M

FPGA1 x SpW

MicrOmega

CAM

2 x SpW
10Mbps

2 x SpW
10Mbps

1 x SpW

1 x SpW

RS422LVDS LVDSLVDS

Discrete I/O Interfaces

NAND
FLASH

I/O module MCPU module M

A/D

Digital I/O

PROM

Lo
w

 P
as

s
F

ilt
er

s
B

ia
s

10Hz max

B
ia

s

Separation Sensor

PT1000

PT1000

LPC (spare)

CSM

TSM

AVM

Up to 115.2kbps

19.2kbps

115.2kbps

19.2kbps

19.2kbps

19.2kbps

10Mbps

10Mbps

RAM

LEON-FT
CPU

M
ux

OBC-R

FPGA

1 x SpW

Discrete I/O Interfaces

NAND
FLASH

I/O module RCPU module R

A/D

Digital I/O
PROM

Lo
w

 P
as

s
F

ilt
er

s

10Hz max

B
ia

s PT1000

PT1000
TSM

AVM

RS422LVDS LVDSLVDS

GNC
Sensors

(spare)

B
ia

s

Separation Sensor
CSM

(spare)

LPC (spare)

Fig. 1. Overall OBC structure

III. MASCOT CPU BOARD

The MASCOT CPU board is based on the GR712RC

device, which is System-on-Chip (SoC) is a dual core
LEON3FT system suitable for advanced high reliability space
avionics. It is the first of its kind, offering the space community
powerful multi-core processor capability in combination with
multiple RMAP enabled SpaceWire links fully compliant with
ECSS standards. The device is configurable and can operate in
many different applications, ranging from platform to payload
processing.

Fig. 2. MASCOT CPU board

The board comprises MRAM, SRAM and optionally
SDRAM memory. External LVDS drivers are provided for
four SpaceWire links, of which two are used for
communication with the nominal and redundant MASCOT IO
boards. It includes local voltage regulation is for the processor
core voltage, as well as local power down of the analogue
acquisition functionality for optimized cold sparing.

IV. MASCOT IO BOARD

The MASCOT IO board is based on Microsemi RT

ProASIC3 FPGA technology.
The FPGA implements two SpaceWire links with RMAP

target support in hardware. It provides an SPI interface towards
a multichannel ADC, control of additional analogue
multiplexers, including automatic sequencing for the analogue
acquisition, several UARTs with support for large (up to 2KiB)
buffers, control of low power commands (LPC) and digital
sensor logic (CSM), a parallel interface to a NAND Flash
memory which is protected by a Reed-Solomon code, and
finally switch over (SO) control logic.

The SO logic is in charge of the overall OBC supervision,
reconfiguring to the redundant CPU board in case of hardware
or software anomaly, independently from the OBC software.
All the resource can be accessed from the nominal and the
redundant MASCOT CPU board.

V. ANALOGUE ACQUISITION CHAIN

Analogue acquisition provides 15 fixed differential
analogue acquisition channels (AVM), 12 biased PT1000
acquisitions (TSM) and 4 channels being configurable between
AVM and TSM mode. The analogue acquisition system is
implemented with additional HW to support an in-orbit SW
calibration procedure of offset drifts and SW FDIR detection.

Fig. 3. MASCOT IO board

241

VI. FPGA ARCHITECTURE

The FPGA architecture is based on the on-chip AMBA bus,

which is supported both by ESA’s and by Aeroflex Gaisler’s IP
cores. It is therefore a very open architecture into which cores
from different sources can be integrated.

Aeroflex Gaisler has extended the AMBA on-chip bus with
a plug-and-play capability at the IP core level, which can be
utilized by software developments tools and device drivers for
real-time operating systems, as explained further down.

The plug-and-play information on IP core level allows for
distributed address decoding, interrupt steering, etc. This
enables automatic generation of a table including vendor and
device identifier for each core, including version and interrupt
information. Software and hardware debuggers can scan the
table to install corresponding drivers etc.

Fig. 4. MASCOT FPGA architecture

VII. USE OF SPACEWIRE AND RMAP

Each MASCOT CPU board has four SpaceWire links, of

which two are used for communicating with the payload, and
two are used for internal communication with the FPGAs on
the IO boards. There is thus no direct SpaceWire connection
between the two CPU boards.

The communication between processor on the MASCOT
CPU board and the FPGA on the MASCOT IO board is done
by means of RMAP over the two internal SpaceWire links. Via
RMAP read and write commands the device status can be
observed and it can be controlled in a safe (verified-write
command) and standardized way (ECSS standard).

The processor does not need to implement RMAP in
hardware. An RMAP initiator can be any device that can
generate standard SpaceWire packets. The RMAP command is
just a SpaceWire packet sent from the processor using its
SpaceWire core. The RMAP response is just a SpaceWire
packet sent from the TC FPGA to the processor. A complete
RMAP initiator software stack has been implemented for the
RTEMS real-time operating system which has been used to
demonstrate the functionality of the system.

The processors on the CPU boards are connected both the
FPGA on the nominal and the redundant IO board. This way
the active processor can access all redundant external interfaces
and on-board resources such as the NAND Flash memory.

The SpaceWire node in the FPGA has been based on the
GRSPW IP core. The core is configured in an RMAP target

only configuration, which means that it is not capable of
initiating any SpaceWire transmission on its own, with a
master interface to the internal AMBA bus in the FPGA.

VIII. SPACEWIRE ROUTER

An enhancement of the overall redundancy and
communication concept is to replace the two GRSPW IP cores
located in the FPGA with a three port SpaceWire router. The
router has two SpaceWire ports and an internal AMBA master
port with a built in RMAP target, thus similar interfaces as
used above.

The main difference is that the routing functionality would
allow one processor to access the memory space and the Debug
Support Unit of the other processor, via either of the two
FPGAs. This requires that both processors are powered, which
is possible in the architecture. The benefit is that the active
processor can modify the contents of non-volatile memory on
the non-active processor, or upload software directly to volatile
memory, etc.

This remote debug scenario via SpaceWire has previously
been demonstrated in an ESA activity, where it was shown that
for example a star-tracker could operate without the need for
power consuming PROM memories, since there was always
the possibility to upload software to the SRAM via the
SpaceWire RMAP protocol.

The SpaceWire router functionality has been implemented
in the FPGA and initial tests have been performed successfully.
The GRSPWROUTER IP core from Aeroflex Gaisler has been
used. The router functionality had to be reduced since the
FPGA was already completely filled. This specific FPGA
implementation does not support logical addressing; it is
instead restricted to path addressing which reduces the need for
a routing table. The AMBA master port has also been limited
to only implement the RMAP target functionality, thus no
accesses can be initiated from the inside of the FPGA on the
AMBA side. This is the same limitation as for the GRSPW
usage discussed above.

Fig. 5. GRSPWROUTER IP core

242

IX. EGSE

The EM verification and software development is
performed using the MASCOT EGSE, which is a 19” crate
with two internal backplanes, one for power conditioning and
distribution, and one hosting two CPU boards and two IO
board and also providing all external connectors for interfaces
such as SpaceWire, UART, PT1000 elements, JTAG debug
etc.

The MASCOT EGSE emulates as complete redundant
OBC. The power power conditioning and distribution allows
the nominal and redundant lane to be individually powered and
can be controlled remotely via a digital test interface, allowing
integration in the overall test equipment.

The backplane interconnecting the CPU and IO boards
implements the routing of all internal SpaceWire links. The
four external SpaceWire links (going to the payload) are routed
to MDM9 connectors on the front-panel.

Fig. 6. MASCOT EGSE

X. THE USE OF THE EGSE

One of the objectives of the EM boards and EGSE is to

support the MASCOT OBC Flight Software (FSW)
development, done by VEGA. In this context the EM boards
will be integrated in a Software Development and Verification
Facility (SDVF), which will provide the I/O
acquisition/stimuli, enabling FSW closed loop testing with the
OBC Hardware In the Loop (HIL).

The SDVF is based on existing ESA SimSat kernel and
provides a complete real time simulation environment of the
MASCOT subsystems, including the payload SpaceWire links
to the OBC. The FSW uses RODOS as RTOS and is developed
in C++, applying a tailored version of JSF++ standard.

The OBC EM is also used by DLR for functional system
and spacecraft level integration and testing.

The current MASCOT OBC engineering model is based on
the latest GR712RC dual-core LEON3FT technology with
SpaceWire links being used for both internal and external
communication, utilizing the RMAP protocol to its full.

XI. CONCLUSION

The MASCOT development has shown that it is feasible to

develop highly miniaturized spacecraft control systems based
on SpaceWire networks. The SpaceWire network has been
used for both control and for payload data, utilizing pre-
existing building elements such as the GR712RC LEON3-FT
dual core processor and SpaceWire controllers from the
GRLIB IP core library.

The replacement of the SpaceWire controllers with a
SpaceWire router has added additional capabilities to the
spacecraft, enhancing the redundancy concept.

243

SpaceWire-HS Host Adapter – An FPGA based PCI
Express Device for Versatile High-Speed Channels

Poster Session

S. Jörg, M. Nickl, T. Bahls, and S. Strasser
Robotics and Mechatronics Center
German Aerospace Center (DLR)

Oberpfaffenhofen, Germany
stefan.joerg@dlr.de

Abstract—Robotic systems like the DLR Hand Arm System
that feature control cycles beyond 1 kHz demand a deterministic
and low latency communication. Therefore, DLR is working on
high-speed SpaceWire. This paper presents the SpaceWire-HS
host adapter, a FPGA driven PCI Express device for high-speed
SpaceWire. The adapter provides a generic host interface for
QNX real-time hosts, supported by a client C++ library. Two
implementation variants of the adapter’s communication
architecture and host interface are presented. The performance
of both variants in terms of bandwidth and latency is discussed.

Index Terms—host adapter, high-speed SpaceWire, robotics

I. INTRODUCTION

DLR has been using SpaceWire as communication
backbone for several of its lightweight robots. The latest and
most complex system using SpaceWire is the DLR Hand Arm
System, an anthropomorphic arm that comprises of 52 motors
and over 430 sensors. To operate that many actuators and
sensors precisely at high feedback control cycles beyond 1 kHz
requires deterministic system behavior and low communication
latencies. To achieve this, DLR implemented a 1 GBit/s
SpaceWire modification (see [1]). Currently, DLR is working
on a more efficient implementation of high-speed SpaceWire
links capable of providing more than 1 GBit/s bandwidth [2].

The interface of the SpaceWire communication backbone
to the PC-based real-time control hosts is a crucial point of the
communication infrastructure. There the network
implementation meets the non-determinism of a state-of-the-art
workstation and its memory-based peripheral interface, PCI
Express (PCIe).

To benefit from the performance of the high-speed links the
authors have designed the SpaceWire-HS host adapter, a PCIe
interface card that features four physical high-speed links (see
Fig. 1). The SpaceWire-HS host adapter is equipped with a
Xilinx Virtex-5 FPGA that implements the SpaceWire
communication architecture. Thus, the communication
architecture can be easily adapted to application requirements.
Nevertheless, the SpaceWire-HS host adapter is designed as a
general-purpose SpaceWire network endpoint.

Fig. 1. The SpaceWire-HS Host Adapter Board with four copper HS-Links

Instead of increasing the performance by implementing
application-specific algorithms and data structures on the host
adapter FPGA, the focus is on the implementation of general-
purpose packet channels whose performance in terms of
bandwidth and latency can be configured by only a small set of
parameters (e.g. buffer size).

This paper presents the communication architecture of the
SpaceWire-HS adapter including two implementation variants.
The next section introduces the hardware architecture of the
SpaceWire-HS host adapter. Section III and IV present two
variants of host interface implementation, which consists of the
FPGA firmware and a C++ library. Section V presents the
experimental evaluation of both implementation variants.

II. THE SPACEWIRE-HS HOST ADAPTER ARCHITECTURE

The hardware design of the SpaceWire-HS host adapter is
based on the design presented in [3]. Fig. 2 depicts the host
adapter architecture. The PCI Express interface is implemented
with a PLX PEX 8311 ExpressLane Bridge chip (see [5]), a
one-lane master-capable host interface. A Xilinx Virtex-5
(5VLX50) FPGA connects PCIe interface, flash memory,
housekeeping infrastructure and four physical layer interfaces.
Four Texas Instruments TLK1221 IEEE802.3 Gigabit Ethernet
compliant physical layer circuits implement the physical layer

244

interfaces. Character encoding and link layer are implemented
by the firmware on the FPGA. Therefore, the support of the
new SpaceWire-HS high-speed link protocol (see [2]) only
required the adaption of the FPGA firmware.

Fig. 2. The SpaceWire-HS Host Adapter Architecture

The Printed Circuit Board (PCB) format of 68.9x119.0mm
conforms to the PCIe low profile form factor. Thus, it also fits
into small-form factor cases. The board can alternatively be
equipped with up to four fiber and/or copper links. Fig. 1
shows the adapter PCB with four copper HS-Links.

III. THE COMMUNICATION ARCHITECTURE

The communication architecture has two main parts: The
local SpaceWire Routing Switch and the Host Interface (see
Fig. 3). The four physical SpaceWire-HS links are connected to
the local Routing Switch, which is implemented as a standard
SpaceWire wormhole routing switch. All HS-Links are
configured for a fixed bandwidth and start automatically if
connected to a peer.

The FPGA’s configuration flash memory is connected via a
SpaceWire/SPI bridge to the local routing switch. Thus, the
FPGA’s firmware can be programmed via the SpaceWire
network.

For the implementation of clock synchronization, a
configurable TimeCode (TC) master is connected to the local
router. A Spacewire/I2C bridge provides access to the
adapter’s housekeeping infrastructure.

Fig. 3. The communication architecture consists of two main parts: A
Routing Switch and the Host Interface. Two implementation variants of
the Host Interface are discussed (see Fig. 4 and Fig. 5).

Fig. 4. Single-Channel Host Interface Architecture

Fig. 5. Multi-Channel Host Interface Architecture

In the following, two implemented and evaluated variants
of the Host Interface are presented. For both variants, the Host
Interface consists of memory mapped status, configuration
registers (DMA Config Regs in Figs. 4/5), and a number of
DMA Read/Write interfaces. Those interfaces on the FPGA are
connected via a CoreConnect On-Chip-Peripheral Bus (OPB).
An OPB/PEX Local Bus bridge connects the FPGA’s OPB to
the PEX 8311, which implements the bridge to PCIe.

Fig. 6. A bi-directional ring buffer channel connects host software
(read/write) to FPGA firmware (DMA Read/Write) via PCIe. The DMA

Buffer layout is an in-place linked packet list.

The first variant is the Single-Channel Interface (Fig. 4).
This implementation was already used in the SpaceWire-1Gb
of the Hand Arm System [1] and is presented in more detail in
[3]. The Single-Channel has one large ring buffer interface for
each communication direction. Both the DMA Write and DMA
read channel are a 1Mbyte fixed-sized ring buffer. The
resulting implementation creates a bi-directional FIFO-channel
from host software to FPGA firmware as depicted by Fig. 6.

The ring buffer synchronization is implemented as follows:
Host Software and Firmware communicate via the shared

read(BufferList)

DMA
Buffer

Reg_First

Reg_Last

DMA
Buffer

Reg_First

Reg_Last

Reg_First

Reg_Last

Size|EOP|EEP

Size|EOP|EEP

Size|EOP|EEP

Size|EOP|EEP

B
uf

fe
r

DMA Buffer Layout

readwrite

write(BufferList) DMA Write

DMA Read

Host FPGA

Channel

245

REG_FIRST, REG_LAST ring buffer registers (see Fig. 6).
The ring buffer concept governs the concurrent access to these
registers. The firmware is synchronized by simply polling
those ring buffer registers. The host software is synchronized
by interrupt. If enabled by the host software, the firmware
raises a PCIe interrupt if the DMA read ring buffer is no longer
empty or the DMA write ring buffer is no longer full.

Most applications require more than one endpoint at the
host. With only a single channel, the host software needs to
implement packet routing, which is an expensive operation. To
avoid the packet routing on the host, the second variant
provides 32 parallel endpoints to the host software.

Therefore, the Multi-Channel variant (Fig. 5) implements
32 configurable DMA read/write ring buffer interfaces. The
functionality of each channel is the same as for the Single-
Channel implementation. However, the host software
configures the size of each ring buffer. Similar to a routing
switch, the channel lookup table (Channel LUT) implements a
routing table for the mapping of physical/logical ids to one of
the 32 channels. The host software also configures the Channel
LUT. Channel arbitration is implemented as a fair round-robin
scheme.

IV. CLIENT PACKET INTERFACES

The client packet interface implements the host software
SpaceWire end-point interface. It consists of a POSIX I/O
driver and a C++ software library. Both are implemented for
the QNX 6.x real-time operating system. The I/O driver
provides an open/close/read/write POSIX I/O interface for each
of the host adapter’s DMA channels. The driver uses the
efficient message passing implementation of the QNX kernel
to copy the data packets via read/write function calls. Thus,
shared memory between client and driver is avoided.

As depicted by Fig. 6, packets are stored as an in-place
linked list layout in the DMA ring buffer. Each packet in the
ring buffer starts with a 4-byte header that contains a 16-bit
packet size and packet tags, such as EOP, EEP.

The I/O driver read/write interface uses the same data
structure to communicate with its clients. Thus, each call to
read/write is able to transfer more than one packet. This is
supported by the C++ client library class over::pci::BufferList,
which implements the in-place linked list layout of the DMA
ring buffer. Additionally, the C++ client library provides
protocol-specific packet data structures, a routing switch
implementation, end-point classes, a network topology
configurator, and more convenient functionality. Therefore, an
application does not need to use the I/O interface directly.

For example, the packet data structures allow an application
to pre-allocate packets as required at an initialization phase.
Then, during operation, only the payload of the packets in the
pre-allocated data structure has to be updated. Fig. 7
exemplifies how the pre-allocation, update and send is
implemented using the C++ library. Packet reception works
similar. A blocking read on a DMA channel (done in
link.receive()) yields all packets available in the DMA. Fig. 8
exemplifies how to iterate through all received packets and
route them to their destination node (i.e. buffer).

Fig. 7. Example of pre-allocated packets. Only the payload needs to be

updated before sending all pre-allocated packets at once.

Fig. 8. More than one packet can be received with one read(). This example

demonstrates, how to route every packet to its destination by simply
iterating through the received packets.

A different I/O driver implementation is required for the
Single-Channel and Multi-Channel variants since the I/O driver
has to provide an open/close/read/write interface for each of
the host adapters DMA channels. Since both variants use the
same DMA channel layout, the same C++ library is used for
the Single-Channel and Multi-Channel implementation
variants.

V. EXPERIMENTAL RESULTS

The performance in terms of bandwidth and latency of the
two implementation variants Single-Channel and Multi-
Channel has been experimentally evaluated. Therefore, the
following experiments have been conducted for each variant:

1. Roundtrip Latency: Packets are looped via a HS link.
measured: Roundtrip time for each packet
parameters: packet size: 5-1017,
parallel communication: 1-9 channels

2. Receive Bandwidth: External source sends packet to
host. Packet load is increased to find the stable limit.
measured: received packet bytes per second
parameters: packet size: 9-1017,
number of packets per second
parallel communication: 1-4 channels

Both experiments were conducted with a DELL Optiplex
Intel i7-3770 host running QNX 6.5 and a SpaceWire-HS card
with four copper links. Fig. 9 depicts the setup for both
experiments for the Single-Channel (top) and Multi-Channel
(bottom) variant. The main difference in the test setup is the
additional client library router required for the Single-Channel.

// create packet buffer list
over::pci::BufferListInstance<> rx_pkts(10xspacewire::MAX_PACKET_SIZE);
…
link.receive(rx_pkts); // blocks until at least one packet arrives
for (over::pci::BufferList<>::iterator p = rx_pkts.begin(); p != rx_pkts.end(); ++p)
 { // route all received packets
 network::Packet<BufferReference<> > recv(*p);
 Node& node = router_table->find(recv.address()[0]);
 node.push(recv);
 }

// create packet buffer list
over::pci::BufferListInstance<> tx_pkts(10xspacewire::MAX_PACKET_SIZE);
…
network::Packet packet(25,2); // 25 payload and 2 address bytes
packet.address()[0] = 42;
packet.address()[1] = 2;
tx_pkts.push_back(packet); // add packet to send buffer
…
tx_pkts.push_back(packet2); // add another packet to send buffer
…
// update payload of every packet to be send
for (over::pci::BufferList<>::iterator p= tx_pkts.begin(); p!= tx_pkts.end(); ++p)
 std::memcpy((*p).payload.data(),src.data(),(*p).payload.size());
link.send(tx_pkts); // deliver all packets with one write() to driver

246

Fig. 9. The Experiment Setup for the Single-Channel (top) and Multi-

Channel (bottom) variant

1) Roundtrip Latency
The test software consists of a packet source, a packet

receiver for each channel, and a time measurement. The packet
source sends a packet to 1-9 receivers, looped through a HS-
link cable. The total time was measured it took to send all
packets until the reception of all sent packets. Depending on
the number of channels, 1-9 packets were send/received in one
cycle. Each measurement was conducted for 30 seconds, which
means 200.000-300.000 cycles.

Fig. 10. Multi-Channel – Single Channel Roundtrip latency over Packet Size

Fig. 10 depicts the difference between the measured
latencies LMulti-Channel-LSingle-Channel for 1-9 used channels over
rising packet size. The steps that appear in the graph at 128
byte intervals are directly related to the PEX8311’s 128 byte
maximum payload size of a Transaction Layer Packet (TLP)
(see [4]). For packets>237 bytes, the Multi-Channel is always
faster, even if only one channel is used. This is because no
software router is required. For packets of 113–237 bytes both
implementations yield nearly the same latency. For
packets<113 bytes the Single-Channel is slightly faster (~2us).

2) Receive Bandwidth
The second experiment uses an external packet source that

sends packets of varying size at deterministic intervals to up to
four destinations. For each packet size, the time interval
between each packet was reduced until the stability limit of the
host was reached. Fig. 11 depicts the measured maximum
stable bandwidth over increasing packet size. The achieved
bandwidth saturates at 57.7x10 bytes/s for the Single-Channel

and at 61.0x106 bytes/s for the Multi-Channel. Both variants
come close to the maximum input bandwidth, which is
determined by the internal FPGA SpaceWire link rate of
62.5x106 bytes/s. Due to higher routing and DMA data
handling effort small packets achieve only a lower bandwidth.

Since the Multi-Channel variant does not require packet
routing by the host software, it saturates at a higher bandwidth
and reaches that bandwidth for smaller packets.

Fig. 11. Bandwith over packet size: Multi-Channel achieves higher bandwith

VI. CONCLUSIONS

The demand for a deterministic communication backbone
with low latency motivated DLR’s work on high-speed
SpaceWire. For robotic applications, a deterministic host
interface is an essential component of a high-speed SpaceWire
network. Starting from the already available Single-Channel
implementation, the goal has been to get a more flexible and
efficient host interface, which features multiple endpoints. The
challenge has been to achieve a deterministic and efficient
behaviour despite the higher complexity of the Multi-Channel
implementation. The results show, that not only the Multi-
Channel implementation is deterministic but also matches the
Single-Channel in performance.

Future work will be to add Quality-Of-Service parameters
to the Multi-Channel implementation such as channel priority
or guaranteed channel bandwidth. Furthermore, we intend to
evaluate how the SpaceWire-HS host adapter with its four
physical links can be used as a building block for very complex
networks such as multi-robot systems.

REFERENCES

[1] M. Nickl and S. Jörg, T. Bahls A. Nothhelfer, S. Strasser,
“SpaceWire, A Backbone For Humanoid Robotic Systems”, Int.
SpaceWire Conference, San Antonio, 2011

[2] M. Nickl, S. Jörg, T. Bahls and B. Cook, “Towards High-Speed
SpaceWire Links”, Int. SpaceWire Conference, Gothenburg,
2013

[3] T. Bahls, “Entwicklung einer latenz- und
bandbreitenoptimierten Bridge zur transparenten Anbindung von
FPGAs an Standard-CPUs”, Master Thesis (in German)

[4] R. Budruk, D. Anderson, T. Shanley, „PCI Express System
Architecture“, MindShare, Inc., Addison Wesley, 2004

[5] “ExpressLane PEX 8311 PCI Express-to Generic Local Bus
Bridge Data Book”, PLX Technology, www.plxtech.com, 2009

SpaceWire-HS Link Cable

Single-Channel (Design under Test) [only 2]

.

.

.

Send

Recv 1

Recv 9

Client Library
Router

SpaceWire-
HS

Host Adapter
I/O Driver

Multi-Channel (Design under Test)Test Application [1 & 2]

.

.

.

Send

Recv 1

Recv 9

SpaceWire-
HS

Host Adapter
I/O Driver

.

.

.

Send

SpaceWire-HS Link Cable

Send

[only 2]

247

http://www.plxtech.com/

SpaceWire Standard Revision
SpaceWire Networks and Protocols session, Poster Paper

David Jameux
On-Board Data Systems (TEC-ED)

ESA/ESTEC
Noordwijk, Netherlands
david.jameux@esa.int

Antonis Tavoularis
Systems Engineering Group

Teletel SA
Athens, Greece

a.tavoularis@teletel.eu

Abstract— In this paper, we recall the need for a revision of the
current SpaceWire standard as well as the improvements
foreseen to be developed, breadboarded and documented in
ECSS standardisation format through the ESA/TRP activity
“SpaceWire Evolutions”. We inform about the final
achievements of the project team. Finally, we propose solutions
for the revised standard and provide justification for the minor
improvements to be endorsed by the ECSS Working Group in
charge of the standard revision.

Index Terms— SpaceWire standard revision.

I. INTRODUCTION

Through several years of standardisation and technology
development activities, ESA has prepared the SpaceWire
technology communication protocol that allows embarking
high speed data networks on board spacecraft. This new
technology has become widely adopted not only by ESA
missions but also by other agencies and industries. However,
some evolutions of the SpaceWire standard have been
proposed by the SpaceWire Working Group.

The working group identified shortcomings of the current
protocol for the support of SpaceWire device/network
discovery and configuration capabilities. The technical
investigations on these issues also rose the awareness that the
behaviour of “nodes” have to be clarified as well as their
definition in the current standard, because this definition is not
in line with international telecommunications core definitions
of network items, and is in fact ambiguous. While the
introduction of SpaceWire operating in half-duplex or simplex
mode over wire-limited harness was discarded after thorough
assessment of added value versus standardisation effort,
sideband signalling for interrupt distribution will be added to
the standard.

These limited evolutions to SpaceWire standard have been
assessed, refined, and prototyped in the frame of the ESA/TRP
“SpaceWire Evolutions” from May 2011 till December 2012.

II. THE “SPACEWIRE EVOLUTIONS” ESA/TRP STUDY

Within the SpW Evolutions project three evolutions,
proposed during the SpW WG meetings, were addressed:

• Clarification of the node definition which is ambiguous
in the existing specification

• Specification of an interrupts distribution mechanism
• Low mass SpaceWire through simplex and half-duplex

SpaceWire

A. Terminology
Regarding SpaceWire node definition, the existing

specification becomes ambiguous with the emergence of
SpaceWire device/network discovery and configuration which
constitutes link-configurable switches as sources or
destinations of (configuration) packets. In addition, the current
standard does not allow the design of SpaceWire-based
System-on-Chip components implementing links using the
SpaceWire level stack down to the Character Level only, since
not conforming to the electrical and physical levels of the
specification currently leads to a breach of compliance. Taking
SpaceWire device/network discovery and configuration and
complex devices as example cases, the study team performed a
conceptual redesign of the SpaceWire standard a) proposing a
clear distinction between the physical and functional networks
with a layer structure similar to the OSI stack, allowing easier
analysis and modelling of SpaceWire devices and traffic, b)
allowing for devices under development and existing devices
to be “SpaceWire compliant” (e.g. SpW10X FIFO ports) and c)
proposing the use of new terms which remove the ambiguities
of the existing standard and clearly specify the entities on
which higher layer protocols will be based by providing the
terms/resources for identification, configuration and device
status acquisition.

B. Low latency signalling, Distributed Interrupts
The study team also analysed technical solutions for low-

latency signalling of events in SpaceWire networks, from their
functional, performance and operation-under-failure points of
view, taking into account that the solution shall be
interoperable with existing SpaceWire equipment, having as a
basis a proposal by the St Petersburg University of Aerospace
Instrumentation (SUAI) [24]. Within the frame of the project,
the consortium collected requirements for signalling
distribution from ESA and from the space industry,
investigated proposed solutions and cross-checked them
against the collected requirements and performed trade-off
analyses for all of them. The project concluded with the
definition of a solution based on the SUAI proposal,

248

complemented with recommendations that a) make the solution
more robust under the presence of failures, b) provide two
options, with and without acknowledgement, in order to
provide for flexibility on the use of the proposed mechanism,
c) provide interoperability with existing equipment thus
making the existence of legacy and new devices in the network
possible. The proposed mechanism was described according to
ECSS standardisation guidelines and was validated through
two independent developments, including validation scenarios
that proved issues related to the performance and operation
under failure of the mechanism that should be described either
as informative parts of the next SpaceWire specification or as
sections in the SpaceWire handbook.

C. Simplex and Half-Duplex SpaceWire
For low mass SpaceWire the consortium performed work

on two proposals, Simplex SpaceWire and Half-Duplex
SpaceWire, both of which have been presented during the SpW
Working Group meetings by SUAI [9][13] and 4Links Ltd
[12][14][17].

Early in the project the study team revealed a number of
issues in the Simplex SpaceWire proposal which make it
unsafe for use in on-board networks. The issues were solved by
the proposal of an updated specification, making Simplex
SpaceWire robust under the presence of failures. The updated
proposal was specified following the ECSS standardisation
guidelines and validation scenarios for the functional,
performance and operation under failures were defined.

The work for Half-Duplex SpaceWire included the review
of the existing technical proposal which proved to have
weaknesses from the robustness point of view under
improbable, but theoretically possible, failures. For example, in
the original proposal, the end of the link that was detecting an
error (e.g. parity) was immediately returning to the ErrorReset
state without waiting the other end to cease transmission; under
rare cases this could result to link degradation with one end of
the link possessing only one FCT instead of 7. An updated
mechanism was proposed solving functional and robustness
issues. The work continued with the evaluation of Half-Duplex
SpaceWire from the performance point of view, including
trade-off analyses of various parameters, in which it became
apparent that Half-Duplex SpaceWire is a candidate for
connection of devices at the periphery of SpaceWire networks
only, due to its excessive worst-case latency for signalling
characters. The proposed mechanism was specified following
the ECSS guidelines and validation scenarios for the
functional, performance and interoperability with existing
devices and the rest of the SpW Evolutions were defined. The
work concluded with the Half-Duplex SpaceWire modelling in
VHDL, based on the UoD SpW Core, which is extensively
used by ESA. This modelling proved that implementation of
Half Duplex on mainstream IP Cores which follow the
SpaceWire concept of recovering the remote end’s
transmission clock by XORing the Data and Strobe signals
results in poor performance; and that, in order to support Half-
Duplex, SpaceWire extensive modifications are required which
make it an expensive solution in terms of gate count and power
consumption.

III. CLARIFICATION OF THE SPW INTERNAL PROTOCOL STACK

A. Clarification of the protocol levels
1) Merging levels: Like any communication protocol

specifying a solution down to the communication media,
SpaceWire is organised in layers. For SpaceWire, these layers
are called “levels” and the clauses that specify the protocol are
gathered into sections according to the “level” that they
describe. Unfortunately, in ECSS-E-ST-50-12C, some levels
define only part of what should be a consistent protocol layer
(syntax, synchronisation, and behaviour). For example, the
Packet Level specifies the syntax (the packet structure) while
the Network Level specifies the behaviour (“packet routing”).
We therefore propose to merge these two levels in a single
“SpW Network Level”. Similarly, the ECSS-E-ST-50-12C
Character Level specifies the characters to be used at link
layer while the Exchange Level specifies the rules for
synchronisation between these characters (finite state
machine). We also propose to merge these two levels into a
single “SpW Link Level”.

2) Clarification of ambiguous clauses: These merges allow
as well easy positioning in the standard specification of
clauses that were not placed correctly in ECSS-E-ST-50-12C
because it was difficult to assess where they belonged. It even
allows removing partial duplication of specification that is one
of the causes of ambiguity of ECSS-E-ST-50-12C.

3) Introduction of Service Access Points: The new division
of clauses into clearer levels allows introducing fully defined
Service Access Points for each of these levels. While this is
not necessary for component designers to implement a
complete SpaceWire stack nor for the SpaceWire users, it
allows diversification of the lower protocol levels, as detailed
in section III.C.

The proposed revised internal stack is shown in Figure 1.

Fig. 1. ECSS-E-ST-50-12C stack versus ECSS-E-ST-50-12C Rev.1 stack

249

B. Clarification of the objects exchanged between protocol
levels
As part of the Service Access Points, the new division of

clauses into clearer levels allows clear specification of the
objects exchanged between levels.

1) Objects exchanged between the SpW user and SpaceWire
(i.e. the SpW Network Level): In ECSS-E-ST-50-12C, these
are mainly packets, with some ambiguity whether time-codes
are also exposed from the Network Level or directly from the
Exchange Level. For ECSS-E-ST-50-12C Rev.1, we propose
that a Packet Service and a Time-code Service are clearly
exposed, with the addition of a Distributed Interrupt Service.

a) Packet Service: 8-bit Data Characters are exchanged
between the SpW user and SpaceWire. The order in their
sequence will determine the packet structure when these Data
Characters reach a switch or an end-point.

b) Time-code Service: 6-bit Time-codes are exchanged
between the SpW user and SpaceWire. For transmission and
broadcasting, they are interleaved with Data Characters as in
ECSS-E-ST-50-12C.

c) Distributed Interrupt Service: 5-bit Distributed
Interrupts or Distributed Interrupt Acknowledgements are
exchanged between the SpW user and SpaceWire. For
transmission and broadcasting, they are interleaved with Data
Characters as in ECSS-E-ST-50-12C.

2) Objects exchanged between the SpW Network Level and
the SpW Link Level: In ECSS-E-ST-50-12C, these are not
clearly defined. For ECSS-E-ST-50-12C Rev.1, we propose
that they are the same objects than the ones exchanged
between the SpW user and SpaceWire since the SpW Network
Level only manipulates these objects (switching, interleaving,
spilling, etc) but does not modify them.

3) Objects exchanged between the SpW Link Level and the
SpW Signal Level: In ECSS-E-ST-50-12C, these are not
clearly defined. For ECSS-E-ST-50-12C Rev.1, we propose
that they are the objects exchanged between the SpW Network
Level and the SpW Link Level coded as symbols (parity bit
and control bit added for Data Characters, plus addition of an
ESC symbol prefix for Time-codes and Distributed
Interrupts/Acknowledgements) as well as the control
characters necessary for the link finite state machine coded as
symbols (parity bit and control bit added).

4) Objects exchanged between the SpW Signal Level and
the SpW Physical Level: In ECSS-E-ST-50-12C, these are not
clearly defined. For ECSS-E-ST-50-12C Rev.1, we propose
that the SpW Signal Level be clearly divided into (from top to
bottom) a Serialisation/Deserialisation sublevel, a Data-Strobe
coding sublevel, and an LVDS signalling sublevel. The
objects exchanged between the SpW Signal Level and the
SpW Physical Level are then obviously four wave forms per
bit.

The resulting internal protocol stack in shown in Figure 2.

Fig. 2. Layering of the ECSS-E-ST-50-12C Rev.1 internal protocol stack

C. Diversification of the lower protocol levels
The definition of clear Service Access Points for each level

of the SpaceWire internal protocol stack allows replacing part
of this stack with alternative solutions for the lower protocol
levels that provide different properties at link level, signal
level, or for the physical media. This flexibility is illustrated in
Figure 3.

Fig. 3. Flexibility in the ECSS-E-ST-50-12C Rev.1 internal protocol stack

Of course, implementation of these Service Access Points
must not be mandatory (this must be clearly expressed in
ECSS-E-ST-50-12C Rev.1) since implementing interfaces
between levels is not necessary (and most of the time sub-
optimal) in a given implementation of the SpaceWire protocol
stack. Existing devices or IP cores that do not implement these
interfaces are therefore still compliant with ECSS-E-ST-50-
12C Rev.1. But the newly introduced modularity allows
implementing building blocks (e.g. IP cores) for the different
parts of the SpaceWire internal protocol stack and assemble
them into different complete stacks, as illustrated in Figure 4.

250

Fig. 4. Modularity of the ECSS-E-ST-50-12C Rev.1 internal protocol stack

This modularity allows benefitting from the recent
technology developments such as the GigaSpaceWire
(galvanic-isolated gigabit per second SpaceWire) proposed by
SUAI [5][6] or the Virtual Channel SpaceWire proposed by
4Links Ltd [8][10] and will allow smooth integration of the
SpaceFibre technology into SpaceWire networks, as illustrated
in Figure 5.

Fig. 5. Diversity of link, signal and physical solutions for SpaceWire links

D. Terminology – clarification of concepts for SpaceWire
The SpaceWire community identified a number of

ambiguities in the current SpaceWire specification (ECSS-E-
ST-50-12C) that are mostly due to inconsistency in the
definition and usage of a few terms. One of the
recommendations was to align the terms used for SpaceWire
with international telecommunications core definitions of
network items and concepts.

1) “Router” vs “switch”: In ECSS-E-ST-50-12C, the
elements that allow not only point-to-point communication but

also SpaceWire networks are called “routers”. This is
confusing because “routing”, i.e. “building a route” is only
happening in the source node, when address data characters
are assembled in sequence to form the address of a SpW
packet (see Figure 6). This is true both for path address
building and when the address contains Logical Addresses
which are in fact “short-cuts”, i.e. labels for path address
sequences.

Fig. 6. “Routing”, i.e. “route building” in a SpW source node

What happens next in a “router” as illustrated in Figure 7 is
not “routing” but “switching”: the first data character of a
packet configures the switch for the duration/length of the
packet (this configuration is done according to the value of this
header byte, be it a Path Address or a Logical Address) and the
following data characters are switched to the same output port
until the end-of-packet marker included.

Fig. 7. Wormhole Switching in a SpW “switch”

It is therefore proposed that, in ECSS-E-ST-50-12C Rev.1, the
network elements that do Wormhole Switching are called
“switches”.

2) End-points, nodes, and units: In ECSS-E-ST-50-12C,
“nodes” are defined as “source and destination of packets”. A
“node” would therefore be the application driving one or more
SpW protocol stacks (also called “higher layer” because this
application can be an “applicative” engine, either software or
hardware, but also a “higher” protocol sitting in between the
“application” and the SpW protocol stack). However, it is also
stated in ECSS-E-ST-50-12C that “nodes” are “SpW
interfaces”, which is not consistent with their definition. This
clearly shows the necessity to introduce a new term to
describe the equivalent of “SpW interface” (which is defined
only for the SpW Link Level and downwards) at the level of

251

the SpaceWire Service Access Points (i.e. at SpW Network
Level). The proposed term for ECSS-E-ST-50-12C Rev.1 is
“end-point”, a node containing a “higher layer” driving one or
more end-points. This allows keeping the ECSS-E-ST-50-12C
definition for “nodes”: they are source and destination of SpW
packets; and they include one or more end-points. the
definition of unit can also remain, though somewhat clarified:
box, board or subsystem, containing one or more nodes and
zero or more switches that may be interconnected through a
subnetwork, and that exposes one or more end-points.

End-points, nodes, and units are illustrated in Figures 8 and
9.

Fig. 8. End-point, node, and switch

Fig. 9. End-points, nodes, and units

3) Graph representation: Besides consistency and
improved clarity of SpaceWire concepts, the main benefit of
the introduction of “end-points”, as well as of the clarification
of the definitions of “nodes” and “units” as objects beyond the
scope of SpaceWire per say, is the possibility to represent any
set of units connected into a SpaceWire network as a graph
containing only leaves (end-points), vertices (switches) and
links (see Figure 10). This opens the door to the application to
SpaceWire networks of a considerable amount of theoretical
results and tools coming from the Graph Theory community,
which will ease significantly tackling the main challenge that
users of SpaceWire networks are facing, i.e. traffic analysis.

Fig. 10. Any SpaceWire network can be represented as a graph

Additionally, this allows representing any SpaceWire
network as an XML formatted text file, as JAXA/ISAS already
attempted for their ASTRO-H mission [7].

E. Terminology – clarification of concepts at SpW Link Level
A few ambiguities had to be corrected also in the Character

Level of ECSS-E-ST-50-12C, one of them being the status of
Time-codes. These control codes are sometimes presented as
Link Characters (L-Char) because they are not flow-controlled;
but the time-code value is presented to the SpaceWire user
interface, which make them Normal Characters (N-Char). As
shown in Figure 11, we therefore propose to introduce a third
class of characters for Signalling codes (Time-codes and
Distributed Interrupts), which are exposed to the SpW user
interface but are not flow-controlled: Signalling Characters (S-
Char).

Fig. 11. Properties of all characters and codes for the SpW Link Level

F. Terminology – consistent set of definitions for all levels
In order to ensure the consistency between definitions that

is lacking in ECSS-E-ST-50-12C, some effort was put into
representing the relationship between SpaceWire terms
unambiguously using the UML formalism. This effort is still
on-going but Figure 12 shows some example of relationships
between the notions of “port”, “end-point”, “switch”, “node”,
“unit”, “link-configurable switch”, etc. as explained in section
III.D; and Figure 13 shows that the effort is targeted to a
representation of terms along a matrix structure covering the
whole set of SpW internal protocol levels, both in terms of
protocol objects and of implementation objects.

252

Fig. 12. Detail of UML model showing relationships between terms

Fig. 13. Matrix structure of SpW term UML representation

IV. CLARIFICATION OF THE SUPPORT TO SPW-BASED

PROTOCOLS

One of the major needs for clarification of the SpaceWire
concepts and terms is the impossibility to design a proper

management system (protocol + service) for SpaceWire due to
the ambiguities in ECSS-E-ST-50-12C.

A. Support to SpW-based Protocols
In particular, the possibility for a higher layer to receive

packets with zero as first character and to distinguish these
packets (management packets) from the others (“application”
packets) needs to be clarified in ECSS-E-ST-50-12C Rev.1.
We propose to address this issue by clarifying the optional
status of clause 10.5.4.3.a: “If a packet arrives at a node with
an unexpected destination address then that packet shall be
discarded.” and introduce the possibility to either reject or pass
to the higher layer a packet based on the value of its header
character that can be any from 0 to 255; and to have the option
of having this first character deleted before being passed to the
higher layer.

Fig. 14. Packet filtering on Header allows supporting “application” and

“management” packets

As illustrated in Figure 14, this feature would allow, when
two packets arrive at an end-point, one starting with e.g. data
character 51, and the other one with data character 0, to support

• “raw” SpaceWire mode: both packets are passed to the
higher layer because the header data character is just
the first byte of the SpW cargo

• PID-based “application” protocol (in this example
being configured as Destination Address 51): only the
packet with expected Destination Address 51 is passed
to the higher layer

• management protocol: only the packet with expected
leading zero is passed to the higher layer with the zero
deleted so that the higher layer can be a standard PID-
based protocol (but running in the management space
of the node, not its application space).

B. Identification of management parameters
Another area where clarification of the SpaceWire

specification (ECSS-E-ST-50-12C Rev.1) and consolidation of
the support to management protocols go hand-in-hand is the
identification of management parameters. Some parameters
such as “link speed” address clearly lower SpW internal
protocols levels (in this case the SpW Signal Level) and have
therefore little impact on the clarification of SpaceWire
concepts. We still propose for ECSS-E-ST-50-12C Rev.1 to

253

clearly identify them as management parameters for the sake of
defining management protocols later on. This is also the case
of the switching matrix which is a management parameter of a
SpW switch (link-configurable or not).

Other features like the ON/OFF state of a link do not
appear clearly as management parameters but they are: whether
a link is ON/enabled or OFF/disabled at SpW Network level
obviously has an impact on the system (a packet to be switched
through this link will be spilled) but the SpaceWire user
(“higher layer”) has no control on the status of this link. It is
also clear from the discussions of the ECSS Working Group on
the revision of ECSS-E-ST-50-12C that, at least for the sake of
backwards compatibility of new features like the Distributed
Interrupts, it must be possible to enable an output port for data
Packets but not for Time-codes, or for Packets and Time-codes
but not for Distributed Interrupts, etc. This shows not only that
a SpaceWire output port is in fact a set of four output ports
(one for Data Characters, one for Time-codes, one for
Distributed Interrupts, and one for Distributed Interrupt
Acknowledgements), but also that these character-specific
output ports can be enabled one by one. They are therefore
management parameters and identifying them clearly as such
will allow clarification of the description of the behaviour of
the SpW Network Level in ECSS-E-ST-50-12C Rev.1.

The effort of identification of management parameters for
each level of the internal SpaceWire protocol stack is on-going.
Therefore the complete list to be specified in ECSS-E-ST-50-
12C Rev.1 cannot be presented here.

C. “Application protocols” and management protocols
Once we have
• a list of management parameters for each level of the

internal SpaceWire protocol stack
• a clear description of any SpaceWire network as a

graph linking end-points and switches
• a clear description of a node as hosting a higher layer

and one or more end-points
• the possibility to filter packets at SpW Network Level

according to the value of the leading byte (with
possibility to delete this byte, e.g. if it is zero)

we can clarify the last ambiguity in the concept of “node”
that was introduced when the possibility to configure nodes
and switches was presented and that ECSS-E-ST-50-12C
cannot help clarifying (see section II.A). This ambiguity can be
expressed in the two following questions:

a) If only a node can host the configuration space, does a
configurable switch contain a node?

b) If only a node can host the configuration space of a
switch, is it the same with the configuration space of a node,
and does a node contain a node?

Given all what we have presented in this paper, the answer
to the first question is “Yes and No”: The first clarification is
that a switch as such can be configurable but no necessarily
through one of its SpW ports. This the case if it contains no
node which is the only “source and destination of packets”. So
“No”, switches per-say do not contain nodes. However, a
“link-manageable switching unit” will have to include a switch

as well as a node connected to one of its ports (e.g. port 0, for
the sake of standardisation) that will receive and send the
management packets.

For the same reasons, the answer to the second question is
clearly “No”: Thanks to the segregation between “application”
packets and management packets based on the value of the
leading byte being zero or not, a node can host in its higher
layer an “application” space and a management space. In the
case of a link-manageable node, the management space of this
node manages the node itself, i.e. the SpW protocol stack
running on each of its end-points. This is illustrated in Figure
15. In the case of a link-manageable switching unit, the
“application” space of the “management node” (the node
receiving and sending switch management packets) is in charge
of managing (e.g. configuring) the switch (e.g. the switching
matrix, but also the SpW protocol stack running on each of the
ports of the switch). This is illustrated in Figure 16.

Fig. 15. “Application” space and management space in a node (right node)

Fig. 16. Link-manageable switching unit: “Application” space of a node

managing a switch

V. CONCLUSION

Through thorough analysis of the SpaceWire protocol
stack, both in the perspective of the diversification of the lower
protocol levels and in the perspective of the support to
management protocols and services, a lot of progress has been
achieved in the understanding of the SpaceWire concepts and
terms and the way this communication protocol should be more
clearly specified. The areas of ambiguity and unknown as

254

shown in Figure 17 are now much clearer, as shown in Figure
18.

Part of the clarifications proposed in this paper still need to
be detailed; and the Signal and Physical still need to be
addressed. But the re-writing of the SpaceWire specification in
to a much clearer ECSS-E-ST-50-12C Rev.1 is on the right
track, including smooth introduction of new (but backwards
compatible) features such as sideband signalling for interrupt
distribution.

Once ECSS-E-ST-50-12C Rev.1 is ready, standardisation
of additional SpaceWire-based protocols (SpW-D for time
determinism, time synchronisation protocol, network discovery
and management protocol, etc.) will be a fairly process because
these protocols will be supported by a clear and consistent set
of concepts.

Fig. 17. Map of the SpaceWire world according to ECSS-E-ST-50-12C,

ECSS-E-ST-50-51C, ECSS-E-ST-50-52C, and ECSS-E-ST-53-12C

Fig. 18. Possible map of the SpaceWire world based on ECSS-E-ST-50-12C

Rev.1

ACKNOWLEDGEMENT

We would like to thank Peter Mendham for his significant
contribution to the clarifications proposed in this paper, as part
of his work on SpaceWire network management protocols and
services.

Most of the clarifications proposed in this paper have been
discussed extensively and refined within the frame of the ECSS
Working Group on the revision of ECSS-E-ST-50-12C
(Ahmed Bouabdallah, Stephen Bury, Barry Cook, Brice

Dellandrea, Sandi Habinc, Torbjörn Hult, Marko Isomaki,
Stefan Jörg, Jérôme Lachaize, Mathias Nickl, Olivier
Notebaert, Steve Parkes, Roger Peel, Paul Rastetter). Some of
these clarifications were even born in that context and we
would like to thank all the members of this working group for
their fruitful contributions.

REFERENCES

[1] ECSS-E-ST-50-12C, "SpaceWire - Links, nodes, routers", 31
July 2008

[2] ECSS-E-ST-50-51C, "SpaceWire protocol identification", 5
February 2010

[3] ECSS-E-ST-50-52C, "SpaceWire - Remote memory access
protocol", 5 February 2010

[4] ECSS-E-ST-50-53C, "SpaceWire - CCSDS packet transfer
protocol", 5 February 2010

[5] Evgeny Yablokov, "GigaSpaceWire – Gigabit Links for
SpaceWire Networks", International SpaceWire Conference,
Gothenburg, June 2013

[6] Yuriy Sheynin, "DC-balanced SpaceWire links with galvanic
isolation, longer distances and gigabit rates, Yuriy Sheynin,
SUAI", 19th SpaceWire Working Group, ESTEC, April 2013

[7] Takayuki Yuasa, "Design guideline and software tools for
deterministic SpaceWire network using SpaceWire-D", 19th
SpaceWire Working Group, ESTEC, April 2013

[8] Barry Cook, "Low Latency Packet Delivery in SpaceWire
Networks", International SpaceWire Conference, San Antonio,
November 2011

[9] Yuriy Sheynin, "Next release of the SpaceWire standard - some
requests for change", 14th SpaceWire Working Group, ESTEC,
February 2010

[10] 4Links Ltd, White paper on Virtual SpaceWire Networks,
September 2009

[11] Peter Mendham, SpaceWire-PnP Protocol Definition, Draft A
Issue 2.1, 16th September 2009

[12] Barry Cook, "Half Duplex SpW", 13th SpaceWire Working
Group, ESTEC, September 2009

[13] Yuriy Sheynin, "SpaceWire evolution", 10th SpaceWire
Working Group, ESTEC, February 2009

[14] Barry Cook, "Half-Duplex SpaceWire", 10th SpaceWire
Working Group, ESTEC, February 2009

[15] Prof. Yuriy Sheynin, "Distributed Interrupts in SpaceWire
Interconnections", International SpaceWire Conference, Nara,
November 2008

[16] Liudmila Onishchenko, Artur Eganyan, Irina Lavrovskaya,
"Distributed Interrupts Mechanism Verification and
Investigation by Modeling on SDL and SystemC", International
SpaceWire Conference, Nara, November 2008

[17] Barry Cook, Paul Walker, "Half-duplex SpaceWire: Reducing
harness mass while retaining full compatibility with
SpaceWire's modularity, configurability and adaptability", IAC-
08, September 2008

[18] David Jameux, "SpaceWire for Command & Control", 10th
SpaceWire Working Group, ESTEC, February 2008

[19] David Jameux, Albert Florit Ferrer, "Towards the definition of
Quality of Service classes for SpaceWire-based message
passing", October 2007

255

[20] Eugenue Yablokov, "Simplex Mode in SpW Technology",
International SpaceWire Conference, Dundee, September 2007

[21] ESA & NASA, "ESA and NASA requirements on SpaceWire
PnP", March 2007,

[22] Barry Cook, Paul Walker, "PnP aspects, 4Links contribution",
8th SpaceWire Working Group, ESTEC, January 2007

[23] Albert Ferrer Florit, "PnP aspects, ESA contribution", 8th
SpaceWire Working Group, ESTEC, January 2007

[24] Prof. Yuriy Sheynin, "Distributed Interrupts in SpaceWire
Networks", December 2006

[25] Steve Parkes, "The Operation and Uses of the SpaceWire Time-
Code", International SpaceWire Seminar, ESTEC, 2003

256

Developing SpaceWire Devices with STAR-Dundee

Test and Development Equipment
Poster Paper

Stuart Mills, Alex Mason, Chris McClements, David

Paterson, Iain Martin

STAR-Dundee Ltd.

Dundee, Scotland, UK

stuart.mills@star-dundee.com, alex.mason@star-

dundee.com, chris.mcclements@star-dundee.com,

david.paterson@star-dundee.com, iain.martin@star-

dundee.com

Steve Parkes

School of Computing

University of Dundee

Dundee, Scotland, UK

sparkes@computing.dundee.ac.uk

Abstract—STAR-Dundee has recently released a new range of

interface and router devices to support SpaceWire-related test

and development. Each of these devices is provided with a

comprehensive software suite, which further simplifies the test

and development stages. This paper explores the many benefits

of using these devices to develop a new SpaceWire device,

protocol or application. Typical scenarios in each stage of

development are considered, and information on how the

software and devices can be used in these situations is provided.

Index Terms—SpaceWire, Networking, STAR-Dundee,

Spacecraft Test and Development Equipment, STAR-System,

USB, PCI, cPCI, PCIe, Brick Mk2, Router Mk2S, EGSE, Link

Analyser Mk2, Conformance Tester, SpaceWire Physical Layer

Tester.

I. INTRODUCTION

STAR-Dundee has recently introduced a number of new

products to the SpaceWire test and development market,

including a range of router and interface devices supported by a

comprehensive software suite.

This paper introduces the various products available from

STAR-Dundee to assist in test and development of SpaceWire

devices, protocols and applications, concentrating primarily on

the products recently added to the range. The paper’s aim is to

demonstrate how these products can be used at each stage of

development not only to make that stage easier to complete,

but also with better results than previously possible.

II. LEARNING TO USE SPACEWIRE

For over eight years, STAR-Dundee’s SpaceWire-USB

Brick has been many people’s first introduction to SpaceWire.

The device provides two SpaceWire ports and a connection to

a PC via a USB cable, with power to the device provided by

USB.

The Brick has now been replaced by a new device, the

SpaceWire-USB Brick Mk2 [1], shown in Figure 1, which has

all the functionality of the original, plus a lot more. The Brick

Mk2 is supplied with STAR-System, STAR-Dundee’s

software suite which includes drivers, APIs, documentation,

test and example programs and powerful graphical

applications.

Using the Brick Mk2 is very easy, which makes it an ideal

device when getting started with SpaceWire. To get up and

running, install the STAR-System software on a Windows or

Linux PC and connect a USB cable between the PC and the

Brick Mk2. The STAR-System applications are available from

the Start menu or equivalent in Linux.

As a first stage of transmitting and receiving packets over

SpaceWire, a SpaceWire Lab Cable (also available from

STAR-Dundee) can be connected between the two SpaceWire

ports in a loopback configuration. The STAR-System

Transmit application shown on the left in Figure 2 can then be

used to transmit packets. The packets are typed in to the text

box, the end of packet marker type selected, and the Transmit

Packet button pressed to transmit the packet.

The STAR-System Receive application, shown on the right

in Figure 2, can be used to receive the packets transmitted.

Clicking the Receive Packets button will result in the contents

of all received packets being displayed, along with each

packet’s end of packet marker. The base used when entering

and displaying packets can be specified, and in this example

the packets were entered in hexadecimal and the received

packets are displayed in binary.

Figure 1 SpaceWire-USB Brick Mk2

257

III. INTERFACING AND ROUTING

The Brick Mk2 device is an interface device, and can be

used (along with STAR-Dundee’s other interface devices) to

transmit packets over a SpaceWire network, and receive

packets from the network. This functionality can be used

during device development for a number of purposes:

transmitting commands to the device, receiving data from the

device, etc.

In addition to the basic STAR-System Transmit and

Receive applications, more powerful applications are also

provided. The STAR-System Source application allows

complex packet formats to be constructed and transmitted at

high speeds, with transmit statistics displayed. The STAR-

System Sink application shown in Figure 4 can receive packets

at high speeds, and can optionally write these received packets

to file. The received packets can be checked for errors, using

the same packet formatting information as is used in the Source

application. Statistics are available, including the number of

errors in the received packets being checked. In the figure, the

application is indefinitely receiving a previously defined packet

format (named “10000 Byte Packet”) and checking the

received packets for correctness. The statistics indicate that no

error has been detected so far, and that data is being received at

approximately 17 Mbytes/s.

The other STAR-Dundee interface devices are the

SpaceWire PCI Mk2 [2], the SpaceWire cPCI Mk2 [3] and the

SpaceWire PCIe [4], shown in Figure 3. All are provided with

the same STAR-System software suite, have three SpaceWire

ports, and each can be accessed using the same STAR-System

APIs. The functionality provided by each unit is similar – the

main differences are in their bus interfaces. A USB device can

be easily connected and removed from a PC, and there are

multiple USB ports on most modern PCs. The PCI bus

provides better throughput and latency than the USB bus, but

devices must be fitted in the PC when it is switched off. cPCI

devices are similar to PCI devices, but can be fitted in a rack.

Finally, the PCIe bus offers better throughput than the PCI bus.

All of STAR-Dundee’s interface devices also provide a

routing mode, which allows SpaceWire routing to be

investigated. For a standalone router, the recently updated

SpaceWire Router Mk2S [5] is a router with eight SpaceWire

ports. It is functionally equivalent to the STAR-Dundee Router

IP and ESA SpW-10X Router ASIC, the Atmel AT791. It also

has a USB port, so can optionally be connected to a PC and

used with the same STAR-System software as the other

interface and router devices.

In addition to transmitting and receiving packets, the

interface and router devices can also be used to configure other

devices on the network. The STAR-System Device

Configuration application (see Figure 5) allows supported

devices to be configured either locally or over a SpaceWire

network. This makes it easy to set timeouts, change link

speeds and get the error status of devices on the network.

Routing tables of routing devices can also be configured, so the

routing table of a Router Mk2S can be configured using a PCI

Mk2, for example, over the SpaceWire network.

IV. SIMULATING INSTRUMENTS

Simulation of instruments and other devices can be

performed using the interface and router devices previously

mentioned. For example, the STAR-System Source

application can be used to transmit packets containing images

in order to simulate a camera. Other fields that can be included

Figure 3 SpaceWire PCIe

Figure 4 STAR-System Sink Application

Figure 2 STAR-System Transmit and Receive Applications

258

in the transmitted packets include sequence numbers, CRCs,

checksums, field lengths, data patterns and address and data

bytes. This makes it possible to transmit packets in the format

used by existing protocols or to test out new protocols. After

creating the required packet format, these are stored to hard

disk for future use.

The STAR-System Sink application can be used to receive

the images, and simulate a receiving device such as a mass

memory unit. The received packets can be written to file for

further analysis, and their format can be checked for errors

using the same packet format information used by the Transmit

application.

For more complex simulations, the STAR-System APIs can

be used to develop applications to perform specific tasks. The

main API provides functions which make it simple to write

applications to transmit and receive packets at high rates and

with low latency. Additional APIs are provided for device

configuration and for building and interpreting RMAP packets.

Example code is provided, and linked to in the comprehensive

documentation, to demonstrate how each function can be used.

For development of graphical device simulations, the

STAR-System LabVIEW API [6] allows applications to be

developed using National Instrument’s LabVIEW development

environment. The STAR-System LabVIEW wrapper has been

designed to be intuitive to LabVIEW users, and includes a

number of example applications. These cover common

SpaceWire development tasks, and so can be dropped in to a

LabVIEW application, greatly simplifying development of that

application.

If deterministic behaviour is required in the device

simulation, STAR-System releases are available for both

VxWorks [7] and QNX [8] real-time operating systems. These

releases currently work with the SpaceWire PCI Mk2, cPCI

Mk2 and PCIe and provide exactly the same API as on

Windows and Linux. This means that software can be

developed and tested on a Windows or Linux desktop machine,

before being recompiled for the final target.

An alternative device, the SpaceWire EGSE [9] [10], can

be used to perform real-time device simulation entirely in

hardware, and so provide deterministic behaviour. The EGSE

is programmed using a simple yet powerful scripting language

using a connected PC, and then the script is executed on the

device without further interaction with the hosting PC. The PC

can be notified of events, if required, and can also send

software triggers. The EGSE’s trigger output ports can be used

to notify external equipment when a specified event occurs,

while the trigger input ports can be used to alter the state of the

script based on an external event. For example, an external

clock could be used to indicate that a packet should be sent at

regular intervals.

V. DEVELOPING FOR FLIGHT

The devices discussed above can be used to test and

develop new flight equipment. To work with existing flight-

rated devices, STAR-Dundee also offers a number of solutions.

While the SpaceWire Router Mk2S is functionally

equivalent to the ESA SpW-10X, the STAR-Dundee SpW-10X

Router ASIC (AT7910E) Evaluation Kit [11] includes an

actual SpW-10X ASIC in a rack-mountable unit which

simplifies interfacing with this device during evaluation and

development. The SpW-10X, and any other devices which

make use of STAR-Dundee’s Router IP, can be configured

using the STAR-System Device Configuration application

shown in Figure 5. In the figure, the properties of a Brick

Mk2 (which is functionally similar to a SpW-10X) are

currently being configured. From this application, the

properties of each port can be configured, the error status

viewed, and the routing table set.

Another product which provides support for flight-rated

devices is the SpaceWire RTC (AT7913E) Development Kit.

It has external connectors exposing the various interfaces of the

Atmel AT7913E device, the SpaceWire Remote Terminal

Controller (RTC). The STAR-Dundee SPARCv8 Software

Development Environment (or STAR SDE) is provided with

the RTC Development Kit, to assist software development,

debugging and testing on the RTC’s SPARCv8 chip. It can also

be used with other flight-rated SPARCv8 processors including

the Atmel AT697E/F and AT697FF devices.

While debugging, the SDE includes graphical views of the

internal registers on the device, the trace buffer and the

processor cache. Source code, assembly language and

graphical representations of the code using Code Rocket are

available while stepping through the code. Debugging can be

performed interactively over USB or UART.

When developing a new flight device, STAR-Dundee

offers a range of SpaceWire IP cores provided as VHDL

source code, including a CODEC, a Router [14], an RMAP

Initiator and an RMAP Target [15]. These cores have been

extensively tested and proven, are used in STAR-Dundee’s test

and development equipment and are also incorporated in the

Atmel AT7910E (SpW-10X) and AT7913E (SpaceWire RTC)

ASICs.

Figure 5 STAR-System Device Configuration Application

259

VI. TESTING AND DEBUGGING

The interface and router devices described earlier all

provide numerous features to assist in testing and debugging.

Using the STAR-System software or APIs, they can of course

be used to transmit traffic to a device under test, or receive

traffic from the device under test. They can also be used to

transmit and receive time-codes, and errors detected on the link

are latched so that any unexpected behaviour can be detected.

All of these devices also offer mechanisms to introduce errors

in to traffic including credit errors, escape errors and parity

errors, meaning that it’s possible to put together a full test suite,

which can be controlled through software, to test a device

under development.

One of the most important tools to have when debugging a

problem in a SpaceWire network or device is the SpaceWire

Link Analyser Mk2 (see Figure 6) [16]. The Link Analyser

Mk2 can be used to record the traffic crossing a link, and can

trigger on events such as errors, time-codes, specific data

characters, etc. The traffic recorded can be viewed as a link

level trace (individual n-chars and l-chars), a packet level trace,

or a signal level trace (Data and Strobe waveforms). The

packet level trace can also show protocol information, such as

the fields of an RMAP packet. The Link Analyser Mk2’s

accurate statistics also make it simple to confirm the

throughput performance of a device is as expected, while error

injection is provided to monitor how a device performs when

errors are introduced.

When developing a new device, it’s important to test the

device at all layers of the SpaceWire standard. The STAR-

Dundee SpaceWire Conformance Tester [17] tests

conformance of a device to numerous clauses in the SpaceWire

standard, concentrating primarily above the physical layer.

The SpaceWire Physical Layer Tester [18] builds on this by

offering testing of the device at the physical layer. It can apply

a variety of different aberrations including offset, drive

strength, slew, skew and jitter to the electrical SpaceWire

LVDS signals. A powerful software suite makes it very easy

to control the amount of signal degradation that the unit under

test can cope with by progressively degrading combinations of

these aberrations until the connection is broken. The SPLT

also features analogue buffers on its termination resistors to

allow the signal received from the device under test to be

buffered and viewed on a scope.

VII. SUMMARY

This paper has introduced a number of products to assist in

the development and testing of SpaceWire devices,

applications and protocols. These devices are used by STAR-

Dundee when developing our own products, so include not

only features requested by customers, but also features required

by STAR-Dundee engineers. Our products are always being

improved as we receive requests from customers, or encounter

a situation where an existing solution does not exist, and we

always welcome comments and suggestions.

REFERENCES

[1] STAR-Dundee, “SpaceWire-USB Brick Mk2”, http://www.star-

dundee.com/products/spacewire-usb-brick-mk2, 2013.

[2] STAR-Dundee, “SpaceWire PCI Mk2”, http://www.star-

dundee.com/products/spacewire-pci-mk2, 2013.

[3] STAR-Dundee, “SpaceWire cPCI Mk2”, http://www.star-

dundee.com/products/spacewire-cpci-mk2, 2013.

[4] STAR-Dundee, “SpaceWire PCIe”, http://www.star-

dundee.com/products/spacewire-pcie, 2013.

[5] STAR-Dundee, “SpaceWire Router Mk2S”, http://www.star-

dundee.com/products/spacewire-router-mk2s, 2013.

[6] STAR-Dundee, “SpaceWire LabVIEW Driver”,

http://www.star-dundee.com/products/spacewire-labview-driver,

2013.

[7] STAR-Dundee, “SpaceWire VxWorks Driver”, http://www.star-

dundee.com/products/spacewire-vxworks-driver, 2013.

[8] STAR-Dundee, “SpaceWire QNX Driver”, http://www.star-

dundee.com/products/spacewire-qnx-driver-0, 2013.

[9] STAR-Dundee, “SpaceWire EGSE”, http://www.star-

dundee.com/products/spacewire-egse, 2013.

[10] S. Mudie, M. Dunstan, S. Parkes; “SpaceWire EGSE: Real-

Time Instrument Simulation in a Day”, International SpaceWire

Conference 2013, June 2013, Sweden.

[11] STAR-Dundee, “SpW-10X Router ASIC (AT7910E) Evaluation

Kit”, http://www.star-dundee.com/products/spw-10x-router-

asic-at7910e-evaluation-kit, 2013.

[12] STAR-Dundee, “SpaceWire RTC (AT7913E) Development

Kit”, http://www.star-dundee.com/products/spacewire-rtc-

at7913e-development-kit, 2013.

[13] STAR-Dundee, “SPARCv8 Software Development

Environment”, http://star-dundee.com/products/sparcv8-

software-development-environment, 2013.

[14] STAR-Dundee, “SpaceWire IP Cores”, http://www.star-

dundee.com/products/spacewire-ip-cores, 2013.

[15] STAR-Dundee, “SpaceWire RMAP IP Cores”, http://www.star-

dundee.com/products/spacewire-rmap-ip-cores, 2013.

[16] STAR-Dundee, “SpaceWire Link Analyser Mk2”,

http://www.star-dundee.com/products/spacewire-link-analyser-

mk2, 2013.

[17] STAR-Dundee, “SpaceWire Conformance Tester”,

http://www.star-dundee.com/products/spacewire-conformance-

tester, 2013.

[18] A. Spark, P. Scott, P. Crawford, S. Parkes; “Margin Testing of

SpaceWire Devices”, International SpaceWire Conference 2013,

June 2013, Sweden.

Figure 6 SpaceWire Link Analyser Mk2

260

Thursday 13 June

261

Standardisation (Short)

262

Towards High-Speed SpaceWire Links
SpaceWire Standardisation, Short Paper

Mathias Nickl, Stefan Jörg, Thomas Bahls,
Robotics and Mechatronics Center
German Aerospace Center (DLR)

Oberpfaffenhofen, Germany
mathias.nickl@dlr.de

 Barry M. Cook
4Links Limited

Milton Keynes, England
barry@4links.co.uk

Abstract—Various applications, such as telecommunication
and robotics, ask for communication bandwidth beyond 1Gb/sec.
However, SpaceWire is still limited to lower rates. The IEEE1355
standard proposes a high-speed exchange level, which is
optimized for 8b12b-encoding (HS-SE-10 and HS-FO-10). To
enable high-speed communication with SpaceWire, the authors
resurrect the IEEE1355-HS-SE concept and adapt it to the
requirements for SpaceWire links. Therefore, time-characters
are integrated and the encoding is changed to 8b10b-encoding to
enable the usage of common physical layer circuits. This paper
presents the resulting specification, an exemplary
implementation, and a first experimental result.

Index Terms—SpaceWire, IEEE1355, SpaceWire-HS, robotics

I. INTRODUCTION
Various applications, such as telecommunication and

robotics, still ask for the advantages of SpaceWire, i.e. a simple
packet protocol with small footprint. However, due to rising
complexity, modern systems require communication
bandwidth beyond 1 Gbit/s per link, which is not supported by
ECSS-E-ST-50-12C.

IEEE1355-1995, an earlier version of what we call
SpaceWire today, proposes high-speed links named HS-SE-10
for single ended copper and HS-FO-10 for fiber optic links.
But neither one has been transferred to ECSS-E-ST-50-12C.

The SpaceFibre standard proposes communication
bandwidth beyond 1 Gbit/s and the interfaces of SpaceFibre
links are intended to be compatible to SpaceWire links.
However, SpaceFibre links are more complex than SpaceWire
links, since reliability aspects are moved from application layer
into the links.

Nickl et al. [1] show that the SpaceWire exchange level can
be combined with common character level circuits that run
with 8b10b encoding (see [4]). This straight forward approach
is not efficient, since bit-stream synchronization is
implemented by 8b10b comma characters and is also regarded
by the exchange level state machine1.

To enable an efficient high-speed SpaceWire link with
small footprint, the authors resurrect the IEEE1355-HS-SE and
adapt it to the requirements for SpaceWire links. Therefore,

1 To distinguish different modifications of SpaceWire, this
implementation is called ‘SpaceWire-1Gb’

 composite structure SpaceWire-HS Link

Node A

Source

Sink

Exchange
Lev el

8b10b
Physical

Layer

Node B

8b10b
Physical

Layer

Exchange
Lev el

Source

Sink

Figure 1: Structure of a SpaceWire-HS node with exchange

level interfacing a common 8b10b physical layer circuit

time-codes are integrated and the encoding is changed to 8b10b
to enable the usage of common physical layer circuits.
Hereinafter this concept is referred to as SpaceWire-HS.

This paper presents the protocol specification of
SpaceWire-HS in section II, an exemplary implementation in
section III, and first experimental result in section IV.

II. PROTOCOL SPECIFICATION

SpaceWire-HS defines an exchange layer that enables
SpaceWire communication by using common physical layer
circuits with 8b10b encoding as used for Gigabit Ethernet
(IEEE 802.3). The protocol is a derivation of the IEEE-1355-
HS exchange level protocol. Minor modifications such as time-
code support, changed initialization sequence, and 8b10b
instead of 8b12b bring IEEE-1355-HS into line with
SpaceWire and 8b10b encoding.

 Fig. 2 shows the structure of an exchange level
implementation with bidirectional interfaces for time-codes and
nchars (left interface) as well as a duplex 8b10b-interface
(right interface). The protocol automata (RxFsm and TxFsm)
implement start, stop, flow control and error handling. The
Encoder converts SpaceWire symbols (i.e. nchars and lchars)
to 8b10b-characters (i.e. K.x.y and D.x.y) and the Decoder
vice versa. The internal channels are named alphabetically, to
avoid ambiguities. Mux and Dispatcher decouple message
routing and protocol implementation. Due to that, the
implementation provides four channels, a forward channel
Cfw = (a, g, h, b), a feedback channel Cbw=(c, g, h, d), a channel
for time-codes Ctc=(e, g, h, f), and a handshake channel
Chs=(a, g, h, d).

263

 composite structure Exchange Lev el

tx_8b10b

rx_8b10b

tx_nchar

rx_nchar

tx_tc

rx_tc

en

Exchange Lev el

tx_8b10b

rx_8b10b

tx_nchar

rx_nchar

tx_tc

rx_tc

en

TxFsm Mux

RxFsm Dispatch

Encoder

Decoder

a g

h

d

b

cal

f

func

func

e

c

Figure 2: SpaceWire-HS exchange level

The grammar in Fig. 6 specifies all symbols, which are

carried along the channels shown in Fig. 2 and defines the
encoding, i.e. the mapping of SpaceWire-characters to 8b10b-
characters.

All symbols are encoded as simple kchars (K.x.y) extended
kchars (K.x.y followed by D.x.y), or data characters D.x.y.
IDLE is mapped to K.28.0, which has balanced disparity, to
reduce power consumption while sending IDLEs. Time-codes
are mapped to (K.28.1, D.x.y), where D.x.y carries the time-
code, i.e. tc and ctrl (see [3]). START, STOP, and RESET
symbols are escape characters (K.28.6, D.x.0), where x is the
identifier of the escape character. INVALID is an extra
symbol that covers character level errors.

In contrast to the data strobe link (DS), which has a silent
initialization phase to synchronize the bit-stream, SpaceWire-
HS is optimized for 8B10B character layers, which allow bit
stream synchronization by a dedicated comma character.
Therefore, the transmitter sends a startup sequence (INIT),
which consists of a COMMA followed by IDLEs. The number
of IDLEs can be configured, e.g. currently one COMMA
followed by 32 IDLEs.

IEEE-1355-1995 (Annex G) proposes to insert an error
checking code to get a higher level of fault-sensitivity. This is
regarded by an extra byte for cyclic-redundancy-check (CRC)
at the end of packet data, previous to the EOP. (An EEP packet
has no CRC.)

The exchange level protocol is sliced in TxFsm and RxFsm
(see Fig. 7). To avoid deadlock, TxFsm has two startup paths,
one for unidirectional and one for bidirectional startup.

In the case of unidirectional startup only one (A) of the two
connected nodes gets a request to transmit (en='1'). Hence, only
A changes to state TX_CAL_1. After A has calibrated its
transmitter it changes to TX_WORKING_1 and starts to send
INIT characters. The incoming INITs calibrate the receiver of
B (cal='1'). Hence, B changes to state TX_CAL_2. After
calibrating the transmitter B changes to TX_WORKING_2 and
also starts to send the INIT sequence. Thus, A calibrates its
receiver and changes to TX_WORKING_3. At this point of
time, both nodes have calibrated transmitters and receivers and

send the startup handshake, i.e. START_REQ and
START_ACK.

In case of bidirectional startup both nodes get a request to
transmit (en='1'). Therefore, both change from
TX_NOT_WORKING to TX_CAL1 and after calibration of
the transmitter to TX_WORKING_1. Then A and B send the
INIT sequence, which calibrates the peer receiver. After
receiver calibration the transmitter sends the startup handshake.
Hence, bidirectional startup allows sending START_REQs
before the opposite node is calibrated [ieee1355]. Therefore,
the timeout TO1 triggers resending START_REQs. The global
timeout TO2 initiates a reset in case of failure during startup
(e.g. disconnect, etc.).

After startup the TxFsm reaches TX_FUNCTIONAL.
According to the credit counter, which represent the free space
in the peer receiver FIFO, nchars can be sent.

The shut-down mechanism also distinguishes unidirectional
and bidirectional case. Only if both nodes have requested a
shut-down the link shall completely shut-down. As long as the
link isn't completely shut down the receivers are still active and
able to receive data.

The receiver state machine handles the calibration and
implements the credit counter for the incoming nchars.
Furthermore, it checks the CRC, i.e. converts an EOP to EEP
in case of invalid check-sum, and adds an EEP in case of
broken link.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

For testing two circuit boards (see Fig. 3) with Xilinx
Virtex5 (5VLX50) and TLK1221 from Texas Instruments,
which is an IEEE802.3 Gigabit Ethernet compliant physical
layer circuit, are used. The boards are linked by an impedance
controlled cable with two crossed differential pairs and high-
speed connectors (COMTRONIC’s CMRM, see Fig. 5). The
differential serial outputs are PECL-compliant and the serial
inputs are AC-coupled. The boards can be coupled by copper
or fiber (the latter by applying additional copper-to-fiber
adapters). Both FPGAs host a testNode which generates
stimulation-patterns and observes the behavior of the links.
Furthermore, the tested link implementation has additional
instrumentation capabilities to trace internal link errors (debug
interface).

Figure 3: FPGA Testboards for Gigabit Communication with

Comtronics CMRM cable

264

 composite structure SpaceWire-HS Testbench

Node A (FPGA)

debug

Exchange
Lev el

debug

8b10b
Physical

Layer

Node B (FPGA)

8b10b
Physical

Layer

debug

Exchange
Lev el

debugconfig/status

testNode

config/status config/status

testNode

config/status

testbench (CPU)

tx_tc

tx_nchar

rx_nchar

rx_tc

tx_tc

tx_nchar

rx_tc

rx_nchar

Figure 4: Testbench for SpaceWire-HS link

Transmitter and receiver of the TLK1221 run on different

unsynchronized clocks (clk_tx, clk_rx). The testNode has a
third clock (clk_node). As a consequence the data flow of the
transmitter path (TxFsm, Mux, Encoder) and the receiver path
(RxFsm, Dispatcher, Decoder) as well as the application
interface has to be decoupled with deterministic rate-
transitions. Therefore, the channels tx_nchar, rx_nchar, tx_tc,
rx_tc, c, and d (Fig. 2) are implemented as dual-clock FIFOs,
cal and func as synchronizers [5].

The SpaceWire-HS link-level is implemented in VHDL.
Table 1 shows the synthesis results of a design consisting of
exchange level and 8b10b encoding/decoding and compares it
to a design of SpaceWire-1Gb (see [1]). For synthesis Mentor
Graphics Precision RTL Synthesis 2010a_Update2.254 is used,
for place and route XILINX ISE 13.1.

As one can see, both implementations need approximately
the same amount of logical resources and have similar timing
constraints. The initial expectation of having a smaller
footprint could not be proven. While the strict separation of
channels increases modularity it also requires additional
resources for rate transition logic.

For the tests an exchange level with dedicated
instrumentation interfaces was connected to a special test node
which is able to generate various test patterns (Fig. 4). The
configuration interface allows to read status information and to
configure the test patterns. Disconnection errors, 8b10b
encoding/decoding errors (wrong 10b character, running
disparity error), CRC errors as well as FIFO states are
monitored.

Three performance tests are performed to show that
SpaceWire-HS is a valuable alternative to SpaceWire-1Gb:

1. SpaceWire packet transmission with variable packet
lengths and variable packet rate synchronous and
asynchronous to time-codes transmission (24 hours
nonstop)

2. SpaceWire packet transmission with fixed packet
length and maximum packet rate (10 days nonstop).

3. Loss of connection and resynchronization (100 times).
All tests passed successfully. No error occurred during the

test phases.

Figure 5: Gigabit Connector (Comtronics CMRM)

 SpaceWire-1Gb [1] SpaceWire-HS
5VLX50 6SLX16 5VLX50 6SLX16

Global Buffers 3 3 3 3
LUTs 493 585 651 707
CLB Slices 124 147 163 177
Dffs or Latches 399 402 543 526
RAMB18 4 4
RAMB8BWER 2 2
clk_rx 266 MHz 223 MHz 265 MHz 200 MHz
clk_tx 239 MHz 163 MHz 183 MHz 139 MHz
clk_node 264 MHz 181 MHz 249 MHz 154 MHz

Table 1: Synthesis Results for SpaceWire-1Gb and Spacewire-
HS for Xilinx Virtex-5 and Spartan-6

IV. CONCLUSION

This publication shows that the concepts of IEEE1355
high-speed links can be adapted to the SpaceWire
requirements. A specification is presented, which is optimized
for 8b10b encoding. It defines a dedicated mapping of
SpaceWire symbols to 8b10b-characters, which considers time-
codes as well as power dissipation aspects.

The experimental results show that SpaceWire-HS is a
valuable alternative to the implementation of SpaceWire-
1Gb[1], which is complex due to the specific timing of 8b10b
encoding, physical layer circuits and exchange level. Therefore,
SpaceWire-1Gb needs extensive timeout parameter tuning.
Hence, adaption to various bandwidths is cumbersome and
error prone. SpaceWire-HS gets along without parameter
tuning, since the timing of character level and physical layer
does not influence the exchange level.

IEEE1355-HS has a dedicated reset, which is neglected for
this evaluation. Further discussions should clarify, if a reset is
really necessary.

The current implementation lacks a timeout at the
rx_nchar interface, which detects open packets in case the link
falls down. This failure is neglected in IEEE1355. However,
open packets can clog the residual network and should be
closed in case of broken link.

As recommended by the authors of IEEE1355 a CRC is
added to extend the error detection capabilities. Currently 8-Bit
CRC is chosen, but this is not enough for most applications,
which have stricter requirements on probability of failure per
hour and packet size. Furthermore, the polynomial for the CRC
is still an open issue and should also be discussed.

In a next step a more optimized implementation should be
evaluated. The footprint of the modular approach presented in
this publication is not comparable to the optimized
implementation presented in [1]. However, the modular
approach enables to add additional channels for future analysis,
e.g. multiple nchar-channels with dedicated bandwidth via one
shared 8b10b link.

This presentation is a first proof of concept. In a next step
SpaceWire-HS will be integrated with the DLRs Hand-Arm-
System, a robotic system with 52 motors and more than 430
sensors. Then, the exchange level implementation will be tested
intensively.

265

REFERENCES

[1] M. Nickl and S. Jörg, T. Bahls, A. Nothhelfer, S. Strasser (2011)
SpaceWire, A Backbone For Humanoid Robotic Systems, In
Proceedings of the International Spacewire Conference 2011,
pp. 356-359

[2] IEEE Std 1355-1995, IEEE Standard for Heterogeneous
InterConnect (HIC).

[3] ECSS-E-ST-50-12C, The SpaceWire Standard.

[4] A. X. Widmer and P. A. Franaszek, A DC-Balanced,
Partitioned-Block, 8B/10B Transmission Code, IBM Journal of
Research and Development 27 (5): pp. 440.

[5] Ginosar, R., "Fourteen ways to fool your synchronizer,"
Asynchronous Circuits and Systems, 2003. Proceedings. Ninth
International Symposium on , vol., no., pp.89,96, 12-15 May
2003, doi: 10.1109/ASYNC.2003.1199169

channel definition

Cfw = DATA(x) | EOP | EEP
Cbw = FCC
Ctc = TIMECODE(tc, ctrl)
Chs = RESET | START_REQ | START_ACK | STOP_REQ | STOP_ACK |
STOP_NACK
interfaces
tx_tc = Ctc
rx_tc = Ctc
tx_nchar = Cfw
rx_nchar = Cfw
en=TRUE | FALSE
tx_8b10b = 8B10B;
rx_8b10b = 8B10B;
internal channels
a = Cfw | Chs
b = Cfw | INVALID
c = Cbw
d = Chs
e = Ctc
f = Ctc
g= Cfw | Cbw | Chs | Ctc
h= Cfw | Cbw | Chs | Ctc | INVALID
cal = TRUE | FALSE
func = TRUE | FALSE

8B10B encoding

INIT= COMMA 2^n*(IDLE)
TIMECODE(tc, ctrl) = K.28.1 D.tc4:0.(ctrl1:0 & tc5)
COMMA=K.28.5
IDLE= K.28.0
FCT=K.28.2
START_ACK= K.28.6 D.1.0
STOP_REQ = K.28.6 D.2.0
STOP_ACK = K.28.6 D.3.0
STOP_NACK = K.28.6 D.4.0
START_REQ = K.28.6 D.5.0
RESET = K.28.6 D.6.0
DATA(x7:0) = D.x4:0.x7:5
EOP= K.28.3
EEP= K.28.4
8B10B = K.28.y | D.x.y
INVALID=<received invalid character or invalid running disparity>
flit = 32

Figure 6: Encoding for 8b10b

 stm TxFsm

TX_NOT_WORKING

TX_CAL_1 TX_CAL_2

TX_WORKING_1 TX_WORKING_2

TX_WORKING_3

TX_STOP_1 TX_STOP_2

TX_FUNCTIONAL

WAIT_NOT_CAL

i f state not in [TX_NOT_WORKING, TX_CAL_1, TX_WORKING_1]:
 rxerror <= !cal

[d = STOP_NACK]

[cal]
/enable
transmitter
init(TO2)

[transmitter calibrated]
/a <= INIT

[transmitter calibrated]
/a <= INIT

[cal]

/a <= START_REQ
[TO1]

[d=START_REQ]
/a <= SEND_ACK

[en]
/enable
transmitter
init(TO2)

[!en]
/a <= STOP_REQ
func <= FALSE

/a <= INIT

[d = STOP_ACK]

[d = STOP_REQ]
/a <= STOP_ACK

[!cal]

/a <= INIT

[TO2 | rxerror]

[en]

/a <= INIT

[d = START_ACK]
/a <= START_ACK
func <= TRUE
stop(TO2)

 stm TX_FUNCTIONAL

TX_EOPTX_DATA

i f (d=FCC) then credit += 32;
if (a is NCHAR) then last += 1;

TX_IDLE

i f (d=STOP_REQ) then
 a <= STOP_NACK

[credit > last] /a <= EOP

/a <= tx_nchar

[credit > last]
[tx_nchar = EOP]
/a <= crc

[tx_nchar = EEP]
/a <= EEP

 stm RxFsm

RX_WAITING RX_WORKING

CAL <= TRUE
if (credit / fl i t < space / fl i t) then
 c <= FCC;
if (b = NCHAR) then
 last += 1
if (c = FCC) then
 first += 32;

CAL <= FALSE
first <= 0
last <= 0

if (b = EOP | EEP) then
 crc.init()
elif (b = DATA) then
 crc.next(b)
 reg <= b;

RX_CALIBRATED

CAL <= TRUE

[b = EEP]
/rx_nchar <= EEP;

[b = INVALID | ((last = first) & b = NCHAR) | !func]

[b = INIT] [func]

[b = EOP]
/if (reg = crc) then rx_nchar <= EOP;
else rx_nchar <= EEP;

[b = DATA]
/rx_nchar <= reg;

Figure 7: Protocol automata TxFsm and RxFsm

266

Implementation and Interoperability Tests of SpaceFibre
Session: SpaceWire standardisation, Short Paper

Takahiko Masuzaki, Minoru Nakamura, Tetsuro Kato,
and Yasunori Ido

Information Technology R&D Center,
Mitsubishi Electric Corporation,

5-1-1, Ofuna, Kamakura, Kanagawa, 247-8501, Japan
Masuzaki.Takahiko@dc.MitsubishiElectric.co.jp,
Nakamura.Minoru@ea.MitsubishiElectric.co.jp,

Kato.Tetsuro@dr.MitsubishiElectric.co.jp,
Ido.Yasunori@eb.MitsubishiElectric.co.jp

Toru Sasaki
Advanced Technology R&D Center,

Mitsubishi Electric Corporation,
8-1-1, Tsukaguchi-Honmachi, Amagasaki, Hyogo, 661-8661,

Japan
Sasaki.Toru@eb. MitsubishiElectric.co.jp

Abstract—SpaceFibre is a next-generation interconnect stan-
dard for connecting components in a spacecraft. Standardization
of SpaceFibre is led by the European Space Agency (ESA).
Although some features (e.g., multi-lane) are under consideration,
a Draft E1 version of the standard was released at the end of
September 2012. To use SpaceFibre, it is necessary to be easy to
use by eliminating the ambiguity of the standard and by
increasing the perfection level of the standard. In order to check
whether or not there are some points that can be improved in the
draft standard such as ambiguity, we made a prototype
implementation of SpaceFibre Draft E1 version on an FPGA. We
used a SerDes-IC TLK2711 (Texas Instruments) for functions of
the physical layer and a part of the encoding layer. We also used
an FPGA (XILINX® Virtex®-5) for the upper layers. In this
paper, we report the results of confirming the behavior by the
prototype implementation, and the evaluation of the Draft E1
based on the results. In addition, we ran interoperability tests
with a Japanese company and the University of Dundee in order
to verify the interoperability of the draft standard. There,
timeout occurred in the lane initialization that may be improved.

Index Terms—SpaceWire, SpaceFibre, interoperability test

I. INTRODUCTION

SpaceFibre[1] is a very high-speed serial interconnect
standard for spacecraft and is led by the European Space
Agency (ESA). The background in which SpaceFibre was
proposed is a demand for high speed and scalability. The
amount of the sensor data has increased in every mission.
However, before SpaceFibre, there was no standard that is
high-speed, scalable and easy-to-use. Therefore, developing a
new technology for data transmission has been needed for
every mission. As a result, the problems of the high cost and
increase development time has occurred. On the other hand,
SpaceFibre can be reused because this standard satisfies the
demand for high data rate over a long period of time. As a
result, we were able to improve reliability and reduce
development costs. Also, SpaceFibre has the potential to unify
the interface in a satellite with SpaceWire[2] because
SpaceFibre has affinity with SpaceWire. Thus, a backplane

prototype with SpaceWire and SpaceFibre links was
proposed[3].

Based on the above, we have evaluated SpaceFibre
Standard to make effective use of the standard. In this paper,
we describe our SpaceFibre CODEC prototype implemen-
tation, interoperability test results and consideration about lane
initialization.

II. SPACEFIBRE

SpaceFibre Standard Draft E1 was released at the end of
September 2012. Although some features (e.g., multi-lane) are
under consideration, the standard is nearing completion.

Fig. 1 shows SpaceFibre’s layer structure. A description of
the layers is provided below.

Physical Layer

Serialisation Layer

Encoding Layer

Lane Layer

Multi-lane Layer

Retry Layer

Framing Layer

VC Layer

Broadcast
Interface

Virtual Channel
(VC) Interface

Broadcast Layer

Fig. 1. Layers of SpaceFibre

(1) Virtual channel layer has an interface to user application
and handles QoS control.

(2) Broadcast layer broadcasts short messages.
(3) Framing layer is responsible for framing data.
(4) Retry layer resends data to recover from errors.
(5) Multi-lane layer operates serveral lanes in parallel.
(6) Lane layer initializes lane.
(7) Encoding layer encodes/decodes 8b/10b code and does

word synchronisation.
(8) Serialisation layer converts parallel data and serial data.
(9) Physical layer defines electrical signals.

267

III. IMPLEMENTATION OF SPACEFIBRE

We made a prototype implementation based on Draft E1.
Fig. 2 shows the parts of implementation. We implemented
the broadcast layer, framing layer, lane layer, encoding layer,
and partially implemented the virtual channel layer, retry layer
in FPGA. We implemented SpaceFibre CODEC limited to the
minimum functions. We have excluded the multi-lane layer
from the prototype because the layer is incomplete in Draft E1.
We have not supported the multi-virtual channels and retry
function as yet. We will implement these functions in the near
future.

Fig. 3 shows an outline of the SpaceFibre Evaluation Board,
and Fig. 4 shows its photo. We used a SerDes-IC TLK2711
(Texas Instruments) for the functions of the physical layer and
8b/10b encoding/decoding of the encoding layer. We also
used an FPGA (XILINX Virtex-5) for the upper layers. In
order to control the FPGA, we also mounted a CPU on the
same board. SpaceFibre CODEC can be controlled by a PC
via this CPU.

Physical Layer

Serialisation Layer

Encoding Layer

Lane Layer

Multi-lane Layer

Retry Layer

Framing Layer

VC Layer

Broadcast
Interface

Virtual Channel
(VC) Interface

partially implemented
not implemented

implemented

Broadcast Layer

SerDes
TLK2711

FPGA

Fig. 2. Parts of Implementation

 SpaceFibre Evaluation Board

SpaceFibre I/F

PC

CPU

(FPGA)

Memory

SpaceFiber

(FPGA)

SerDes-IC
(TLK2711)

Fig. 3. Outline of SpaceFibre Evaluation Board

SpaceFibre
(FPGA)

CPU
(FPGA)

SerDes-IC
TLK2711

SpaceFibre I/F

Memory

Fig. 4. SpaceFibre Evaluation Board

IV. INTEROPERABILITY TESTS

A. Outline

We joined an interoperability test meeting arranged by the
Japan SpaceWire User Group, to confirm the basic
interoperability of the transmission. In the beginning, we ran
an interoperability test in Japan. After that, we ran a test with
the University of Dundee / STAR-Dundee Ltd (Dundee). The
aim of these interoperability tests is to confirm whether or not
lane initialization and basic transmission of frames are
performed with no issues. The implementation was based on
the Draft E1.

Prior to the interoperability test with Dundee, we had tests in
Japan. The tests in Japan are lane initialization test, single-shot
frame test, and sequential frames test. Because there was an
issue in the lane initialization test, we recognized that 20us
timeout period defined in Draft E1 may have to be longer.

Based on the results of the tests in Japan, Dundee and our
team implemented a function to change the timeout period.
Figure 5 shows the test environment with Dundee, and Fig. 6
shows its photo. The Dundee prototype’s name is STAR Fire.
The rate of connection was 2.5Gbps. The SMA cable in our
prototype and eSATA cable were one meter each. Our
prototype and STAR Fire are connected to each PC. PCs can
send various commands to prototypes, and can monitor
received data, and so on. TABLE I shows the summary of the
test items and results of this interoperability test. We tested
three major items as shown in TABLE I. Because these items
are essential to basic communication, these items should be
passed. Though some issues occurred, very basic parts of the
lane initialization and the data transmission worked properly.
The details are described in the next section.

SpaceFibre
Evaluation

Board

Dundee’s
prototype

STAR Fire

Connector
converter

USB
cable

SMA
cable

RS-232C
cable

Dundee’s PC

SpaceFibre
Frame

Our PC

Command Received
data

Received data,
Status

Command

eSATA
cable

Our prototype

Fig. 5. Test Environment

268

SpaceFibre
Evaluation board

STAR Fire

Connector converter

eSATA cable

SMA cable

Our PC

Dundee’s PC

RS-232C cable

Our Prototype

Fig. 6. Test Environment

TABLE I. OUTLINE OF TEST ITEMS AND RESULTS

No. Test Item Result
1 Lane initialization Timeout occurred.
2 Transmission of single-shot frames OK.
3 Loopback transmission of sequential

frames
STAR Fire detected
received data error.

B. Test Items and Results

In the interoperability test with Dundee, the following three
tests were run.

1) Lane initialization
a) Test Item

This test is a lane initialization test. Confirmation items are
that both transceivers succeed in link-up, that both
transceivers send and receive flow control token (FCT) control
words, and whether or not timeout occurs in the process of
lane initialization.

Fig. 7. Lane initialization test

b) Result
Link-up and sending/receiving FCTs succeeded, but timeout

occurred. TABLE II shows the number of timeout counts. In
this test, timeout was counted after both transceivers started
the lane initialization. If the timeout period is sufficient,
timeout seems not to occur because of the structure of the state
machine. However, even though the timeout period is
extended to 1ms, the number of timeout counts seems not to
decrease.

When “No signal” is detected, the lane initialization state
machine returns to the initial state. Thus, if one side is not
sending words temporarily, both sides can restart in the same
timing. As a result, the detection “No signal” prevents timeout.
We tried both on and off of the “No signal” detection in our
prototype. However, even if the setting was on, "No signal"

could not be detected in the last three trials (number of
timeout counts: 9, 4, 7) in our prototype (other trials could not
be checked).
The consideration about this issue is described in chapter V.

TABLE II. NUMBER OF TIMEOUT COUNTS

No. No signal detect
setting
(Our prototype)

Timeout
period setting
(both)

Number
of trials

Result: number of
timeout counts

1 Off 300us 2 1, 12
2 Off 500us 2 11, 3
3 Off 1ms 4 2, 4, 24, 13
4 On 1ms 23 8, 8, 4, 15, 1, 1, 12,

7, 8, 3, 2, 1, 1, 3, 1,
14, 6, 1, 17, 21, 9,
4, 7

2) Transmission of single-shot frames

a) Test Item
Our prototype and STAR Fire send single-shot frames

(data frames and broadcast frames) to each other.
Confirmation item is whether the receiving side receives the
frames and the receiver detects no error. For example, our
prototype sends one-, two-, and 64-word single-shot data
frames.

Fig. 8. Transmission of single-shot frame test

b) Result
 Our prototype and STAR Fire successfully received the data
frames and the broadcast frames with no error.

3) Loopback transmission of sequential frames
a) Test Item

STAR Fire sends sequential data frames. The data frames
are sent back by our prototype in the user application layer.
STAR Fire receives the data frames.

Fig. 9. Loopback transmission of sequential frames test

b) Result
Our prototype received all frames with no error. STAR Fire

received the first several frames with no error. However, our
prototype detected NACK control words after several frames
or several hundreds frames. NACK indicates an error occurred.
This issue is under investigation.

269

V. CONSIDERATION ABOUT LANE INITIALIZATION

In the link initialization test, timeout occurred. Although we
are currently investigating this issue, we have described this
issue in this chapter.

First of all, there is inconsistency in the device specifi-
cations and timeout period defined by the standard. Our
prototype uses a SerDes-IC TLK2711, which is assumed as a
device to be used for SpaceFibre. According to TABLE III,
this SerDes-IC’s maximum PLL startup lock time is 0.4ms [3].
STAR Fire uses Spartan®-6 transceiver. According to TABLE
IV, the transceiver’s maximum PLL lock time is 1ms, and
maximum lock time to data is 200us[4]. Thus, at most 1.2ms
is needed to lock to data after starting PLL. On the other hand,
the timeout period in Draft E1 is 20us. Therefore, timeout
occurs before the transceiver PLLs lock to data. Accordingly,
the timeout period is too short to link to data; or, it may be
better not to disable the PLL on every timeout.

TABLE III. SPECIFICATION OF TLK2711

PARAMETER NOM Max Units

PLL startup lock time 0.1 0.4 ms

TABLE IV. SPECIFICATION OF SPARTAN-6'S TRANSCEIVER

Description Conditions Max Units
Clock recovery frequency
acquisition time

Initial PLL lock 1 ms

Clock recovery phase
acquisition time

Lock to data after PLL
has locked to the
reference clock

200 μs

Secondly, sending and receiving of INIT1 control words are

started immediately after transceiver PLL is enabled. If INIT1
is detected by some chance, the initialization state machine
goes to the next state even if PLL is unstable. In addition,
when unexpected words are received, the state machine does
not return to initial state. This may cause unexpected behavior.
We believe that a mechanism to promote stable state is needed.
An example of the mechanism is where the state machine
moves to the next state after PLL locks to data, and when
unexpected data is received, the state machine returns to initial
state.

Finally, there is a need to clarify the definition of “No
signal.” The draft standard says “No Signal means no signal
detected at receiver inputs.” However, the meaning of “No
signal” is not clear. TLK2711 has a loss of signal detection
function, and our prototype uses this function. However,
Xilinx FPGAs do not have “No signal” detection function. In
this way, functions depend on the devices. We believe that a
device-independent definition is needed, or another possible
option is to not use “No signal”.

 Because there are unclear points, we could not determine
the cause of timeout. The points to clarify are the details of
state transition and sent/received control words’ accuracy
during lane initialization. In order to investigate the cause of
timeout, we have to add tests and analysis.

VI. CONCLUSION

We made a prototype implementing SpaceFibre CODEC in
FPGA with SerDes-IC TLK2711, and confirmed its behavior.
First, we determined an issue in initialization through testing
in Japan. Second, we checked lane initialization and basic
transmission of frames, by interoperability testing with the
University of Dundee. As a result of the test, we extracted an
issue that timeout occurred during the lane initialization. The
lane initialization may have to be improved, though the
timeout mechanism should be clarified with additional tests
and analysis.

REFERENCES

[1] S. Parkes, A. Ferrer, A. Gonzalez & C. McClements,
“SpaceFibre Standard Draft E1,” University of Dundee,
September 2012.

[2] ECSS-E-ST-50-12C, “SpaceWire – Links, nodes, routers and
networks, ” July 2012.

[3] M. Nakamura, T. Ito, Y. Takeda, I. Odagi, S. Hirakuri, K.
Yamagishi, K.Shibuya, and M. Nomachi, “SpaceWire
Backplane With High-Speed SpaceFibre Link, ” June 2010, pp
163-166.

[4] Texas Instruments, Inc., “TLK2711A 1.6 to 2.7 GBPS
TRANSCEIVER. (Rev. B),” October 2012.

[5] Xilinx, Inc., “Spartan-6 FPGA Data Sheet: DC and Switching
Characteristics,” October 2011.

270

Performance evaluations and proposal to improve

next-generation SpaceFibre protocol
Standardisation, Short Paper

Yu Otake
1
, Kohei Hosokawa

1
, Yasuhiro Sota

1
, Takahiko Tanaka

1
, and Hiroki Hihara

2

1
NEC Corporation Tokyo, Japan

2
NEC TOSHIBA Space Systems, Ltd. Tokyo, Japan

y-otake@bp.jp.nec.com

Abstract— The SpaceFibre protocol, which introduces the

high-speed serial data-links widely adopted for peripheral

component interconnect (PCI) express and serial advanced

technology attachment (ATA), was developed by the European

Space Agency as a standard protocol to communicate between

payloads in satellite networks. It is important to implement and

evaluate the present SpaceFibre protocol draft to improve the

protocol. Therefore, we implemented the SpaceFibre Draft-E1

protocol on a field-programmable gate array (FPGA) and

evaluated its performance in five points by: (A) evaluating the

effective data-throughput and latency of packets when the bit

error rate (BER) on SpaceFibre links varied, (B) analyzing

latency of packets in each SpaceFibre protocol layer in detail, (C)

evaluating latency in data-transmission through broadcast

channels, (D) evaluating latency of virtual channels set to

bandwidth reservation QoS, and (E) evaluating the

implementation results on an FPGA, such as the number of

logics, memory usage, and operating speed.

We report the results obtained from these evaluations and a

method to reduce the latency of packets by analyzing these

results. We also report results from evaluating the method and

compare it with the SpaceFibre Draft-E1 protocol.

Index Terms— SpaceFibre, Latency, Throughput, Virtual

Channel.

I. INTRODUCTION

The SpaceFibre protocol newly adapted virtual channels

(VCs) that play the role of sending and receiving SpaceWire

packets from several sources to corresponding destinations

over SpaceFibre links [1, 2]. The VC layer also provides a

quality of service (QoS), i.e., best effort, priority, bandwidth

reservation, and time-slot to accommodate difference

communication demands. Furthermore, the SpaceFibre also

adapted error-detection and recovery techniques at the link

level accomplished by adding frame sequence numbers and

cyclic redundancy check (CRC) checksums to data frames.

It is important to implement and evaluate the present

SpaceFibre protocol draft to improve the protocol, especially

VC and retry layers. Therefore, we implemented the

SpaceFibre Draft-E1 protocol on an FPGA. We utilized a

ML507 FPGA evaluation board including one Xilinx Virtex-5

FX70 and constructed an environment to assess the SpaceFibre

protocol by using STAR-Fire and SpaceWire USB Brick in

Figure 1 [3]. In some evaluations, we only use the ML507

board in back-to-back mode as shown in Figure 2. Our

implementation has four VCs and an error injector to evaluate

the behavior of QoS and error recovery in the FPGA. Both the

encoding and serialization layers were implemented by the

Rocket I/O provided by Xilinx FPGA.

Here, we report the results from evaluating effective data

throughput and latency of packets in section II and a method to

reduce latency of packets in section III.

Figure 1 Evaluation environnement for SpaceFibre protocol

Figure 2 Architecture on Virtex5 FPGA

latency

STAR-Fire

SATA

eSATA

header eSATA cross-over cable

Virtex-5 FX70

USB Brick

USB cableRS-232C cable

Micro-D
Connector

SpW cable

Our Prototype
(Xilinx, ML507)

SATA-eSATA

Pin Header:

D-sub9pin
Convert cable

D-sub9：Micro-D
Convert cable

USB cable

Port 1

Port 2

SpW cable

271

II. EVALUATION OF SPACEFIBRE DRAFT-E1 PROTOCOL

We evaluated the present SpaceFibre Draft-E1 protocol in

five points by:

A) Evaluating effective data throughput and latency of

packets when the BER on SpaceFibre links varies,

B) Analyzing the latency of packets in each SpaceFibre

protocol layer in detail,

C) Evaluating the latency in data-transmission through

broadcast channels,

D) Evaluating the latencies of VCs set to bandwidth

reservation QoS, and

E) Evaluating the results from implementation on an

FPGA, such as the number of logics, memory usage,

and operating speed.

 The packet length in these evaluations was fixed to 64

words (1 word = 4 bytes) and the signaling rate on the

SpaceFibre link was 2.5 Gbit/s. Therefore, the maximum

throughput was 2.0 Gbit/s since the SpaceFibre protocol adapts

8B/10B encoding. The length of data transmission link

(eSATA crossover cable) is about 50cm, and multi-lane layer

is not implemented. All latencies in this paper are sum of a

packet transmitting time through SpaceFibre from the output

VC buffer (VCB) in the transmit side to the input VCB in the

receirve side shown in Figure 2 and a waiting time due to full

of the output VCB.

A. Evaluation of effective data throughput and latency of

packets

We first evaluated what influence resending packets due to

bit error had on data throughput and latency of packets. Figure

3 shows the average latency of packets when the BER on the

SpaceFibre link varies. As shown in Figure 3, the average

latency is equal to 2.72 µs if BER is less than 5*10
-6

.In the

case input data rate is 95%, the latency rapidly increases when

BER is more than 5*10
-6

. In the case input data rate is 65%

the latency increases when BER is more than 5*10
-5

. Therefore

we can see the latency depends on input data rate. If BER is

higher than 4*10
-4

, the link cannot be established because a bit

error is always occurred when data frame size is 64 words

(2048 bit = 2560 bit at the SpaceFibre link) in any input data

rates. If multiple VCs are operated, another latency by QoS is

added to this latency. The detail analysis of average latency

2.72 µs is described at the next subsection.

We also evaluated effective data throughput in the same

case. As shown in Figure 4, If BER is less than 10
-6

, the data

throughput is about 1.9 Gbps, which is not equal to 2.0Gbps

because some control commands (start-of-frame, end-of-frame,

ACK/NACK, and FCT) are required to transfer data. If BER is

higher than 10
-6

,

the effective data throughput is gently

decreased. Finally, the effective throughput is 1.34Gpbs,

which is only 70% of the maximum throughput, if BER is 10
-4

.

From the above evaluations, not only SpaceFibre link usage

but also BER should be considered to build a satellite system.

Figure 3 Relation between packet latency and bit error rate

Figure 4 Relation between data throughput and bit error rate

B. Detailed analysis of latency of packets in each SpaceFibre

protocol layer

The details on latency of packet in each layer of the

SpaceFibre protocol on both the transmit (TX) and receive

(RX) sides are summarized in Table 1.

Table 1 Details on packet latency in SpaceFibre layers

 TX RX

Virtual channel layer 1.11 µs 0.08 µs

Framing layer 0.03 µs 0.01 µs

Retry layer 0.03 µs / *1.95 µs 1.11 µs

Lane layer 0.03 µs 0.03 µs

Physical layer 0.32 µs
*When one resend is occurred

In this evaluation, the latency of physical layer includes

cable transmission delay and heavily depends on the

specificaion of Rocket I/O provided by Xilinx FPGA,

especially, elastic buffer size. This value may be changed if

another physical layer, like TLK-2711-SP, is applied.

As shown in Table 1, the total latency is 2.72 µs when

there is no retry, and the latency increases 1.95 µs every

resending, which includes the transmission delay of NACK

command from RX to TX and that of resending data. This time

0.8

1

1.2

1.4

1.6

1.8

2

BER

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

10-6 10-4

1.9 Gbps

1.34 Gbps

0
10-5

-30%

0

2

4

6

8

10

BER

L
a
te

n
c
y

 (
u

s)

10-6 10-5 10-4

Data rate = 95% 65%

35%

5%

2.72 u s

272

1.95 µs is added to the TX retry layer in this paper since

ACK/NACK and resending data is generated in the retry layer.

The only two layers, which are VC layer at TX side and retry

layer at RX side, occupy 80% of the total latency without

resending. The time at TX side in VC layer mostly spends to

store 64 words into the output VCB because the data in the

VCB are sent to the medium access controller if the data size is

euqal to or more than 64 words or the data has an end of

packet (EOP) marker. On the other hand, the time at RX side

in the retry layer spends to calculate CRC. We will report a

method to reduce the total latency by making the frame length

short at section III because these latencies are depend on the

data frame size.

C. Evaluation of transmission through broadcast channels

We evaluated latency in data transmission that was sent

through the broadcast channel (BC) layer. It is important to

evaluate the influence on latency since a time-code packet to

synchronize all equipments on the satellite system sends

through BC. The length of the broadcast frame is 2 words

which is shorter than that of the data frame that is up to 64

words in almost all cases. Therefore, the broadcast frame had

less influence on BER than the data frame. Table 2

summarizes the latency and possibility for the broadcast

frames when BER is 10
-4

.

Table 2 Latency in broadcast frames in retry cases

Retries Latency (µs) Possibility (%)

0 0.512 99.2

1 1.440 0.7936

2 2.368 0.0063

3 3.296 0.0001

Few broadcast frames are resent in almost all cases as

Table 2 shows. However, the latency in broadcast packets

increases three or more times when they are resent. It will

therefore be necessary to take this latency into consideration

when constructing a time-synchronized system using the

SpaceFibre protocol. These evaluation results are for cases

where no data frames are transmitted. Even if data frames are

transmitted, the latency in the broadcast frames is considered

to be the same as that in Table 2, since the broadcast frames

have top priority for sending and can be inserted into data

frames.

D. Evaluation of bandwidth reservation QoS

There are three parameters, time-slot, priority, and

expected bandwidth, for each VC as QoS in the SpaceFibre

protocol (the best effor QoS is considerd as lowest priotiry

QoS). The time-slot parameter controls whether or not the data

in the VC is transfered by time. The parameter can support

time-division transmition used in deterministic networks. The

second parameter is a priority. This is a simple parameter

because data in VC with high priority is transfered at first.

Since the precedence of these two parameters are not changed

with the usage rate of the SpaceFibre link, we don’t evaluate

these parameters in this paper. Therefore, we evaluate the data

latency when the expected bandwidth parameter is changed,

when the time-slot and the priority parameters are set to same

values in all VCs, and when two packet generators, that can

periodically generate specified data frame rate, are connected

to VC0 and VC1. In this evaluation, each value of expected

bandwidth is set to the actual bandwidth which is the ratio

between data signaling rate of the SpaceFibre link and each

input data rate. Table 3 shows the latency of packets sent from

VC0 when input data rate of VC0 and that of VC1 are varied.

Table 3 Packet latency of VC0 using bandwidth reservation QoS

Input data rate (VC1)

5% 25% 45% 65% 85%

5%
2.72 us 2.72 us 2.72 us 2.72 us 2.72 us

25%
2.93 us 2.72 us 2.88 us 3.00us

45%
2.85 us 2.94 us 2.75 us

65%
2.86 us 3.10 us

Input

data

rate
(VC0)

85%
3.02 us

When the total input rate of VC0 and VC1 is less than

100% of the SpaceFibre link and the expected bandwidth is set

to the actual bandwidth, the packet latency including the

latency added by QoS is around 3 µs as summarized in Table 3.

Latency of VC0 becomes smaller in this region when the input

data rate of VC0 is smaller than that of VC1. The reason why

the less expected bandwidth have higher priority when VC are

ready to send is because data generator produces data

periodically in this evaluation.

E. Evaluation of implementation results on FPGA

The number of primitive circuits used to implement the

SpaceFibre Draft-E1 protocol are listed in Table 4, where LUT

is a look-up table with six inputs and one output, FF is a one

bit flip-flop, and BlockRAM is an 18-Kbit dual-port random

access memory. All primitive circuits are based on the Virtex-

5 architecture. The size of the virtual channel layer in Table 4

is where four VCs are mounted. Currently, the data bus on the

FPGA was 32 bits wide and the operating frequency was 62.5

MHz for the 2.5Gbps SpaceFibre link.

Table 4 Details on SpaceFibre circuit size

 LUT FF BlockRAM

Virtual channel layer (4 VCs) 2510 1840 8

Framing layer 99 29 2

Retry layer 2198 1596 11

Lane layer 389 357 0

Physical layer 427 488 0

Total 5623 4310 21

273

III. METHOD TO REDUCE PACKET LATENCY

A. Algorithm

As described in Section II.B, packet latency in the

SpaceFibre protocol is mostly occupied by both the VC layer

on the TX side and the retry layer on the RX side to buffer at

least one frame. Data buffering in the retry layer on the RX

side is necessary to determine if there are any errors in the

received data by checking CRC and the frame sequence

number which are located at the end of the frame. However,

data buffering in the virtual channel layer is not necessary

when there is sufficient space to send data at the SpaceFibre

link. We therefore evaluate a method that decides to buffer

data to the output VCB depending on the condition of the

SpaceFibre link in two ways;

1. When there is at least one word in the output VCB

regardless of EOP, the output VCB should notify the

medium access controller that it has data ready to form a

data frame.

2. When the output VCB is permitted to send data, the frame

length is set to the same value as the number of data in the

output VCB. However, if there are more than 64 words of

data in the output VCB, the frame length is set to 64 words.

If there is room to send data at the SpaceFibre link, the

packet latency can be decreased since the permission for the

output VCB to send data is quickly provided in the method

given above. On the other hand, if there is no room at the

SpaceFibre link, the latency for the method will be same as

that for the Draft-E1 protocol since the almost all frame

lengths to buffer data in the method are set to the same value

as those in the Draft-E1 protocol. The packet latency of the

method is evaluated at Section III.B.

However, there is concern about the decrease in data

throughput caused by increasing in control commands to form

data frames due to divide a packet into some short frames.

Therefore, the data throughput with the method and that with

the Draft-E1 protocol are compared in Section III.C.

The implementation also can be slightly reduced because

the method does not take into account the number of EOPs in

the output VCB. On the other hand, the current specification

needs EOP detectors at input and output in the output VCB to

manage a number of EOPs.

B. Evaluation of latency with this method

We implemented the method into the evaluation board to

evaluate the reduction in latency. Latency with the method and

that with the present Draft-E1 protocol are compared in Figure

5 when only VC0 send a data. Figure 5(a), (b), and (c) plot the

latencies of packets through VC0 where each input data rate is

5%, 45%, and 85%, respectively.

As Figure 5(a) and (b) show, the latency with the method is

about 0.7 µs, which can be decreased 74% from that of the

Draft-E1 protocol. The method achieves a maximum

(a) VC0 data rate = 5%

(b) VC0 data rate = 45%

(c) VC0 data rate = 85%

Figure 5 Comparison of latency in one VC transmission

reduction in the latency in these cases because there is space

for the increase in control commands at the SpaceFibre link.

Latency with the method is 1.1 µs, which is decreased 60%

from that of the Draft-E1 protocol, for the large input data rate

plotted in Figure 5(c). The reason latency is reduced less is

because the frame length cannot be shorten. When BER is high

in this case, the latency with the method rapidly increases as

with the Draft-E1 protocol because the effective bandwidth

decreases as shown in Figure 4. Finally the latency with the

method is equal to that with the Draft-E1 protocol when there

is no room in the SpaceFibre link.

Latency with the method and that with the present Draft-E1

protocol are compared in Figure 6 when both VC0 and VC1

send a data. Figure 6 (a) and (b) plot latency of packets

through VC0 where each input data rate is 5% and 45%

respectively when the input data rate of VC1 is 45%.

The lateny with the method is 0.7µs when the total input

data rate is 50%,as shown in Figure 6(a), and 1.6us when total

input data rate is 90% as shown in Figure 6(b). Therefore the

method can reduce the latency when there is room to shorten

frame even if packets are transmitted from multiple VCs.

0

1

2

3

4

5

BER

L
a

te
n

cy
 (

u
s)

10 -6 10 -5 10 -4

Draft-E1

2.72us

1.09us Our me thod

0

1

2

3

4

5

BER

L
a
te

nc
y

(u
s)

10-6 10-5 10-4

Draft-E1
2.72us

0.75us Our method

Draft-E1

Our method

0

1

2

3

4

5

BER

L
at

e
nc

y
 (

u
s)

10-6 10-5 10-4

Draft-E1
2.72us

0.70us Our method

274

(a) VC0 data rate = 5%, VC1 data rate = 45%

(b) VC0 data rate = 45%, VC1 data rate = 45%

Figure 6 Comparison of latency in transmission with two VCs

C. Evaluation of data throughput with this method

Our evaluation of data throughput is plotted in Figure 7

that compares the method and the present Draft-E1 protocol.

Figure 7(a) plots throughputs for data transmission from only

VC0, in which each input data rate is 5%, 45%, and 85%

respectively. We can see that effective data throughput with

the method is nearly equal to that with the Draft-E1 protocol

because there is sufficient space in a SpaceFibre link even if

the numbers of control commands are increased. The same

thing can be said for packet transmission from two VCs.

Figure 7(b) compares the data throughputs of VC0 for the

method and Draft-E1 where the input data rate of VC1 is set to

45% and that of VC0 is set to 5%, 45%, and 85% respectively.

We also can see the effective data throughput with the method

is nearly equal to that with the Draft-E1 protocol even if the

total data rate is over 100%.

The results from these evaluations indicate that the method

can reduce latency of packet transmission when there is a great

deal of vacant space in the SpaceFibre link. Latency with the

method is 1.6us which is decreased 40% from that of the

Draft-E1 protocol when total input data rate is 90%.

Furthermore, we confirmed that data throughput with the

method was also almost same as the Draft-E1 protocol.

(a) VC1 data rate = 0 %

(b) VC1 data rate = 45%

Figure 7 Comparison of data throughput

IV. CONCLUSION

We implemented and evaluated the SpaceFibre Draft-E1

protocol. The results from evaluations indicated that the

average latency of packets increased rapidly when BER was

above 5*10
-6

 and the maximum data throughput decreased

30% when BER was 10
-4

. We also found that packet latency

transmitted through the virtual channel was mostly caused in

the virtual channel layer on the TX side and the retry layer on

the RX side due to at least one frame of data being buffered.

We therefore found that a new method could reduce packet

latency by changing the method of determining the frame

length in the virtual channel layer. The latency with this

method can be reduced 74% from that with the Draft-E1

protocol because the method can utilize vacant space in the

SpaceFibre link effectively. We confirmed that the packet

latency with the method can be reduced even if there is slightly

space in the SpaceFibre link and the throughput of the method

is nearly equal to the Draft-E1 in any input data rates.

REFERENCES

[1] Steve Parkes at el, “SpaceFibre Standard Draft E1,” University

of Dundee, 28th Sep. 2012.

[2] ESA-ESTEC, “SpaceWire,” ECSS-E-ST-50-12, 31 July 2008.

[3] Virtex-5 FPGA Family, “http://www.xilinx.com/”, Xilinx Inc.

0

0.5

1

1.5

2

BER

T
h
ro

u
g
h

p
u

t
(G

b
p

s)

Draft -E1 Our met hod

VC0 dat a rat e = 85%

10-6 10-5 10-4

VC0 data rate = 45%

VC0 data rate = 5%

0

0.5

1

1.5

2

BER

T
h
ro

u
g

h
p

u
t

(G
b

p
s)

Draft-E1 Our method

VC0 data rate = 85%

10 -6 10 -5 10 -4

VC0 dat a rat e = 45%

VC0 data rate = 5%

0

1

2

3

4

5

BER

L
a
te

n
cy

 (
u
s)

10-6 10-410-5

Draft-E12.72us

1.56us Our method

0

1

2

3

4

5

BER

L
at

e
n

c
y

 (
u

s)

10-6 10 -5 10-4

Draft-E1
2.72us

0.74us Our method

275

Test & Verification (Short)

276

SpaceWire Interoperability Characterization
Test & Verification, Short Paper

G. Fernández Berzosa, P. Rodríguez Perochena, A. Pérez Gómez, R. Regada Álvarez, L.R. Berrojo Valero, L.
Basanta Alonso.

Digital & Detection Product Line
Thales Alenia Space España

Madrid, Spain
gonzalo.fernandezberzosa@thalesaleniaspace.com, pedro.r@thalesaleniaspace.com, alberto.perezgomez@thalesaleniaspace.com,

raul.regadaalvarez@thalesaleniaspace.com, luis-rafael.berrojovalero@thalesaleniaspace.com,
luis.basantaalonso@thalesaleniaspace.com

Abstract—The generalization of the SpaceWire protocol

utiliz ation on different space systems has led to the emergence of
a large variety of software/hardware components and tools from
several different developers. A key point is to evaluate the
interconnectivity between all these elements to avoid the risk of
future problems on the integration phases of any spacecraft
project. Thus, TAS-E has made an effort to develop a complete
test and characterization system including various logic SpW
VHDL cores, one specific ASIC and commercial debugging tools.

Index Terms— SpaceWire, Interconnectivity, Star Dundee,
Bepi Colombo, Goddard, SMCS332SpW, GRSPW.

I. INTRODUCTION

It is a fact that each instrument or equipment composing
any spacecraft, however small, is designed and manufactured
by several different developers. This segregation makes the
integration task one of the most critical points of all the
existing phases in a project and thus, any possible risk must be
evaluated and checked on the earlier phases of the design (if
possible, before the final architecture definition).

Facing low level interconnectivity problems at the
integration phase is not an option since the maturity of the
equipments at this point typically does not allow any
modification without involving a costly redesign of the
hardware architecture of the system.

In the frame of the development of the next generation of
Iridium satellites constellation, TAS-E was asked to provide
the necessary support and to perform the required tests to
evaluate with enough anticipation the correct interconnectivity
between some equipments composing the satellite’s payload.
Specifically, the architecture to evaluate is composed of four
equipments that are being developed by different companies
with their respective headquarters located on different
countries. The interconnection between these equipments is
based on simple point-to-point SpaceWire links, and to
implement these links, each developer has made use of a
different solution.

On the frame of this support project, TAS-E decided to
expand the test cases as much as possible to create a reference
for future projects expecting to integrate several equipments
with different SpaceWire components.

Due to the different nature of all the elements tested
(VHDL IP, ASIC or external equipments) different kind of
tests and interconnection architectures have been performed.
The aim of this paper is to describe the parameters and
conditions of every test conducted.

II. EVALUATED ELEMENTS

The interoperability tests performed by TAS-E have
covered, on different ways, the following elements:

• Star Dundee SpaceWire CODEC IP: VHDL code
embedded on a Virtex5 FPGA.

• Bepi Colombo SpaceWire IP: VHDL version of the
core developed by TAS-I in the frame of the Bepi
Colombo mission embedded on a Virtex5 FPGA.

• Goddard SpaceWire IP: NASA IP core tested directly
on a EM equipment composing the Iridium satellite
payload.

• Atmel AT7911 (SMCS332SpW): this ASIC provides
three SpaceWire interfaces to an external processing
device.

• Gaisler GRSPW core: evaluated within the GR-
RASTA system which provides, among other
interfaces, 3 independent SpW links (RASTA 101
configuration).

Star Dundee’s SpW laboratory cables have been used to
interconnect every link. Also an external Link Analyzer from
the same developer has been used to check the correct protocol
implementation, to analyze the data transmissions and to inject
errors over the links. This device has become a key element to
perform a complete and fast debug on any SpaceWire link
implementation.

III. SPACEWIRE CHARACTERIZATION PLATFORM

The main element composing the evaluation system is the
‘SpaceWire Characterization Platform’, a board developed by
TAS-E including, among other elements, the following items:

• Virtex5 FX130T: reconfigurable FPGA embedding the
SpW VHDL IPs to be evaluated. It is also in charge of
controlling the AT7911 SpW ASIC and providing all
the necessary interfaces to access the system via an
external controller (typically a PC). The internal design

277

Ethernet

SpW links

Control PC

TAS-E
SpW Characterization

Platform

Real payload
EM

GR-RASTA 101

Link
Analyzer

Star Dundee IP
Bepi Colombo IP

SMCS332

Goddard IP

GRSPW IP

Virtex5 FX130T

SMCS332

SpaceWire Links

CTRL

DDR AMBA
DDR banks

Mem
CTRL

Ethernet link

HOCI
COMI

BC

On board
GPIOs

AT7911

V5 FPGA

SpW IFs

ETH

BC BC
BC BC SD

Fig. 1. Testbed configuration for the interoperability project.

Fig. 2. SpaceWire Characterization Platform diagram and board overview. (Bc: Bepi Colombo IP, SD: Star Dundee IP)

of the FPGA is based on an AMBA bus surrounded by
all the necessary interface controllers and logic cores to
govern all the elements present on the board.Atmel
AT7911 (also known as SMCS332SpW): this device
provides an interface between three SpaceWire links
and a data processing node. The processor interfaces
are straight connected to the V5 FPGA allowing
controlling the device independently or via an external
system (user PC).

• External interfaces: Ethernet and serial links are
available to access the system via an external
controller, typically, a common personal computer. A
simple PC application has been developed to provide a
graphic user interface to control every SpaceWire link
and execute automated tests.

• On board memory: a total amount of 512MB DDR
SDRAM memory is available and accessible to the
AMBA bus within the FPGA.

• General purpose IOs: several interfacing elements are
included on the board to interact with the evaluation
system. Also a mezzanine board has been developed to
access all the FPGA spare pins allowing the expansion
of the system for future implementations.

• External/Internal LVDS drivers: Another point to be
evaluated on the frame of the project was the usage of
the internal Virtex5 FPGA LVDS drivers to generate
the differential data-strobe signals. Thus, the
evaluation platform was designed to allow the
selection between external and internal drivers for each
link embedded on the device. This method allowed
checking the correct operation of the FPGA drivers to
implement the protocol without needing to add any
external component.

IV. START DUNDEE AND BEPI COLOMBO IP CORES

EVALUAT ION

Integrating the different SpaceWire IPs on the platform
FPGA is the most flexible testing solution among all the
different configurations that has been implemented. The
possibility to configure every parameter with no restrictions
allows performing a complete characterization of the link on
different situations and conditions. Also, the FPGA
configurability allows implementing further application layers
attached to the interfaces to evaluate specific architectures (as
example, to serve as simple EGSE).

278

Link
Analyzer

Control
PC

reset
burst

SpW Char. Platform

SpW
core
#2

SpW
core
#1

Several instances of both IP cores have been embedded into
the platform FPGA and a custom PC application has been
developed to provide a user interface to control every link
allowing their manual configuration or performing more
complex automated tests. Due this flexibility different kinds of
tests were performed:

A. Interoperability tests
These tests aim to check the correct interoperability

between the links from the physical layer up to the packet
level. A specific application running on the control PC allows
creating custom transmission/reception tests with several
different parameters:

- Link speed: transmission and reception speeds can be
individually set for each link. Several tests covering
the standard range from 2Mbps to 200Mbps were
successfully executed.

- Data content: packets are completely customizable
including its address value, the data content (random,
constant, or ramp) and the size.

- Number of packets and delay: the number of packets
composing the data flow is specified by the user as
well as the transmission delay between packets.

- Number of iterations: dividing the tests into different
iterations allows executing long tests without system
overflow issues. For each iteration, the transmitted and
received contents are compared and evaluated.

A large number of tests combining above parameters have
been performed and no error has been detected on any case.

B. Robustness tests
The purpose of these tests is to evaluate the robustness of

the links when subjected to hot resets. Once the link is
established, an automated burst of resets is applied on one side
of the link with a configurable interval to check the
reconnection on the different status phases of the protocol.

TABLE I. ROBUSTNESS TESTS PARAMETERS

Resets Interval Protocol state

50 1 us Error Reset

50 10 us Error Wait

50 25 us Run

50 1000 us Run (with data flow)

Fig. 3. Robustness test configuration

The external link analyzer not only has been used to check
the correct reconnection process but to inject disconnect errors

over the established link, providing another way to test the
robustness of the link.

As result, no reconnection problems were detected on any
of the executed tests. The reconnection timings checked with
the link analyzer were coherent with the standard on every
case.

C. External/Internal drivers evaluation
The usage of external or internal drivers to implement the

signal layer made no difference in terms of interoperability for
every link. This allows the system designers to choose the most
appropriate solution for their architectures, either decreasing
the external component population or the FPGA pins
utilization.

However, a deeper characterization of the electrical layer
comparing both solutions is planned.

V. AT7911 EVALUATION

The inclusion of the ASIC on the Characterization Board
allows testing its interoperability with the rest of SpW links
included on the board and with any other external equipment
implementing the protocol.

The device can be supplied with 5V or 3V3, limiting the
maximum transmission speed to 100Mbps on the second case.
For the Characterization Platform, the 3V3 configuration was
used, allowing the following interconnections:

TABLE II. AT7911 INTEROPERABILITY

 SMCS332SpW

Star Dundee IP 3.125 Mbps to 100 Mbps

Bepi Colombo IP 3.125 Mbps to 100 Mbps

Transmission and reception tests were executed

successfully. Also, all the robustness tests performing hot
resets on the IPs side result on successful reconnections by the
SMCS332SpW device.

VI. GODDARD SPW IP INTEROPERABILITY

The ITAR condition of the Goddard SpaceWire IP used on
the Iridium equipments did not allow its inclusion into the
SpaceWire Characterization Platform. Thus, the
interoperability tests were performed directly on an
engineering model (EM) of real equipment belonging to the
Iridium satellites payload on nominal system conditions (i.e.
fixed configuration parameters and fixed data transmissions).
Next matrix summarizes the connection conditions:

TABLE III. GODDARD SPW IP EVALUATION

Payload EM

Goddard IP

Star Dundee IP 10Mpbs

Bepi Colombo IP 10Mpbs

SpW
Characterization

Platform
 SMCS332SpW 10Mpbs

279

Fig. 4. GRSPW evaluation within the GR-RASTA platform

The nominal operation of the equipment involves a
bidirectional data flow of 256 Bytes packets. Assuming that
this test does not provides a complete characterization of the
link, the successful synchronization and data transmission can
be considered enough to accept the correct interoperability
between the American IP and the European ones.

VII. GRSPW INTEROPERABILITY

GR-RASTA development system has been used to evaluate
the interoperability between Gaisler’s GRSPW cores and the
SpaceWire links included on TAS-E’s SpW Characterization
Platform. The 101 configuration includes a Virtex4 IO board
providing, among others interfaces, three separate SpW links.

With this arquitecture following interconnections have been
evaluated:

TABLE IV. GRSPW INTEROPERABILITY TESTS

GR-RASTA 101

GRSPW IP

Star Dundee IP 2 Mbps to 200 Mbps

Bepi Colombo IP 2 Mbps to 200 Mbps

SpW
Characterization

Platform
 SMCS332 3.125Mpbs to 100Mbps

VIII. CONCLUSIONS

Even known this project was born to serve as support for a
specific external project, TAS-E has made an effort to expand
the test cases and the elements evaluated to create a reference
to be used in the future by system designers expecting to
integrate equipments with different SpaceWire components
composing their interfaces.

As final conclusion, a succesfull interoperability between
all the elements evaluated can be assumed. The SpaceWire
Evaluation Platform has result a suitable evaluation system for
VHDL SpaceWire components and a flexible platform to test
future cores or protocols based on this kind of interfaces.

REFERENCES

[1] ECSS-E-ST-50-12C (SpaceWire – Links, nodes, routers and
networks, Issue 2, 31 July 2008).

[2] AT7911E ASIC, www.atmel.com/devices/at7911e.aspx

[3] GR-RASTA-LEON2/3/4 spacecraft avionics development
platform, www.gaisler.com/index.php/products/systems/gr-rasta

SpW Analyzer Control PC

GR-RASTA 101

SpW Characterization Platform

280

MOST: MODELING OF SPACEWIRE TRAFFIC
SpaceWire test and verification, Short Paper

Brice Dellandrea
Command Control & Data Handling Engineer

Thales Alenia Space
France

Brice.Dellandrea@thalesaleniaspace.com

David Jameux
On-Board Data Systems Division (TEC-ED)

European Space Agency
Netherlands

David.Jameux@esa.int

Abstract—MOST (Modeling of SpaceWire Traffic) is a
representative and powerful SpaceWire traffic simulator
designed to support conception, development and validation of
SpaceWire networks. Its recent improvements have targeted
simplification and performance enhancement while still being
used for sizing the SpaceWire networks of multiple TAS
missions. This presentation will focus on its current capabilities
and how they were employed on real use-cases then will present
the new improvements brought to MOST.

With the increasing complexity of SpaceWire networks
embedded on board satellites and the development of SpaceWire
standards and components, this simulator tool proves itself more
and more useful.

Index Terms—SpaceWire Networks, Simulation, OPNET,
MOST, Design, Traffic analysis, Performance assessment,
Failure injection, FDIR, Protocol testing

I. INTRODUCTION

MOST offers the possibility to build SpW network models,
selecting and configuring SpW components, simulating high-
level applications (FDIR for instance) and to test designs
without waiting for HW testing on Avionics benches:

• It allows keeping control on traffic load and identifying
weak parts of the network topology,

• It gives load margins and traffic performances (end-to-
end delays, buffers sizing),

• It simulates many SpaceWire failure cases and gives
the possibility to run various FDIR scenarios,

• It allows decreasing design risks and securing planning
thanks to early verification,

• It allows testing the impact of change of Node or
Switch behavior to help assessing the criticality of a
supplier’s non-compliance which can occur during any
satellite development phases.

MOST has been developed as a library of OPNET
Modeler® (Open NETwork modeler) in version 16.0. This
object-oriented software allows SpW devices configuration
thanks to a set of attached attributes. Its graphical editor
provides a full set of possibilities to display and analyze
simulation outputs.

Two versions of MOST currently exist: one early version
which has been intensively used by Thales Alenia Space to

make its internal simulations and including a wide SpaceWire
components library: MOST v1.4. Another version is currently
under development and brings many enhancements: MOST
v2.2. Both versions will be presented in this document with a
focus on the latter.

II. FROM MOST V1.4 TO MOST V2.2

MOST is the result of continuous developments efforts
performed since 2006: first as internal Thales Alenia Space
development, then with support of ESA to bring MOST to an
operable stage through SpaceWire library development,
validation with representative test cases (scientific mission and
robotic mission), and finally cross-validated with real
hardware.

The progressive stages of development of MOST v1.4
followed the protocol stack of the SpaceWire standards:
Physical level, Character level, Packet/Network level then User
layer for SpW (PID, RMAP, PTP,…) and was internally
developed accordingly as depicted in the following figure:

This brings a highly modular structure managed through
finite-state automates which was very convenient during the
initial SpaceWire CODEC development phase at the cost of
additional OPNET processing time for automates processing.
This first development generated MOST v1.4 which was
delivered to ESA by end of 2011 and was used, for instance, by
ESA to analyze the Bepi-Colombo SpaceWire-based payload
Command & Control network and by TAS for the MTG
SpaceWire network along with other TAS missions.

281

MOST v1.4 includes components developed according to
some specific SpW component datasheets: the SpW-10X
switch with GAR mechanism and round robin for priority
management, the SMCS116SpW, the SMCS332SpW, the
RTC. This MOST library has also been enriched with generic
nodes fully representative of the SpW standard and including
protocols building blocks such as RMAP, STUP and CPTP.

In parallel to the TAS simulation activities and continuous
MOST v1.4 improvements with the addition of many FDIR
functionalities (including dynamic reconfiguration of switching
table through RMAP messages), ESA started the development
of an experimental branch of MOST (v2.1). This development
aimed at improving the usability of the tool by merging the
physical, character and packet/network layers in a single SpW
CODEC layer and at allowing the construction of protocol
stacks as depicted in the following figure:

This new architecture had the advantage of providing a
clearer view on the atomicity of the SpaceWire elements: one
SpaceWire CODEC including the Physical, Character and
Packet/Network levels developed in C-code instead of
automates, then PID, RMAP or CPTP elements connected
together through OPNET Modeler® exchange links. MOST
v2.2 currently under development by TAS took as input this
new architecture with the aim to, keep the advantages of the
ESA solution while adding all features from MOST v1.4.

III. MOST V2.2 DESCRIPTION

MOST v2.2 targets a release to the SpaceWire community.
In that respect, the library has to be robust and easy enough to
be used not only by its developers. This has been at the heart of
the development undergone since end of 2012.

First of all, this new MOST library includes some new
highly generic components to allow designing networks with
very generic behaviors. Each of these generic components is
made of multiple building blocks and shares a common
building block with all the others: the SpW CODEC which
fully complies with the ECSS-E-ST-50-12C SpaceWire. This
CODEC building block can be tuned by the MOST user
changing a set of parameters available in the OPNET
Modeler® user interface:

• Link Enabled to enable/disable a port,
• Autostart is used to enter in Ready mode, node does

not send Null characters but waits for Null characters
to switch to Started mode,

• Link Start is used to enter in Started mode (sends Null
characters). This attributes should be set to disabled if
Autostart is set to enabled but MOST accepts both,

• TX Data Rate: this value corresponds to the physical
transmission rate of the SpaceWire link,

• RX Buffer Size, this value represents the size of the
CODEC reception buffer used to send the right number
of FCT,

• Show NULL Messages allows to display NULL
messages on SpaceWire link,

• Timer Disconnect is the time at which the CODEC
disconnects its SpaceWire link (FDIR),

• Timer Parity Error is the time at which the CODEC
simulates a parity error on the next characater received.
This Error causes a Disconnect of the SpaceWire link
(FDIR),

• Delay For Disconnection After Parity Error is the time
between the detection of a Parity Error and the
disconnection of the SpaceWire link (FDIR),

• Debug Level with 4 different values corresponding to
the level of details on the internal CODEC behavior to
print in the Console

Three components are currently implemented in MOST
v2.2: a Native Node, a Generic CPTP & RMAP Node, and a
Generic Switch.

The Native Node is a very simple component,
implementing a SpW CODEC and a generic User Application.

The User Application of the Native Node manages the
SpW CODEC as a packet handling level which can be seen as
a higher level from the ECSS-E-ST-50-12C point of view. It
handles the TICK_IN & TICK_OUT interfaces and the
exchange of bytes with the CODEC. It provides packet
management: packet generation and packet reception. To
support this feature, it implements an input buffer to assemble
the bytes received from the CODEC before using it, and an
output buffer to send byte per byte their content to the CODEC.
It is configurable through the following parameters:

• Timecode Master (Enabled/Disabled) defines if the
Node can issue Time-Codes,

• Timecode Interarrival Time is the period of Time-
Codes emission,

• Time Code Start / Stop Time is a time defining when
the Time-Code service is enabled (respectively
beginning and end),

• Debug Level with 4 different values corresponding to
the level of details on the internal Native Node User
Application behavior to print in the Console,

• Packet Type is an integer between 0 and 98, this
parameter allows to identify the packets sent by the

282

Node so that OPNET can compute its specific End-To-
End Delay,

• Cargo Size is the size of the packets sent by the
application to the CODEC,

• SpW Packet Interarrival Time is a waiting time
between each packet sent by the Node,

• SpW Destination Address defined the destination of
the packet. MOST accepts logical and physical
addressing,

• Packet Generator Start / Stop Time is a time defining
when the Packet generation service is enabled
(respectively beginning and end),

• SpW Packet Deadline is the maximum time a packet
can take to cross the network from its source to
destination. The destination Node computes the real
end-to-end delay and in case it is higher than the
specified value, generates an error in the OPNET
console.

The figure here-below provides an overview of the Native
Node MOST architecture with a Register for Time-Count
storage:

As it can be seen, the Generic CPTP & RMAP Node is
more complex; it includes the implementation of PID protocol
(ECSS-E-ST-50-51C), RMAP (ECSS-E-ST-50-52C), CPTP
(ECSS-E-ST-50-53C) and a generic User Application on-top of
each of the CPTP and RMAP protocol layers:

The Network/Data Layers Interface is a layer introduced
for direct management of the SpW CODEC interfaces
including time-codes handling and exchange of bytes with the
upper-layers, it also performs the PID check on the received
packets to route the packet to the relevant upper-layer protocol
between RMAP and CPTP. To do so, this layer implements on
the top-down direction an output buffer to assemble the packets
from the data received from the CPTP and the RMAP blocks
before sending their bytes one by one with a FIFO process and,
on the bottom-up direction, transfers the bytes from the
CODEC to one of the protocol layers depending on the PID
information. CPTP and RMAP modules implement the

protocol part of each standard: packet formatting according to
each protocols. Their respective User Applications implement
a reception buffer and manage the actions related to the packet
content analysis.

For the Native Node as well as for the Generic CPTP &
RMAP Node, the embedded User Application basically
perform packet sending and consumption whatever their actual
content. The RMAP User Application is more advanced; it
allows sending a request which is pre-configured by the MOST
user (allowing for instance to configure a switch configuration
table). The format of this request is checked at receiver level to
determine its effect (for example: READ, READ-WRITE,
READ-MODIFY-WRITE), or simply discard in case of invalid
request.

The Generic CPTP & RMAP node can be configured
through a similar set of parameters than the Native Node with
some additional features:

• Network/Data Layers Interface specificities:
• NDLI Emission Buffer Size is the size of the

packet emission buffer,
• NDLI Local address is the logical address of a

Node, this value shall be comprised between 32
and 254. It is optionally used to check the received
packets address and discard invalid packets,

• NDLI Local address Check, this value
enables/disables the address check,

• CPTP & CPTP User Layers specificities:
• CPTP packet EEP Status allows to end a packet

with EEP (value = 1), by default all packets are
ended with EOP,

• CPTP Elephant Message Size: this parameter
defined the size of an elephant packet,

• CPTP Elephant Message Destination Address,
• CPTP Elephant Message Start Time is a time

defining when the elephant message is sent,
• CPTP Reception Buffer Size: this size shall be

greater than the biggest packet received,
• CPTP Service Rate sets the rate at which packets

are destroyed by the application
• RMAP & RMAP User Layers specificities:

• RMAP Command Value is the content of a RMAP
command to be transmitted,

• RMAP Service Rate sets the rate at which packets
are destroyed by the RMAP application,

• RMAP Key is the value of local key for compare
with RMAP request,

• RMAP Reception Buffer Size: this size shall be
greater than the biggest packet received,

• RMAP Reply Delay is the delay between the
reception of a request and the creation of its reply,

• RMAP Local Address is the local address used to
send a reply and shall be set between 32 and 254,

• RMAP Reply Packet Type is the packet type use
for reply packet, this value shall be an integer
between 0 and 98

283

The Generic Switch is a 32-port (31 external ports, plus 1
connected to a configuration port) Switch configurable either in
Static Mode (no reconfiguration on the initial table) or in
Dynamic Mode (taking into account RMAP messages to
change the routing table). It is able to perform Group
Adaptative Routing and message priority management.

As it can be seen on this figure, the Generic Switch
includes 31 SpW CODEC connected through a switching
matrix that implements the SpW Network level. This matrix
can switch packets from a port to another including
configuration packets to be handled by a local RMAP User

able to receive and interpret the requests and to reconfigure the
matrix dynamically.

The routing switch building blocks can be configured
through the following additional set of parameters:

• Watchdog Timer (Enabled/Disabled): protects the
network of elephant messages. If the time taken to
transmit a message is higher than the timeout value, the
packet will be destroyed automatically in the switch

• Timeout of watchdog timer,
• Switching Table to configure the Switch (including

header deletion capability, priority and one or more
output ports per logical address for GAR).

Apart from the RMAP reconfiguration requests, the RMAP
& CPTP User Applications implement currently very generic
behaviors based on data generation (with selection of size,
address, periodicity, emission buffer sizing) and data
consumption (reception buffer sizing, application service rate).
These basic settings can be refined through the use of
parameter files (“gdf” files) which allows configuring for
instance a non-periodic data generation sequence or a packets
sequence of different lengths, with different destination
addresses, ended with EEP/EOP, etc... However, no special
action is taken pending on the packet content. This kind of
behavior is related to upper-level application (PUS for
instance) and is currently not implemented in MOST v2.2.
However, a MOST user can implement such functions in C-
code in the RMAP User or CPTP User applications. This has
already been done successfully by TAS in the frame of
multiple simulations.

IV. SOME OF THE MOST V2.2 FEATURES

MOST v2.2 aims at providing full visibility on SpaceWire
networks behaviour and provides many ways to configure
them. Addressing can be either physical or logical, priority can
be provided as per ECSS-E-ST-50-12C standard as well as
header deletion. Address check can be performed optionaly at
receiver level. Moreover GAR and dynamically configurable
switching tables are implemented in the Generic 32-port
switch.

MOST v2.2 allows configuring the links data rates; the
CODECs reception buffer sizes, the packet emission and
reception buffers. This has proved very useful to test the effect
of SpaceWire network congestions over applications and the
possible loss of packets due to emission buffers saturation. As
the application does not necessarily consumes incoming
packets at the speed of its underlying SpW CODEC, a service
rate has been put in place to simulate the actual data
consumption capability and provide better representativity for
network sizing. For instance a Payload Data Hanling Unit
receiving science packets from a high speed SpaceWire
network and sending it over a lower speed Radio-Frequency
Unit or Mass Memory with an intermediate buffering might
block the network in case of reception buffer saturation.

Initialisation of the SpaceWire network is also taken into
account with the simulation of exchange of Null messages, and
implementation of LinkStart, AutoStart and LinkEnable flags,

284

triggering the corresponding intialisation sequence with the
final sending of the Flow Control Tokens:

FCT are implemented and exchanged according to the
received data characters flow. We can see here-below that on
the sending direction of the link, a small packet is emitted with
data characters and an EOP (the “small” ending character),
while on the reception direction of the link, a FCT is emitted
after 8 data characters have been sent:

NULL characters are also taken into account, providing
realistic time-code propagation jitters and time spacing
between symbols. These NULL characters can either been
showed or masked in the simulation with the drawback to
lengthen the simulation time and results processing as the links
appears very busy (constant oscillations on the link). Their
effect is anyway taken into account to compute the sending
time of the emitted characters so masking them does not impair
the representativity of the simulation.

Wormhole routing and the corresponding switching ports
blocking until end of packet transmission is an important
aspect of SpaceWire and can be analysed in details using
MOST:

We can see on the previous figure the effect of congestion
on three nodes willing to send packets to a single “Receiver”:
some data characters are stored in the input buffers of the
routing switch then, when saturated, the communication is
blocked until the emission port is free.

FDIR is a major feature for avionics and data handling
engineers. In that respect, many events can be triggered in

MOST, from parity bit error to EEP insertion, elephant packet
generation, or spontaneous disconnections.

At last, MOST v2.2 has a clear implementation of the
SpaceWire protocol stack, providing high flexility to the design
of SpaceWire networks through the delivery of generic nodes
and switches including basic applications with possible
insertion of user-made C-code in identified areas of the generic
User Application code for more advance behavior
implementation (PUS or instrument HKTM packets generation
pending on the reception of a special TC).

It is also possible to design user-made SpaceWire
components through the development of specific assemblies
(for instance a single User Application with multiple
underlying CODECs) through modifications of the generic
components using the OPNET interface (for more advanced
users). This is optimized through the possible re-use of the
already developed building blocks and has been performed by
TAS in multiple occasions (for Virtual Channel Multiplexing
machines, simulation of Masss Memory behaviors, SpaceWire
couplers with different buffering schemes, etc...).

This library is scheduled to be enriched in the future with
specific components existing on the market, for instance the
10X switch, the RTC, SMCS116SpW and SMCS332SpW as it
was the case in the former MOST v1.4 version. Other
implementations could be foreseen on a case-cy-case basis.

V. CONCLUSION

MOST aims at enriching OPNET Modeler® with an
operational SpaceWire library available to the SpaceWire
community. The recent development performed in the frame of
an ESA contract extension brings MOST a major step closer to
this objective. Simplification and modularity enhancement to
facilitate the design of networks and new protocols are the key
features driving the current developments.

ESA own the MOST IPR and intend to release MOST 2.2
to the SpaceWire community in 2013. Some maintenance of
MOST 2.2 and improvements will be performed for ESA by
Thales Alenia Space until October 2014.

VI. REFERENCES

[1] “SpaceWire – Links, Nodes, Routers and Networks”,
ECSS-E-ST-50-12C, 31st July 2008

[2] “SpaceWire protocol identification”,
ECSS-E-ST-50-51C, 5th February 2010

[3] “SpaceWire – Remote memory access protocol”,
ECSS-E-ST-50-52C, 5th February 2010

[4] “SpaceWire – CCSDS packet transfer protocol”,
ECSS-E-ST-50-53C, 5th February 2010

[5] ISC 2010 – “Simulation of SpaceWire Network” –
Thales Alenia Space - France

[6] “Modeling of SpaceWire Traffic” DASIA 2011 & 2012 –
Thales Alenia Space - France

[7] “MOST User Manual” 100435074I, 8th March 2013 –
Thales Alenia Space - France

285

SpaceWire EGSE: Real-Time Instrument Simulation

in a Day
SpaceWire Test and Verification, Short Paper

Stephen Mudie

STAR-Dundee Ltd

Dundee, Scotland, UK

stephen.mudie@star-dundee.com

Martin Dunstan, Steve Parkes

School of Computing

University of Dundee

Dundee, Scotland, UK

mdunstan@computing.dundee.sc.uk,

sparkes@computing.dundee.ac.uk

The SpaceWire Electronic Ground Support Equipment

(EGSE) is a test and development unit produced by STAR-

Dundee, which simulates instruments or other SpaceWire

equipment in real-time. The SpaceWire EGSE is configured

using a simple yet powerful scripting language designed

specifically for SpaceWire applications. A script is compiled and

loaded into the EGSE unit using software. Once configured the

SpaceWire EGSE operates independent of software and

therefore exhibits real-time behavior. The capabilities of the

scripting language combined with the real-time operation of the

hardware make it possible to rapidly mimic real-time behaviour

of SpaceWire equipment, vastly reducing traditional

development time and cost associated with writing equivalent

software in a real-time operating system. The SpaceWire EGSE

can generate detailed packets in pre-defined sequences at specific

times and data rates, controlled by state machines and events. To

integrate with external equipment it has three external input

triggers and one external output trigger. For additional control

over the SpaceWire EGSE, a software API is provided that,

amongst other things, can provide notifications of state changes

and events.

Index Terms— Relevant indexing terms: SpaceWire,

Networking, Spacecraft Electronics, Electronic Ground Support

Equipment.

I. INTRODUCTION

Design of SpaceWire enabled units often require other

SpaceWire units to be simulated. For example, the

development of a mass memory unit will require simulation of

all the instruments that are sending it data. The simulation

needs to run in real-time resulting in the need of SpaceWire

interface devices, a computer running a real-time operating

system, and bespoke real-time software development. The

SpaceWire Electronic Ground Support Equipment (EGSE)

aims to provide real-time simulation of SpaceWire equipment

without the need for designing real-time software.

The SpaceWire EGSE is a test and development unit

produced by STAR-Dundee. It is configured using a scripting

language designed specifically for SpaceWire applications. The

scripting language can be used to send packets in pre-defined

sequences at specific times and data rates. Once a script is

written in which the SpaceWire instrument simulation behavior

is defined, it is compiled and loaded into the EGSE unit using

software. When configured the SpaceWire EGSE operates

independent of software resulting in real-time performance.

This paper briefly describes the SpaceWire EGSE

hardware, software, scripting language, capabilities, benefits

and the current known limitations.

II. SPACEWIRE EGSE HARDWARE

The SpaceWire EGSE hardware consists of two SpaceWire

interfaces for transmitting and receiving SpaceWire traffic,

four external triggers (three in, one out) for interfacing with

external equipment, 128MB of memory in which packet

definitions are stored, two mictor logic analyser connectors to

show device state and a USB connection to the host PC. The

status of the SpaceWire interfaces, external triggers and USB

port are indicated by LEDs.

Fig. 1. SpaceWire EGSE Front Panel

III. SPACEWIRE EGSE SOFTWARE

The SpaceWire EGSE software consists of four

components: a compiler, loader, C API (Application

Programming Interface) and GUI (Graphical User Interface).

The compiler is a command line application that is used to

compile EGSE scripts to configuration files. The loader is

another command line application that is mainly responsible

for configuring a SpaceWire EGSE unit using a configuration

file. The C API software allows users to write their own code

286

Set the line rates to 200Mbit/s

config

 spw_tx_rate(1, 200Mbps)

 spw_tx_rate(2, 200Mbps)

end config

Packet defined with 8 hex

bytes followed by EOP

packet pkt1

 hex(0A FF 34 C8 11 4D 54 AB)

 eop

end packet

Send “pkt1” 0.5s after schedule

starts at 100Mbits/s

schedule schedule1 @ 100Mbps

 500ms send pkt1

end schedule

SpW link 1 state machine

statemachine 1

 # State in which “schedule1”

 # is executed repeatedly

 state state1

 do schedule1 repeatedly

 end state

end statemachine

to interact with a SpaceWire EGSE unit. The GUI application

combines a text editor, for creating and modifying EGSE

scripts, with much of the functionality provided by the

compiler, loader and C API including: script compilation,

EGSE configuration, software event generation, state and event

notification monitoring and periodic time-code generation.

Fig. 2. SpaceWire EGSE GUI

IV. SPACEWIRE EGSE SCRIPTING LANGUAGE

The SpaceWire EGSE is configured using a simple yet

powerful scripting language that was designed specifically for

SpaceWire applications. The scripting language can be used to

send packets in pre-defined sequences at specific times and

data rates. Dynamic packets are defined using packet and

variable definitions. The sequence, timing and data rate at

which packets are transmitted are defined in schedules. The

current executed schedule is controlled by state machines and

events.

Fig. 3. Simple SpaceWire EGSE Script

A. Packet Definitions

Packet definitions can consist of data defined in

hexadecimal or decimal bytes, data imported from file, variable

references, CRC and checksum calculations, EEP and EOP

markers and time-code manager instructions.

B. Variables

Variables are used to define packets with dynamic data.

Declared variables can be referenced in packet definitions. The

value produced by a variable reference is dependent on its type:

 Constant: Value remains the same each time it is

referenced.

 Random: Random value each time it is referenced.

 Increment: Value is incremented by one each time it is

referenced.

 Decrement: Value is decremented by one each time it

is referenced.

 Rotate right: Bitwise rotate right is performed on the

variable each time it is referenced.

 Rotate left: Bitwise rotate left is performed on the

variable each time it is referenced.

 CRC: Used to perform automatic CRC calculations.

This is the RMAP CRC.

 Checksum: Used to perform automatic checksum

calculations.

C. Schedules

Schedules are used to send pre-defined packets at specific

times and data rates. The timing of packet transmission can be

relative to the start of the schedule or relative to the start of the

previous packet transmission.

D. State Machines

State machines are used to control the SpaceWire EGSE

state. One state machine is defined per SpaceWire interface.

Each state in a state machine is associated with a schedule

which is executed when that state is entered. State transition

statements specify the event(s) on which to transition from one

state to another.

E. Events

Events are used to control the current state of the

SpaceWire EGSE state machines and therefore the current

packet generation schedule. The different event types are:

 Software: Transition from one state to another in

response to events generated from host software.

 State machine: Raise an event when a state of interest

is entered.

 External trigger in: React to an external input trigger

signal received from other equipment.

 External trigger out: Generate an external trigger

output signal in response to an event of interest.

 Time-code received: React to the receipt of a time-

code on a SpaceWire interface.

287

Set the line rate of

link 1 to 200Mbits/s

config

 spw_tx_rate(1, 200Mbps)

end config

Define events

events

 # Software in event 0

 swEvent0 = software_in(0)

end events

Define packet “image_001”

packet image_001

 file(“image_001.ppm”)

 eop

end packet

Define packet “image_002”

packet image_002

 file(“image_002.ppm”)

 eop

end packet

Define empty schedule “nothing”

schedule nothing

end schedule

Define schedule “sendImages”

schedule sendImages @ 100Mbps

 100ms send image_001

 200ms send image_002

end schedule

Define SpW link 1 state machine

statemachine 1

 # Define starting state “off”

 initial state off

 do nothing

 on swEvent0 goto sendImages

 end state

Define state “sendImages”

 state sendImages

 do sendImages

 goto off

 end state

end statemachine

 Time-code transmitted: React to the transmission of a

time-code from a SpaceWire interface.

 Received pattern matched: Transition from one state to

another when the SpaceWire traffic received on an

interface matches a specified pattern.

 Link error: React to a link error detected on a

SpaceWire interface.

V. SPACEWIRE EGSE EXAMPLE SCRIPT

The following example script briefly illustrates some of the

SpaceWire EGSE scripting language (please note that lines

starting with ‘#’ are comments). Assume there is a requirement

to simulate a camera that sends two images with a 100ms gap

between each at a data rate of 100Mbits/s. Please note that two

images are used in this example to keep the script size sensible

but this could easily be modified to handle more images.

Fig. 4. SpaceWire EGSE Camera Script

This example consists of a configuration block, an events

block, two packet definitions, two schedules and a state

machine. Within the configuration block is a command that

sets the link speed of SpaceWire link 1 to 200Mbits/s. The

events block contains a software in event named “swEvent0”

associated with software event 0. A packet named

“image_001” is defined containing the data held in the image

file named “image_001.ppm” followed by an EOP. A packet

named “image_002” is defined containing the data held in the

image file named “image_002.ppm” followed by an EOP. A

schedule named “sendImages” sends the two image packets,

“image_001” 100ms after the schedule starts and “image_002”

200ms after the schedule starts at a data rate of 100Mbits/s. An

empty schedule named “nothing” does nothing. A state

machine for SpaceWire link 1 contains two states named “off”

and “sendImages”. “off” is the starting state and executes the

schedule “nothing”. When software event “swEvent0” is

detected a transition to the state “sendImages” will occur. The

state “sendImages” executes the schedule “sendImages” before

transitioning to the “off” state.

Fig. 5. Camera State Diagram

When this script is compiled and the resulting configuration

file is loaded into the SpaceWire EGSE, initially nothing is

transmitted. When software event “swEvent0” is detected a

state transition occurs and two pre-defined images stored on

disk are sent as single packets. These are transmitted at 100ms

intervals at a data rate of 100Mbit/s. The state machine then

transitions back to the “off” state where nothing is transmitted.

Fig. 6. Link Analyser Mk2 Capture of Camera Output

VI. CAPABILITIES AND BENEFITS

Thanks to the ability of the SpaceWire EGSE to operate

independent of software and the scripting language used to

configure it, using the SpaceWire EGSE it is possible to

rapidly simulate SpaceWire instruments or other equipment in

real-time. The SpaceWire EGSE can transmit pre-defined

sequences of packets consisting of varying payloads with

accurate timing at specific data rates. The 128MB of memory

available to the EGSE, in which pre-defined packet data is

stored, makes it possible to simulate large payloads from high

data-rate instruments. The SpaceWire EGSE monitors the

received SpaceWire traffic and can respond to a matched

pattern, time-codes and link errors. To interface with external

equipment the EGSE has one output trigger, which can

288

generate a signal in response to a specific event, and three input

triggers, that allow the EGSE to react to input signals. The

SpaceWire EGSE supports time-code generation and can act as

a time-code master. Notifications of state changes and events

are sent from the EGSE unit to the host software. These can be

used to monitor and debug the EGSE activity using the

provided GUI. Alternatively, custom applications written using

the provided C API can use these for their own purpose e.g. to

integrate with other equipment which use an alternative to

SpaceWire.

VII. LIMITATIONS

The SpaceWire EGSE scripting language is designed to

meet the requirements of as many SpaceWire instruments and

equipment as possible but there will be times where an

instrument cannot be successfully simulated and traditional

EGSE software development will be required. The SpaceWire

EGSE has some limitations that we are aware of. One

limitation is many of the structures used in the language have a

finite limit. The number of variables, events, packets and states

declared and schedule references each have a limit. Many of

these limits far exceed the requirements of most simulations

but there may be rare cases where these restrict the ability to

simulate an instrument in its entirety. Another known

limitation is the inability to retransmit the contents of a

received packet. For example, using the pattern match received

event it is possible to detect an RMAP read command received

on a SpaceWire interface, however to transmit the read reply

requires the transaction ID of the received read command. A

solution to this problem has been identified and is expected to

be implemented in the near future.

VIII. CONCLUSION

This paper has briefly described the SpaceWire EGSE,

including the EGSE hardware, software and scripting language.

To demonstrate some of the key concepts of the scripting

language (link speed configuration, events, packet definitions,

scheduling and state machines) an example script was shown.

The capabilities, benefits and known limitations of the

SpaceWire EGSE were then discussed.

The compact and powerful nature of the SpaceWire EGSE

scripting language combined with the hardware’s ability to

operate independent of software and therefore in real-time,

make it possible to simulate SpaceWire equipment in real-time

in little more than a day. This rapid development time makes

the SpaceWire EGSE an attractive alternative to traditional

EGSE development.

REFERENCES

[1] STAR-Dundee, SpaceWire EGSE User Manual, v1.03.

[2] STAR-Dundee, http://www.star-

dundee.com/sites/default/files/SD_TN_006%20spw_egse_came

ra_simulation_v3.pdf, SpaceWire EGSE: Simulating a Camera,

STAR-Dundee Website.

[3] STAR-Dundee, http://www.star-

dundee.com/products/spacewire-egse, SpaceWire EGSE,

STAR-Dundee Website

289

STAR Fire: SpaceFibre diagnostic interface and

analyser
SpaceWire Test and Verification, Short Paper

Albert Ferrer Florit, Alberto G. Villafranca,

Chris McClements, Steve Parkes

STAR-Dundee Ltd

Dundee, UK

albert.ferrer@star-dundee.com, alberto.gonzalez@star-

dundee.com, chris.mcclements@star-dundee.com,

steve.parkes@star-dundee.com

Abstract— SpaceFibre is a new technology for use onboard

spacecraft that provides point-to-point and networked

interconnections at Gigabit rates with Quality of Service.

SpaceFibre carries SpaceWire packets over virtual channels and

provides a broadcast capability similar to SpaceWire time-codes.

In order to assist with the development, testing and validation of

the first SpaceFibre system a SpaceFibre diagnostic interface and

analyser unit, called STAR Fire, was built by STAR-Dundee.

This paper describes STAR Fire, the first complete test and

development solution available for SpaceFibre. STAR Fire has

two independent SpaceFibre interfaces compliant with the

SpaceFibre standard, each one with an embedded link analyser

and multiple very high data rate hardware data generators and

checkers. The unit can be configured in interface or sniffer mode.

The sniffer mode is used to monitor protocol and user data

produced by an external unit passing in both directions along a

SpaceFibre link, similar to the STAR-Dundee SpaceWire Link

Analyser. The STAR Fire unit can also be used as a bridge

between SpaceWire and SpaceFibre links, using an embedded

router that interconnects some SpaceFibre virtual channels with

the two SpaceWire ports provided.

These and other functionalities are easily configured using a

Graphical User Interface software in the host PC. The user can

supervise the status of the unit and set the parameters of each

link, broadcast channel, virtual channel data rate, Quality of

Service and error injection. The link analyser module decodes

and shows the SpaceFibre protocol and user data stream which

can be analysed at character, word or frame level.

STAR Fire has been designed to support the rapid and painless

adoption of the SpaceFibre technology within the SpaceWire

community.

Index Terms—SpaceFibre, SpaceWire, STAR Fire

I. INTRODUCTION

SpaceFibre is a very high-speed serial link designed

specifically for use onboard spacecraft and to be compatible

with SpaceWire protocol [1]. The aim of SpaceFibre is to

provide point-to-point and networked interconnections for

Gigabit rate instruments, mass-memory units, processors and

other equipment, on board a spacecraft. SpaceFibre is designed

to be compatible with the SpaceWire protocol at packet level

but providing a much higher data rate.

STAR-Dundee in collaboration with the University of

Dundee has developed STAR Fire, a complete SpaceFibre

diagnostic unit configured through a Graphical User Interface

(GUI) which also provides status information and analysis

capabilities. Hence, STAR Fire provides a complete

SpaceFibre test and development solution.

STAR Fire hardware unit features two independent

SpaceFibre interfaces compliant with the latest draft of

SpaceFibre ECSS standard [2], each one with an embedded

link analyser and multiple very high data rate hardware data

generators and checkers. Furthermore, STAR Fire unit

provides two SpaceWire ports and an embedded SpaceWire

router. It also provides hardware triggering capabilities and the

ability to access the data of the embedded analyser using two

logic analyser MICTOR connectors or a PC, by using specific

software. Additionally, STAR Fire unit allows user update

through the USB port. In this way, it is easy for users to keep

track of new developments and functionalities added to the

design.

STAR Fire software is based on a GUI that allows the

configuration of the SpaceFibre interfaces and the use of the

embedded link analyser. It also controls the parameters of the

data generators and monitors the status of the data checkers for

virtual channels and broadcast data. Furthermore, there is a

trigger module that decodes the SpaceFibre data stream which

can be analysed using the word or the frame based view.

II. SPACEFIBRE OVERVIEW

SpaceFibre high-speed serial link carries SpaceWire

packets over multiple channels, called virtual channels (VC),

each one with a defined Quality of Service (QoS) and provides

an improved broadcast mechanism similar to SpaceWire time-

codes but offering much more capability. SpaceFibre has two

290

types of user interfaces to send data. The VC interface

comprises a number of virtual channel buffers for sending

SpaceWire packets and the same number for receiving

SpaceWire packets. SpaceFibre is compatible with the packet

level of the SpaceWire standard. This means that applications

developed for SpaceWire can be readily transferred to

SpaceFibre. The broadcast interface is designed to send short

messages of up to 8 bytes with very low latency across the

network, in a similar manner as the SpaceWire time-codes, but

providing not only timing distribution but also signalling and

interrupt services. SpaceFibre currently operates at 10 times the

maximum data-rate of SpaceWire – i.e. link speed of 2.5 Gbps

– and can run over fibre optic (up to 100 m) or copper media

(up to 8 m).

SpaceFibre provides a completely reliably link with the

fastest possible error recovery time for transient and persistent

errors. This is fulfilled with a retry mechanism that guarantees

reliability in the communications link. This allows recovering

from transients and persistent errors on the SpaceFibre link.

The retry mechanism uses the following Fault Detection,

Isolation and Recovery (FDIR) mechanisms:

 Notification of data or control information using positive

and negative acknowledgements (ACKS/ NACKS)

 Error detection using sequence numbers, 8B10B error

detection capabilities and CRC codes

 Automatic resending of data frames, broadcast frames and

flow control tokens using a Go-Back-N scheme when

sporadic errors occurs

 Automatic re-initialisation of the link when an error is

persistent

In addition, SpaceFibre provides timely data delivery and

determinism using a medium access controller that determines

which channels can send data and in which order. The QoS is

independently configurable for each VC. Three mechanisms

can be configured and combined:

 Priority: provides less latency to virtual channels with

higher priority

 Bandwidth allocation: provides a minimum guaranteed

throughput

 Scheduling: provides deterministic packet delivery

These different QoS parameters work together in a

consistent manner. Hence, it is possible to work at the same

time with a VC that requires minimum latency for command

and control operations, a VC with a guaranteed throughput for

payload data, and a deterministic delivery for packets that need

to be sent and processed in a specific order.

III. SYSTEM ARCHITECTURE

The STAR Fire hardware unit consists of two SpaceFibre

interfaces (eSATA connectors), two SpaceWire interfaces

(micro-miniature D-type connectors), four external triggers

(SMB connectors, three input and one output) for interfacing

with external equipment and two logic analyser (MICTOR

connectors) interfaces. The status of the SpaceWire and

SpaceFibre interfaces is notified by LEDs. The hardware

design provides, in addition to the SpaceFibre and SpaceWire

ports, multiple very high data rate data generators, data

checkers, link analysers and an embedded SpaceWire router.

The system architecture is shown in Fig. 1.

data
source &

sink

Reg

USB 3

Router

SpW

SpW

1

2

5
6

SpaceFibre
Port 1

(8 Virtual
Channels)

SpFi

Analyser
Mictor

data
source
& sink

SpaceFibre
Port 2

(8 Virtual
Channels)

Reg

7
8

Analyser

SpFi

Mictor

RMAP Config
(RMAP Target)

4

Configuration Bus

Figure 1 System Architecture

Each SpaceFibre port contains eight VCs that are arbitrated

following the QoS requested. The SpaceWire interfaces and

some SpaceFibre VCs are connected to an embedded

SpaceWire router as shown in Figure 1. This allows SpaceWire

packets from SpaceWire interfaces to go into SpaceFibre VCs

and vice versa. However, in order to achieve the much higher

data rate of SpaceFibre, the hardware data generators and

checkers connected to virtual channels 2 to 7 can be used.

Similarly, each SpaceFibre port also features a broadcast data

checker and generator. Finally, an RMAP [3] target allows

accessing to configuration and status registers of the

SpaceFibre cores and the data generators and checkers. The

RMAP target is accessed by the software through the router by

a USB port but can also be accessed through the SpaceWire

ports.

IV. STAR FIRE CONFIGURATOR SW AND TRIGGER

STAR Fire also includes dedicated software developed to

control and monitor the hardware unit. STAR Fire

Configurator allows the configuration of the SpaceFibre

interfaces and the use of the embedded link analyser. It also

controls the parameters of the data generators and monitors the

status of the data checkers for both VC and broadcast data. The

software suite also includes STAR Fire Trigger. This Trigger

module allows programming the trigger and decoding the

SpaceFibre data stream. Two different display views for the

decoded data are offered. Analysis of the data is possible using

either Word or Frame based view.

Figure 2 presents a screenshot of the STAR Fire

Configurator (top) and Trigger windows (bottom). There are

different regions in the Configurator tool window which

control the different parameters of the unit.

291

A. Unit

This region identifies the unit selected. Several units can be

connected to the same computer and controlled from a single

Configurator instance at the same time.

Figure 2 STAR Fire Configurator (top) and Trigger

windows (bottom)

B. SpaceFibre Ports

The two SpaceFibre ports can be controlled in this region.

The lane status of the port is displayed. The starting mode

(Start or AutoStart) can be configured. Additionally, the

initialisation timeout can be controlled for debugging purposes.

C. Modes

STAR Fire can be configured in sniffer or interface mode.

When the sniffer mode is set the STAR Fire is only used to

analyse the data stream of an external SpaceFibre capable unit.

On the other hand, in interface mode each SpaceFibre port of

the unit is a source and a destination of SpaceWire packets

encapsulated in SpaceFibre frames. Besides, the whole setup of

a unit can be saved and loaded into different files for faster

configuration.

D. Virtual Channels

Each SpaceFibre interface has eight VCs. Independent data

generators and checkers are connected to each of the input and

output of VCs 2-7. The generation rate, packet size and

working period can be controlled in this region. The generation

rate specifies the duty cycle of the specified period. For

example, if a 75% bandwidth and 100 word period are

selected, the data generator will generate consecutive 75 words

and remain idle for 25 words before starting to send data again.

VCs 0 and 1 are connected to an internal SpaceWire router

and are used to transmit SpaceWire packets from the two

SpaceWire ports.

QoS parameters (priority, bandwidth, scheduling) for each

VC are also configured here. A bar shows the current

generation rate of the selected channel and an error counter

verifies that no errors are encountered in the data pattern.

E. Broadcasts Generator

Broadcast frames can also be generated. A single broadcast

or periodic broadcasts can be sent through the SpaceFibre

selected port with a configurable period. The data received is

checked by a broadcast checker and the number of errors is

displayed.

F. Error Injection

In addition to the status and control information, it is

possible to automatically insert random disconnections on the

selected link or a specific bit error rate in the form of a power

of 10. This feature is useful when simulating persistent errors

or bit flip conditions on the line.

G. Trigger

The Trigger window allows two operation modes. By

default the Simple Trigger mode is shown. However, the

Advanced Trigger mode can be selected in the GUI. This

advanced mode shall only be used for debugging purposes or

when using complex setups (e.g. several STAR Fire units

connected to the same PC, using external trigger signals, cross-

triggering between units, etc.). For the sake of simplicity only

the Simple Trigger is shown.

When different units are connected to a PC, the Device

drop-down list allows selecting the appropriate one. Port 1

and 2 can be selected for any unit, and also whether the trigger

analyses the RX or TX side of the selected port. Finally, the

condition that triggers the unit is selected in the Condition

drop-down list. Any control word defined by SpaceFibre can

be selected. The Advanced Trigger offers the possibility of

triggering the unit not only on words but also on certain events,

namely, disparity or not-in-table errors, data checker errors,

etc. This can be useful for analysing specific situations during

development. Furthermore, the Analyser will show by default

the RX and TX sides of the selected Port. But the Advanced

Trigger also offers the possibility of displaying the RX side of

both ports of the selected Unit instead.

After setting up the trigger, the Run button activates it. The

status of the trigger is continuously shown. When triggered, a

Search Text box allows searching for particular strings in the

captured data. The row in which the text is found is shown in

the STAR Fire Analyser window. The data can also be saved

or loaded, and exported to be analysed in other software if

necessary.

292

V. STAR FIRE ANALYSER

The STAR Fire Analyser shows two separate views which

analyse data captured by the trigger or loaded from a data file

(Fig. 3). The main window is called the Word Viewer (top

panel of Fig. 3) and shows the SpaceFibre words received. The

Word Viewer presents the analysis of data at word level. Each

SpaceFibre word consists of four 8B10B symbols or characters

[4]. In the central part of the window the word is decoded,

sometimes complemented with some additional information

such as the frame sequence number. Apart from this

information, the four different symbols composing a word are

also displayed in the external part of the window.

Figure 3 STAR Fire Analyser: Word Viewer (top) and

Frame Viewer (bottom)

The other window is the Frame Viewer (bottom panel of

Fig. 3) and shows a more compact analysis of the data. The

received data and broadcast frames of each side is displayed,

with a separate column for each VC. Note that it is possible to

have broadcast frames in the middle of data frames, but at any

particular time selected by a row there can only be one VC data

frame on each side (as these frames are being multiplexed

through a single SpaceFibre link). If there is an EOP within a

data frame it is shown together with the number in bytes of the

SpaceWire packet that the EOP terminates. This allows a quick

inspection of the SpaceWire packets travelling through the

VCs.

Finally, both viewers share the same row numbers. Thus,

their view is automatically updated to always show the selected

row in both windows.

VI. CONCLUSION

The STAR Fire diagnostic interface and analyser unit has

been presented here. This unit can be easily configured through

a Graphical User Interface providing complete status

information and analysis capabilities. STAR Fire provides a

complete SpaceFibre test and development solution. It features

an internal SpaceWire router which allows connecting two

SpaceWire interfaces to the SpaceFibre virtual channels.

Furthermore, STAR Fire also contains embedded data

generators and checkers which can individually operate up to 2

Gbps, broadcast generators, and error and link disconnections

insertion. An embedded analyser allows triggering on certain

events (e.g. errors or specific data words) and to display and

store the captured data. These hardware capabilities are

combined with a software package which provides a GUI to

control STAR Fire operation and triggering, and also to access

the analyser with byte, word and frame level views. All in all,

STAR Fire is a flexible and powerful tool which provides

support for adoption of the SpaceFibre technology.

REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,

Nodes, Routers and Networks”, Issue 1, European Cooperation

for Space Data Standardization, July 2008.

[2] S.M. Parkes, A. Ferrer, A. Gonzalez, & C. McClements,

“SpaceFibre Standard Draft E1”, University of Dundee, 28th

September 2012.

[3] ECSS, “SpaceWire - Remote memory access protocol”, ECSS-

E-ST-50-52C, Feb 2010.

[4] A. X. Widmer and P. A. Franaszek, “A DC-Balanced,

Partitioned-Block, 8B/10B Transmission Code”, IBM J. Res.

Dev., Vol 27, Issue 5 (440-451), 1983.

293

Missions & Applications (Short)

294

SpaceWire in Solar Orbiter
Missions & Applications, Short Paper

Paul Norridge, David Pecover

Astrium Ltd

Stevenage, SG12AS, UK

Joachim Poeckentrup

Astrium Gmbh

Friedrichshafen, Germany

Stefan Thürey, Wahida Gasti, James Windsor

European Space Agency, ESTEC

 Noordwijk, The Netherlands.

Michele de Meo

Thales Alenia Space

Milan, Italy

Abstract—The Solar Orbiter spacecraft data handling and

instrument communication architecture comprises a SpaceWire

network. This includes command and monitoring of instruments,

transfer of data for on-board storage/retrieval and inter-

instrument communication.

Index Terms—SpaceWire Network, Solar Orbiter DHS, FDIR.

I. INTRODUCTION

The European Space Agency’s Solar Orbiter mission is

designed to carry an extensive complement of scientific

instruments to the near-Sun environment and generate unique

insights into the workings of the Sun. While the mission

presents many challenges, this paper focuses on just one: the

distribution of data and command packets between instruments

and the data handling functions of the spacecraft platform.

The Solar Orbiter payload consists of ten instrument suites,

each providing scientific data and engineering telemetry data

for downlink, and requiring command interfaces to the

spacecraft. In addition, many instruments intend to share

measured parameters to optimize the scientific return. The

Spacecraft must support all these data flows. As the downlink

bandwidth is small at large spacecraft-Earth distances, high

capacity storage of science data intended for transmission must

also be provided.

SpaceWire has been selected as the sole communication

interface between the payload instruments and the spacecraft,

building on heritage from the BepiColombo mission. This

paper gives an overview of the architecture and the design

choices made in response to the need for inter-instrument

communication and robust failure handling.

II. MISSION OVERVIEW

The Solar Orbiter mission takes the next step in the Sun’s

observation from space. The mission profile and

instrumentation enables the exploration of the largely

uncharted innermost region of the solar system. The selected

orbit allows observations of Sun from as close as 0.28AU and

includes perihelion fly-bys that are tuned to the Sun’s rotation

rate in order to provide a co-rotating vantage point of the Sun’s

surface.

The mission focuses on four fundamental questions about

the interaction of the sun with the heliosphere:

• What drives the solar wind and where does the

coronal magnetic field originate?

• How do solar transients drive heliospheric variability?

• How do solar eruptions produce energetic particle

radiation that fills the heliosphere?

• How does the solar dynamo work and drive

connections between the Sun and the heliosphere?

In order to address these questions, the Solar Orbiter

spacecraft carries then instrument suites that will gather data

and provide observations of the Sun. The instruments can be

partitioned into “remote sensing” – which image the solar

photosphere and the corona in a number of different

wavelengths – and “in-situ” – which measure key

characteristics of the solar wind (e.g. particle content and

magnetic & electric fields from DC to several MHz) at the

spacecraft location. The in-situ instruments are expected to

generate a steady, low bandwidth flow of data throughout the

spacecraft operations. The remote sensing operations are

restricted to three key phases in each orbit and will typically

alternate between quiet periods and periods of high bandwidth

data production.

The spacecraft will follow a highly elliptical orbit between

0.28AU and 0.9AU. The orbit is design to incorporate a

number of Gravity Assist Manoeuvers at Venus which will

systematically increase the inclination of the orbit with the

solar equator over the mission life, making the poles of the sun

accessible to the imaging instruments. The characteristics of

the orbit mean that the available bandwidth for downlink of

science data will vary greatly over time and there will be long

periods when the spacecraft is out of line-of-sight from the

Earth. For this reason, the spacecraft data handling must

provide a central mass memory function where data can be

stored until sufficient downlink resources are available.

Naturally, the mass memory function must have sufficient

flexibility to receive data from the instruments according to

their selected data generation schedules.

As well as generating data for downlink, there is a

requirement for the instruments to be able to transfer

information amongst themselves. These interactions are

intended to facilitate optimal science return both by allowing

295

measurements to be focused on the most interesting events and

by ensuring optimal use of the able downlink bandwidth via

intelligent data reduction.

The inter-instrument interactions come in two types. The

first is the transfer of key measured parameters to allow results

from one instrument to be shared with others in real-time. For

example, the Magnetometer (MAG) instrument will provide a

measurement of the magnetic field vectors to the Solar Wind

Analyser (SWA). SWA measures the velocities of incoming

electrons. Although it is able to measure a full 360⁰ field of

view, this cannot be done at high rate. When provided with

field vectors it is able to focus high rate measurements of

electron velocities at the most interesting point – along the

magnetic field lines.

The second type of inter-instrument communication

permits one instrument to alert others to specific events, which

may trigger specific or high rate measurements. Bandwidth

restrictions would not permit continuous high rate

measurements, but there are occasions when more frequent

measurements are particularly desirable. For example, the

Radio & Plasma Wave (RPW) experiment will indicate the

detection of an interplanetary shock to SWA (and others). This

trigger allows the receiving instruments to switch into a so-

called burst mode for the duration of the shock event.

In addition to supporting messaging between payloads, the

spacecraft is required to provide a precise time distribution to

allow multiple instruments to carry out coordinated and

correlated measurements.

III. ARCHITECTURE

SpaceWire has been selected as the sole communication

interface between each of the instruments and the spacecraft

data handling subsystem (DHS). It also provides a key

interface within the DHS itself, between are the On-Board

Computer (OBC) and the Solid State Mass Memory (SSMM).

A. Network Requirements

From the above system description we can identify a

number of key traffic flows that the SpaceWire network must

support:

• Telemetry & science data from instruments to SSMM

• Telecommands & operational telemetry between the

OBC and instruments

• Telecommands & operational telemetry between the

OBC and SSMM Processor

• Inter-instrument exchanges (see above)

• Time Code distribution

For Solar Orbiter, the average science data rates are

sufficiently low that a multiplexing of data and TM/TC packets

is not critical for system performance. The average science data

rate is driven by the available downlink bandwidth; the

maximum allocation for any instrument is 20.5 kbps. Further,

the commanding rate is expected to be low.

The network must ensure that the message latency – both

from routing and packet collisions – is low. The primary driver

on latency is the inter-instrument communication. It will only

be possible to take full advantage of instrument collaboration if

the time to transfer triggers and parameters is kept short.

Naturally, the network architecture must also ensure

failure-tolerant routing between the various nodes on the

network. This should include handling of failed links and

unwanted node behavior.

B. Nodes

Before detailing the network implementation, it is useful to

summarise key aspects of each of the nodes that must be

supported – the OBC, SSMM, and instruments.

The OBC (supplied by RUAG, Sweden) is the primary

computer on the spacecraft and hosts the central control

software. As well as processing resources, it provides

reconfiguration electronics, 8 Gibits (EoL) of redundant Mass

Memory (used for storing platform housekeeping data) and the

Transfer Frame Generator (TFG), which handles all traffic for

transmission to the ground. The OBC provides two sets of

SpaceWire interfaces. One set is associated with the processing

function and is available for management of the other units on

the network. The other is associated with the TFG and is

dedicated to reception of data from the SSMM for downlink.

The SSMM (supplied by TAS, Milan) provides a central

Mass Memory of 512 Gibits (EoL) for storage of telemetry

packets. The storage is available to the instruments for both

science measurement and housekeeping data. (It is also able to

accept data from the OBC, but this capability is not utilized by

the Solar Orbiter system design.) The SSMM is functionally

partitioned into a Memory Array, which provides the data

storage; an input function, which routes incoming packets to

the appropriate memory array locations; an output function,

which transfers packets from the memory array to the OBC

TFG; and a Memory Controller, which provides control and

monitoring.

The instruments vary in implementation, but typically

include an instrument controller consisting of a LEON

processor and accompanying FPGAs. Each instrument is

required to provide redundant SpaceWire interfaces to the

Spacecraft, which support both commanding, telemetry, and

the transfer of science data. It is left open to the instrument

designers whether these interfaces are each connected to

separate, cold redundant controllers or whether they are both

managed by a single controller.

Many instruments have elected to incorporate large

memories internally for buffering of science data. This allows

some flexibility in selection of the data transmitted to the

ground. For example, an imaging instrument may store a large

number of image files and only send to the SSMM those

associated with the most interesting events. This ensures that

available downlink bandwidth is focused on the most important

information. The consequence for the spacecraft is that these

instruments are likely to employ a very low data rate during an

observation window followed by a high rate transfer once data

selection is complete.

The SSMM and instruments all function as packet

terminals based on the ECSS Packet Utilisation Standard.

296

C. Network Implementation

The Solar Orbiter SpaceWire network builds on the

architecture developed for the BepiColombo Data Handling

Subsystem (under project prime contractor Astrium Gmbh).

Both missions share the same basic network configuration

between the Onboard Computer (OBC), Solid State Mass

Memory (SSMM) and instruments. The differences are limited

to the number of instruments in each mission and the detailed

transactions that the network is expected to support.

When considering the network design, it is important to

keep in mind the accommodation of the routing function as

well as the basic topology. There are many possible topologies

that could support the required data flows, but the final

selection must map to a hardware configuration that is feasible

both technically and industrially. For example, an optimal

theoretical solution might involve a standalone routing box

near to a group of instrument nodes, but the need to provide a

dedicated power converter and mechanical housing could

quickly result in an over-complicated implementation.

For Solar Orbiter and BepiColombo, the decision has been

made to accommodate the entire network infrastructure into the

SSMM alongside the data storage and retrieval. In fact, this is a

natural choice since all other network nodes already interface

with the SSMM directly, either for storage or commanding.

The supplementary function that the SSMM must provide is to

allow packets from the OBC to be routed through the SSMM to

the instrument and vice versa.

The SSMM contains a suite of routers that connect the

external units to SSMM resources and also allow external units

to send packets amongst themselves. In this way, packet

transfer between external units is transparent to the SSMM and

places no load on the SSMM processing resources. The SSMM

provides cross-strapping between nominal and redundant

interfaces by linking routers directly. This reduces the amount

of cross-strapping needed external to the unit and provides a

high degree of flexibility.

All routing in the system is implemented using Logical

Addressing (with the exception of router configuration

packets). The same Logical Address is used for both nominal

and redundant interfaces with external units. This simplifies

messaging for the OBC and instruments, since it is not

necessary for them to know which interface is operational

when constructing SpaceWire packets.

A simplified depiction of the network architecture is given

in figure 1. Further details of the SSMM implementation are

provided in [1].

While the OBC has overall responsibility for the system

configuration, the SSMM handles the low-level configuration

of the routers. For instance, the OBC can specify a particular

instrument interface to be used and the SSMM will reconfigure

the routers as necessary. Similarly, if a router is identified as

failed, the OBC commands the SSMM to power this

component down and the SSMM updates the network to ensure

that packets are still routed correctly. For complex recoveries,

the SSMM provides commands for low-level configuration.

D. Protocols

As noted above, all nodes on the SpaceWire network are

PUS packet terminals and, hence, data are transferred on the

SpaceWire links via the CCSDS Packet Transfer Protocol. The

only exception is the use of RMAP packets sent within the

SSMM to configure the router ASICs.

Solar Orbiter and BepiColombo implement the same

scheme for distribution of the on-board time (OBT). The OBC

sends a time code each second. The “time count” in the packet

is in units of 1 second and reflects the current OBT value

(modulo 2
6
s). On arrival of a time code the receiving unit sets

the sub-second component of the local time to zero and aligns

its local seconds count with the value supplied in the time code

packet. For a full update of the local time of a payload, a

combination of time code and telecommand packet is used. In

this case, the TC packet specifies the full OBT to be applied at

receipt of the next time code.

IV. INTER-INSTRUMENT COMMUNICATION

As discussed above, it is important that the Solar Orbiter

instruments have the ability to communicate with each other in

real-time and without the need for ground interaction.

One possible fulfillment of this requirement would be to

simply allow all instruments to send data directly to each other

via the SpaceWire network. So, for example, the MAG payload

could generate a packet containing field vectors and send

copies of this to the interested instruments. A cursory

inspection of the architecture outlined will show that the Solar

Orbiter routing topology has the flexibility to support this.

However, this approach would not be robust against anomalous

SSMM OBC

Transfer Frame
Generator

Processor Module

Instruments

R

R Processor Module

Transfer Frame
Generator

SSMM Supervisor

In
p

u
t

M
o

d
u

le

O
u

tp
u

t
M

o
d

u
le

Memory Array

R

R

R

To redundant functions To redundant
functions

SpaceWire

Parallel interface

R Router

Figure 1: SpaceWire network architecture

297

behavior of a single network node. A better solution is to use

the OBC as a hub for collating & disseminating information.

That is, the OBC provides a facility for each instrument to

submit data for distribution; at regular intervals it then

consolidates the data provided by all instruments and sends a

single combined packet to all the payloads.

Two system-level considerations motivate this centralized

approach. The first is the risk associated with permitting

payload mode changes that are not managed by the ground or

the platform (e.g. transition to a measurement burst mode). The

concern is that such mode changes could impact spacecraft

performance without warning or opportunity for OBC veto.

The second is related to spacecraft validation. It is important to

demonstrate that the whole system can operate in a correct and

robust way. Clearly, allowing free communication between all

network nodes will make this validation process highly

complex, both in analysis of traffic scenarios and in testing. In

particular, final proving of robustness would not be possible

until all components are integrated.

Although the primary motivation comes from the system

level, a centralized architecture presents a number of benefits

for the instrument teams as well. To understand these, it is

useful to note that the proposed approach is strongly analogous

to the Mediator pattern used in object-oriented software

engineering and brings with it many of the same advantages.

Most importantly, use of a Mediator object allows decoupling

of the system components and reduction of interface

complexity. For Solar Orbiter the consequences of decoupling

are that the instruments can be designed with minimal reliance

on other payload developments. In testing, they can be

validated with a single, simple interface and do not need to

consider the interaction of messages arriving from multiple

sources. Operationally, the source instrument for a trigger does

not need to know if the recipients are present or operational

before sending packets into the network; only the OBC needs

to be available and, as it already has knowledge of the system,

can distribute information appropriately. Similarly, receiving

instruments do not need to be aware of the ultimate source of

data or triggers, or even the interface definition of other system

components. If an instrument is not operational for some

reason or changes its interface (rate, format) late in

development, only the OBC needs to know and the other units

will be largely unaffected.

The messaging approach used to support this centralized

architecture is based around PUS service packet exchanges (see

figure 2). Each instrument sends a fixed TM packet to the OBC

at regular intervals. The data in these TM packets are extracted

by the OBC software and placed in a data pool. The OBC then

collates the data to be shared from the data pool into a single

periodic TC packet; copies of this TC packet are then

distributed to all operational payloads. The rate at which the

TM and TC packets are transferred can be defined by the

instrument developers up to a maximum of 8Hz.

As will be seen below, this periodic messaging between

OBC and instruments has further advantages for network

failure detection. It also provides a natural method for

instruments to be warned of potential spacecraft anomalies:

When the spacecraft experiences a major anomaly, the OBC

will halt communications with the instruments and focus on

essential tasks to save the spacecraft. It is also likely that all

instruments will need to be powered down in this mode. In

some cases it may be necessary for an instrument to take action

before power is removed (for example, closure of a protective

door). With the scheme envisaged here, the instrument may

identify an imminent power down by monitoring the incoming

TC packets used for inter-instrument communications and/or

Time Code arrivals. When a pre-defined number have been

missed in a row, it may assume that a problem has occurred

and a power down should be expected. It is not important to

the instrument whether this loss of traffic is due to a controlled

recovery by the spacecraft software or an OBC hardware issue.

V. FDIR

The design of a SpaceWire network and messaging must

ensure the system can respond to failures and to unexpected

behaviour of nodes. The experience of Solar Orbiter and

BepiColombo has clarified a number of problems that must be

addressed to ensure a robust system. Issues identified in these

missions include network hardware failures, excessive traffic to

the DHS units and failures in communication with instruments.

A. Network failures

The primary need to ensure a robust network is the ability

to detect any link or routing failures, isolate the problem and

reconfigure appropriately. For Solar Orbiter, the detection

mechanism has two layers. At system level, detection is built

on the inter-instrument communication protocol. Failure will

be identified by noting halts in the regular packet transfer. This

provides a natural way to identify problems in the paths

between the instruments and OBC. In effect, the regular

periodic TM packets act as a “heartbeat” for each respective

source, which the OBC can monitor. Any extended loss of the

“heartbeat” can be used to identify a potential failure and, if

appropriate, trigger recovery actions.

In fact, the “heartbeats” can be used to diagnose the

location of a failure with some precision. For example, if the

missing packets are limited to a single source then it is likely

that there are problems either in the instrument itself or on the

link between the instrument and the SSMM. Alternatively, if

the OBC fails to receive packets from multiple nodes then it is

likely that the problem is in a router common to those nodes.

MAG

RPW

SWA

METIS

SpaceWire
Network

OBC

PUS
Header 1 2 3

Data for sharing
4

PUS
Header 1 2 3

Data for sharing
4

PUS
Header 1 2 3

Data for sharing
4

PUS
Header 1 2 3

Data for sharing
4

PUS
Header 1 2 3

Data for sharing
4 1 2 3

Data for sharing
4 1 2 3

Data for sharing
4

1 2 3

Data for sharing

4 1 2 3

Data for sharing

4 1 2 3

Data for sharing

4

…

…

…

Figure 2: Centralised architecture for inter-instrument

communications

298

The architecture of the SSMM network is sufficiently simple

that this will often be enough to localise the problem.

In addition to the system-level detection, the SSMM itself

provides a further layer of protection. Since the SSMM

memory controller has visibility of the key network

components it can monitor for low-level failures and report

these to the OBC. For some cases, the recovery can be made

autonomously (e.g., time-outs due to stalled transfers, see [1]).

The instruments will also indicate if they do not receive

expected packets. In particular, if time codes are missing then

this can be signaled either with a dedicated telemetry packet or

by setting a dedicated bit in the instrument time field.

B. Anomalous instrument behaviour

It is well know, that a so-called “babbling idiot” has the

potential to compromise operations on a bus or network. With

a large number of instruments present on the BepiColombo and

Solar Orbiter networks, we must ensure that one unit failure

does not threaten the other instruments or even the entire

mission.

The feared scenario is that of an instrument sending an

excessive number of packets into the network either due to a

failure in the unit or due to a cascade of events resulting in a

high rate of corresponding TM packets. In some cases this

behaviour will be relatively benign, with a highly constrained

impact on system performance and simple recovery. For

instance, if an instrument sends packets at a high rate to the

SSMM Memory Array it may lead to some Packet Stores

filling unexpectedly and loss of science data, but will not

threaten overall operations. Similarly, packets sent to an

incorrect logical address may cause a small amount of

congestion in the network, but will eventually be discarded by

a switch or node. The critical scenario is when an instrument

sends an excessively high rate of packets to the OBC. In this

case, there is a strong possibility that the spacecraft control

software could become overloaded while trying to handle the

high traffic volume. For example, if the SpaceWire packet

handling is interrupt-driven then a high number of small

packets would lead to a high interrupt rate; processing these

interrupts could quickly dominate the CPU budget and

ultimately cause the OBC to crash. Some protection against

such events can be built into the spacecraft software, but we

must also incorporate safeguards into network where possible.

Solar Orbiter and BepiColombo both include guards against

babbling instruments, but due to other design considerations

have elected to handle the failure in different ways.

BepiColombo gives the SSMM the additional role of a

“gatekeeper” for the OBC traffic. That is, instrument telemetry

packets are never sent directly to the OBC, but are written to a

dedicated Packet Store within the SSMM Memory Array. This

packet store acts as a “cache” for the telemetry packets. A

separate process in the SSMM then polls this “cache” packet

store at regular intervals. If packets are present, they are

forwarded to the OBC, but with a strict limitation on packet

rate. Configuration of the SpaceWire routers will ensure that

instrument packets can never be routed directly to the OBC

(even if there are physical links available for this path). In this

way, the SSMM isolates the OBC from the instruments. Since

the SSMM is designed to handle high packet rates into packet

stores it is unlikely to be affected by a babbling source and, in

any case, in contrast to the OBC a temporary degradation of

SSMM performance is not catastrophic.

In contrast, Solar Orbiter allows the possibility of high

packet rates arriving at the OBC, but will react to any problems

by deactivating the SpaceWire link between the OBC and

SSMM. That is, rather than employing a “gatekeeper” to

control the flow, the gate is simply closed under excess traffic

conditions. The link deactivation can be triggered in one of two

ways: either the software detects the problem and commands

the hardware appropriately or, if the failure forces an OBC

reconfiguration, the hardware links are not restarted

automatically and will only be reactivated when it is

considered safe.

As noted above, these different approaches are driven by

other system needs and are not simply transferable between the

two. For Solar Orbiter, the caching approach is not viable due

to the tight latency requirements. The value of the inter-

instrument communication depends on maintaining low

message latencies throughout the network. If data is buffered in

a packet store during transfer then the latency requirements are

quickly exceeded. On the other hand, link deactivation is not

possible for BepiColombo because the SSMM is used to store

all of the system telemetry. For this reason, the link between

the OBC and the SSMM Memory Array must be available at

all times and especially during disruption of normal operation.

If the link is lost for a significant period then important

telemetry data will not be available to ground operations,

impeding monitoring and, possibly, fault diagnosis.

C. Loss of packets

Since SpaceWire does not currently provide a guaranteed

delivery service, the system operations design must ensure that

no key events are missed due to packet loss. This is particularly

important when routing though multiple switches. In a point-

to-point transfer, both of the nodes will be aware of link

interrupts and, hence, will know when packets have been lost.

For a network such as the one considered here, an intermediate

link might fail and cause a packet spill. In this case, one can

envisage scenarios where neither end of the transaction has

sufficient information to initiate a retransmission: the sending

node is unaware of the loss and the need to retransmit; the

receiving node may receive a partial packet, but partial or

corrupted packets cannot be evaluated to determine the source.

The approach taken in Solar Orbiter is to ensure that all

critical information that requires a reaction by the OBC is

conveyed via status parameters in cyclic TM packets (e.g. in

periodic housekeeping packets). Loss of one of these packets

will only result in a short delay in the recovery action, since the

next edition of the packet will provide the missing information.

Non-critical information can be conveyed by a non-cyclic TM

packet, with the accepted risk that the packet may be lost.

REFERENCES

[1] M. de Meo, G. Saldi, G. Rosani, W. Gasti, J. Noyes, J. Windsor,

J. Poeckentrup, R. Eilenberger, “BepiColombo Solid State Mass

Memory employing SpaceWire,” in these proceedings.

299

Fast readout CCD camera with high performance

SpaceWire to PCI express acquisition board
Missions & Applications, Short Paper

C. Cara, M. Donati, E. Doumayrou,

F. Pinsard, M. Lortholary

AIM Paris Saclay, UMR CEA/CNRS/UP7

CEA / Irfu / SAp

Gif sur Yvette, France

christophe.cara@cea.fr

Abstract— In order to demonstrate the feasibility of the

instrument concept the development of a prototype was initiated

following the submission of the NEAT instrument as a M-class

mission to ESA. The development is currently supported jointly

by CNES, CNRS and CEA in France. This prototype relies on a

fast readout (1000 frames per second) CCD-based camera. The

CCD is located in the focus of an optical bench to simulate the

instrument transfer function and thus creates interferogram

patterns on the detector. The space electronics laboratory of the

Astrophysics Department of CEA Saclay is in charge of the

design of the fast CCD camera while the Institute of Planetology

and Astrophysics of Grenoble is in charge of the optical bench

design. The functions of the camera are split in two units: the

front-end electronics encompasses the analog functions and an

acquisition system for control visualization and archive

functions. The acquisition system features the new 4 SpaceWire

to PCIexpress interface board using the SpaceWire CEA IP to

handle the 160 Mbps camera data rate. In the present paper we

will describe the acquisition hardware focusing on the SpaceWire

to PCIe interface board and present the end-to-end performance

of the acquisition system as well.

Index Terms—EGSE, Linux, NEAT, PCIexpress, , SpaceWire.

I. INTRODUCTION

Since long time ago the Astrophysics Department of CEA

in Saclay is developing innovative imaging detector systems

for the astrophysics. These detector systems are primary

designed to operate aboard satellites but find application in

ground based astrophysics instruments as well. Detector

systems are composed of the sensor whose function is to

convert photon to electron and readout electronics. In turn

readout electronics is usually composed of a proximity readout

electronics (the so called cold electronics since most of the

applications require cooled-down sensor) coupled as closed as

possible to the sensor and a front end electronics (the so called

warm electronics) The space electronics laboratory main

activity is to develop such warm electronics for instruments

aboard satellites, for ground based instruments and for detector

test bench as well. Thus we have recently developed

electronics for the readout of CCD for demonstrators and test

benches for the forthcoming ESA Cosmic Vision missions

such as EUCLID, PLATO, ECHO and NEAT [1]. Similarly to

other applications, astrophysics instruments require more and

more spatial resolution leading to million-pixel sensors.

However since astrophysics instruments deal in observing

mainly faint sources, image integration time are long (up to

hundreds of second) and consequently output data rate of

readout electronics remains reasonable. In the opposite the

NEAT (Nearby Earth Astrometric Telescope) aiming in

identify and characterize planetary systems close to our solar

system requires smaller sensors but high readout rates for

specific observing modes [2]. Indeed instrument is constantly

switching between a low image rate and high rate image mode

respectively for star observing and metrology observing.

Metrology consists in imaging Young’s interference fringes

and is implemented to measure regularly the telescope

geometry (split in two parts since the mission relies in two

satellites in formation flying configuration) in order to achieve

a localization of the source with a resolution of 10
-6

 with

respect to the pixel size. To reach such extreme performance a

large number of photons has to be collected within a shortest

period of time to limit statistics errors leading to image rate

beyond 1000 per second.

The development of the demonstrator electronics has been

initiated in early 2012 on the basis of previously designed

cameras. Thus we choose to implement a SpaceWire interface

between the front-

end electronics and

the acquisition

system taking

advantage of

existing hardware

(SpaceWireCEA IP,

SpaceWire to PCI

express interface

board) and software

pieces. Beyond the

development of the demonstrator we have considered the

opportunity to experiment high data rate SpaceWire links and

Figure 1 - Instrument layout

300

acquisition system and thus be ready for further high data rate

demanding developments.

II. OVERALL ARCHITECTURE

The demonstrator consists in a mirror, a CCD camera, five

punctual white sources (they represent stars, so called “pseudo

stellar sources”). The pseudo stellar sources are fed with white

light, the wavelength ranging from about 400 to 800 nm.

Additionally, single-mode metrology optical fibers are located

on the mirror plane. A schematic of the system’s components

is shown in the next figure (figure 2). The most innovative

aspect of this experiment is the metrology system that will

allow the micro-pixel calibration of the CCD. This system

consists in at least two metrology bases (i.e. two pairs of

single mode fibers transmit a laser generated coherent

illumination), respectively aligned along the horizontal and

vertical axis. The fiber extremities are located next to the

mirror and project Young’s fringes on the detector.

Additionally a phase modulator is used to dynamically sweep

the fringes over the focal plane. By measuring the intensities

variations of the signal for each pixel, one can characterize the

inter- and intra-pixel response of the CCD and bring the

centroid error down to the level of a few micro-pixels. The

optical test bed is located inside a vacuum vessel in order to

limit effect of thermal fluctuation of the atmosphere along the

optical path.

III. FRONT END ELECTRONICS OVERVIEW

In the framework of the demonstrator development we have

fully designed the front-end electronics. These electronics

housed in an enclosure for mechanical, thermal and EMC

aspects is mounted directly on the optical test bed enclosure to

limit as much as the distance between the detector and the

readout electronics. The electronics unit has analog interfaces

toward the CCD for clocks and biases driving and from the

CCD for video signals processing. The unit has also digital

interfaces; one being devoted to its control and configuration

while the second; which will be discussed later in this paper is

devoted to the transmission of the processed video signals.

Finally power supplying is achieved by mean of an external

laboratory power supply (Fig. 3). Internally the various

functions of the front-end electronics are implemented in three

printed circuit boards. On top the first board hosts the four

video signal processing chains. Each chain features an AC

coupled preamplifier followed by the double sampling stage.

Finally a single to differential amplifier feeds the 16-bit analog

to digital converter with the processed video signal. This

analog chain is optimized to sample the detector’s video signal

at a 3-MHz pixel rate. Bellow, a second board is hosting the

sensor’s clocks and biases generators: it receives from the

digital board the clock sequence pattern and shifts the logical

low and high levels to detector’s compatible low and high

analog levels. Thanks to a bench of digital to analog converters

all clocks and signals levels are tuneable to optimize detector’s

performance. Monitoring of all the generated voltages is

achieved by mean low speed analog to digital converters. The

last board is a digital board whose function is manifold. Its

main function is to control and configure the analog functions

of the units including the digital to analog converters setting,

the acquisition of the four digitized video signals and the

generation of the clock sequence. It implements the digital

interfaces of the camera as well. A demonstrator requiring high

level of flexibility a fully programmable clock sequencer is

implemented to allow users to experiment with CCD readout

modes. Basically this sequencer has a time resolution of 100 ns

that is compliant with the slow readout of large sensors but too

coarse for fast readout as required by NEAT. Therefore this

clock sequencer has been upgraded to achieve better time

resolution: a 50-ns time resolution design have been developed.

Better clock resolutions could probably be reached with highest

FPGA’s clock frequency but keeping in mind further

developments for space born instruments our design is optimal.

IV. ACQUISITION HARDWARE DESCRIPTION

The acquisition hardware which will determinate the

performance of the camera in term of image relies on a dual

SpaceWire link interface between the front-end electronics box

and the acquisition system. Two SpaceWireCEA IP cores are

embedded into one of the XILINX SPARTAN FPGA of the

digital board of the front-end electronics. Along with the IPs a

state machine are in charge of the readout of the four 16-bit 3

Msps parallel interface analog to digital converters by using the

combined busy flags of the devices. This state machine then

transfers the digitized data of two of the analog to digital

converters to one of a first SpaceWire transmitter while it

transfers the two others to the second transmitter. On the same

digital board a second FPGA (so-called SECOM) is hosting the

clock sequencer for controlling the CCD readout sequence and

the sequencing of the front-end electronics analog operation

(including CDS switches and analog to digital converters

control). It provides as well an image sync signal to the

SpaceWire FPGA (so-called INAC). This signal being asserted

Figure 3 - Electrical Architecture

Figure 2 - Test bed layout

301

synchronously with the beginning of the detector readout

sequence trigs the generation of both previous image frame

trailer and the next image frame header. Since the generation of

the header data may occurs while the first pixels are read out a

small memory buffer is implemented in the detector data path.

During the header generation the incoming pixel data are

stored temporarily into this small memory buffer. Thus this

memory may have a depth equal to the size of the frame header

only (few tenth of bytes). Once the whole header data has been

transferred to the link’s transmitter the buffer memory is

flushed toward the SpaceWire at the max data rate of the

interface. Then the link transmission rate has to be selected

such as the overload of the small memory buffer never occurs.

In our application a link signalling rate of 120 MHz is required

to afford an incoming data rate of 80 Mbps. Again this solution

is optimal for space-born instrument since it limits the size of

the memory buffers to be implemented to amount compatible

with FPGA internal memory capacity. A functional block

diagram of the SpaceWire FPGA is depicted in figure 4. As

shown two clock domains are defined: a 40 MHz signal is

clocking the ADC acquisition blocks the memory buffers

working as FIFOs and the RMAP initiator block. A second

signal running at 120 MHz clocks the two SpaceWire IP cores.

In between two FIFOs are implemented for the transfer of the

data from one clock domain to the other. As described

previously the frames are RMAP formatted: the header and the

trailer are compliant with the RMAP standard and thus contain

addresses for both ‘target’ and ‘initiator’ identifiers for

‘process’ ‘instruction’ and ‘key’ and ‘data length’ and CRCs as

well [3]. The ‘data’ field of the packet contains the ‘frame

number’ followed by the ‘image’ data and a ‘data CRC’

(Figure 5).

The next major part of the acquisition hardware is the

SpaceWire PCIe acquisition board (so-called PCIe4SpW). This

board has been designed in our laboratory to fulfil test

equipment needs. It is derived from our previous PCI board

and is focusing in high data rate acquisition application. The

board is equipped of a PEX8311 PCIe bridge from PLX that

merge a PCI to local bus bridge and a PCI to PCIe translator.

This device implements a one lane PCIe compliant with the

1.0a specification of the bus. Along with the bridge a VIRTEX

4 FPGA from XILINX is implementing the four SpaceWire

links as well as the interface with the PCIe bridge. Both input

and output data buffering is achieved by means of two-

4Mbytes SDRAM chips, one for each direction. The board has

a extension connector (see picture in figure 6) whose purpose is

be able to add SpaceWire link interfaces using space grade

LVDS transceivers as required for the design of an electrical

ground support equipment (EGSE).

The complete FPGA architecture is depicted in figure 7. As

shown each one of the four channel encompasses a SpaceWire

block (the SpaceWireCEA IP core) interfacing with three

blocks: ‘data formatting’ – for RMAP format implementation,

‘cmd sequencer’ – for command scheduling and ‘time

management’ for implementation of CCSDS Time

Management Standard [4]. In addition a ‘clock manager

block’ is in charge of the generation of various clocks either

Figure 5 - RMAP formatted frame

Figure 4 - SpaceWire FPGA block diagram

Figure 7 – PCIe4SpW board architecture

Figure 6 - SpaceWire acquisition board

302

used by the ‘PEX’ interface or by the SpaceWire blocks. In

particularly it enables the selection of link signalling rate

individually ranging between 2 and 200 MHz. Another block

(‘configuration & status registers’) is a bench of read / write &

read only registers respectively used to configure the board,

i.e. to set the link signalling rate and for the communication

with the acquisition software, i.e. the number of data to be

read out. Finally the last block ’ PEX interface’ implements

the interface between the blocks of memory and the local bus

interface with the PEX8311 device.

V. ACQUISITION SOFTWARE DESCRIPTION

The acquisition software has two high-level functions: the

acquisition task and the control task (Figure 8).

The acquisition task is in charge of the control of the

acquisition board: when launched it initializes the board by

resetting the FPGA and loading the configuration settings.

Once initialization is achieved the task starts polling the

number of data available into each link’s input buffer by

reading SpaceWire FPGA registers. Then the DMA engine of

the PCIe bridge is set to perform copy of data from the board’s

memory into a DMA buffer. This operation is performed

successively for each link. The next step of the acquisition

process consists in storing the contents of the DMA buffers

either directly into the hard disk of the acquisition PC or into a

very large bank of the PC memory (sized to 4 GBytes

according to the NEAT demonstrator requirements). In our

Linux operating system this memory is declared as a shared

memory. Once full or upon reception of a low-level command

the data stored in the shared memory is archived into a 6-

Gbit/s SATA SSD disk. The acquisition task is in charge as

well to feed a second shared memory: this memory is

implemented to allow the transfer to the GUI of small amount

of data used to perform a quick look analysis of the images.

Finally a third shared memory is implemented to achieve

reception in the acquisition of low-level commands. These

commands enables to switch acquisition software between

acquisition / no acquisition and file / no file modes. The

acquisition software is written in C++ that makes easier the

implementation of the four SpaceWire links: an ‘acquisition’

class is defined and is instantiated for every connected link.

The PLX provided API is used to implement access to the

low-level bridge driver.

The control task is a large virtual instrument (VI) taking

advantage of the flexibility of LabVIEW environment. The VI

allows the user to select and download into the camera the

operating parameter such as the detector readout sequence

script or the detector bias set. Interfaces with the shared

memories are implemented thanks to a wrapper, which is

linking a LabVIEW VI, using the ‘Call Library Function Node’

feature, to a Linux shared library (.so equivalent to dll). In the

current design of the camera the configuration is achieved by

mean of an USB interface. This interface is driven using the

API provided by FTDI to dialog with the USB to serial port

device implemented in the front-end electronics.

VI. SYSTEM ‘PERFORMANCE

Performances of the acquisition system have been assessed

for two configuration of the acquisition software. In a first

configuration the software was directly streaming the data into

the acquisition PC’s disk while in the second the data is stored

in a 4-GByte shared memory. The following sums-up the

performances of the system expressed in terms of maximum

data rate.

Configuration

Max data rate Compliancy:

data rate

≥ 113 Mbits/s
1x SpW

(MBytes/s)

2xSpW

(Mbits/s)

Direct stream to disk 5.03 80.5 No

Shared memory buffering 9.86 157.8 Yes

As shown in the table the only configuration suitable for

the NEAT camera makes use of the shared memory.

VII. CONCLUSION

We have designed an acquisition system based on the

SpaceWire standard, which fulfill the requirement in terms of

acquisition data rate of the NEAT demonstrator fast readout

camera. In the near future it is planed to extend the handle to

the four links of our acquisition board as required for

forthcoming infrared detector test bench development. In order

to take advantage of the command sequencer capability of the

board we also plan to use the SpaceWire uplink to control the

camera rather than using a dedicated USB interface.

Optimization of the performances is still possible the

acquisition being relying on a generic API to have access to the

PCIe bridge device.

REFERENCES

[1] E. Doumayrou; M Lortholary, “A generic readout system for

astrophysical detectors,” M. Proc. SPIE 8452, Millimeter,

Submillimeter, and Far-Infrared Detectors and Instrumentation

for Astronomy VI, 84521W (September 24, 2012);

doi:10.1117/12.925912

[2] A. Crouzier, F. Malbet, O. Preis, F. Henault, P. Kern, P.

Feautrier P, C. Cara, P.O. Lagage, A. Léger, M. Shao, R.

Goullioud, “An experimental testbed for NEAT to demonstrate

micro-pixel accuracy,” SPIE Proceedings, Instrument and

Methods for Astrophysics

[3] European Cooperation for space Standardization, Standard

ECSS-E-ST-50-52C, Remote memory access protocol, 5

February 2010

[4] Time Code Formats, CCSDS 301.0-B-3, Blue book, January

2002

Figure 8 - Software Architecture

303

Application of SpaceWire to Non-Volatile

Data Recorder
Missions & Applications, Short Paper

Toru Sasaki, Itao Shoji, Hisayoshi Kurosawa,
Tetsuro Kato

Mitsubishi Electric Corporation
8-1-1, Tsukaguchi-Honmachi, Amagasaki, Hyogo, Japan

Sasaki.Toru@eb.MitsubishiElectric.co.jp

Satoshi Ichikawa, Takashi Okamoto, Taeko Seki,
Mami Abe

Japan Aerospace Exploration Agency
2-1-1, Sengen, Tsukuba, Ibaraki, Japan

Abstract— Some space missions for earth observation and
space science require high data rate and large storage capacity
data recorders for spacecraft. The Japan Aerospace Exploration
Agency (JAXA) and Mitsubishi Electric Corporation (MELCO)
have developed a high-speed and large-volume non-volatile data
recorder (NVDR) for these advanced requirements. This NVDR
has 1 Tbytes storage capacity at the end of its life excluding ECC
redundant regions. The input and output data rate for recording
and replaying are over 1 Gbps. The NVDR is composed of input
interface boards, output interface boards, memory boards, a
DCDC board and a control board. The memory boards use
NAND flash memories for non-volatile data storage. The control
board controls the other boards by SpaceWire via a backplane.
The SpaceWire network increases the storage capacity and the
data transmission rate. SpaceWire requires fewer I/O signals of
each FPGA than other types of interface. Therefore, the FPGAs
in the NVDR are able to have more I/O signals for controlling
NAND flash memories. Consequently, the NVDR achieves high
storage capacity and high data rate by implementing many
NAND flash memories. The SpaceWire used in the NVDR has a
unique protocol based on RMAP. The NVDR uses this protocol
only for internal control. For user interfaces, the NVDR offers
standard SpaceWire protocols such as CPTP and RMAP. In this
paper, we show how the architecture of the NVDR applies
SpaceWire and describe the effect.

Index Terms— mass memory, data recorder, NAND flash,
RMAP, non-volatile. (key words)

I. INTRODUCTION

Space missions for earth observation and space science
have required high data rate and large storage capacity data
recorders for spacecraft [1]. JAXA and MELCO have
developed a high speed and large volume non-volatile data
recorder (NVDR) for these advanced requirements. The NVDR
uses NAND flash memories. So far, data recorders have
commonly used SDRAMs which are volatile memories with
low storage density. On the other hand, NAND flash memories
have much higher storage density, so the NVDR has larger
storage capacity. Moreover, the NVDR is able to retain stored
data during power down mode because of the non-volatility of
NAND flash memories. No vendor provides NAND flash

memories for space applications (but screened COTS devices
embedded with special circuits with radiation tolerance are
available [2] [3]). We verified the radiation tolerance of some
commercial products with heavy ion tests, proton radiation
tests and total dose tests. As a result, we recognized that
commercial products are usable for space applications by
selecting appropriate products and using adequate protection
methods.

Apart from redundancy, the NVDR consists of two input
interface boards, one output interface board, six memory
boards, one DCDC and one control board. One backplane
board includes these boards. The control board controls the
other boards by SpaceWire. SpaceWire improves the
performance of the NVDR.

II. STATUS OF DEVELOPEMENT

The development of the NVDR started in 2009 with
performance targets as shown Table I. In 2009, we made a
conceptual design and conducted radiation tests for NAND
flash device candidates. The next year, we designed the
detailed architecture based on the results. In 2011, we produced
a BBM and performed the evaluation tests.

TABLE I. TARGET PERFORMANCE

Item Target Value

Capacity at EOL (End of Life) > 1 [Tbyte]
Input/Output Data Rate > 1 [Gbit/s]

Mass < 20 [kg]
Power < 100 [W]

BER(Bit Error Rate) < 1×10-16 [/bit/day]

III. NVDR ARCHITECTURE

A block diagram of the NVDR is shown in Fig. 1. The
architecture of the NVDR provides the following features:

 The mission data bus and SpaceWire control bus are

independent from each other.

304

 The input interface boards and output interface board
can have various sorts of interfaces.

 Additional memory boards can be mounted in the
NVDR for larger capacity and more reliable
redundancy

While the mission data bus transfers record and replay data,

the SpaceWire control bus transfers data for controlling the
NVDR behavior. While the former has a data rate of more than
1 Gbps, the latter has a data rate of 10 Mbps. To avoid decrease
of the mission data bandwidth, these buses are separated. The
mission data bus is composed of channel links [4], which use
dedicated ICs for high speed serialization and deserialization.
The control bus uses SpaceWire for which a unique protocol is
used. This protocol is based on RMAP [5]. Because we
suppose that the NVDR is applied to both earth observation
and space science satellites, various input and output interfaces
have to be prepared. To handle this requirement, we properly
assigned storage functions and interface functions to the
memory boards and the interface boards. As a result, the
NVDR is only able to meet a variety of interface requirements
by replacing the input or output interface boards. The input
interface boards are able to receive both low rate data (e.g., HK
telemetry) and very high rate data (e.g., SAR sensor data). The
output interface boards are able to transmit both low rate data
to S-band modulators and high rate data to X-band modulators.
Table II shows capable interfaces in the NVDR. The NVDR
has communication interfaces to DH subsystems for telemetry
and command. These interfaces are included in the control
board. SpaceWire, RS422 and MIL-STD-1553B are available.

We can easily increase or decrease the number of memory
boards because the storage function and interface function are
strictly separated. This results in enhancement of the scalability
of the NVDR capacity and redundancy.

Fig. 1. Block diagram of NVDR

IV. CONTROL BUS

As previously noted, the control board controls the input
interface boards, output interface board and memory boards in
the NVDR by SpaceWire. These controls mainly include
configuration of the interface boards and management of the
storage area in the memory boards. All SpaceWire buses are
connected to a SoC (system on chip) on the control board via a
SpaceWire router. To implement a bus on the backplane,
generally we have a choice between shared buses such as PCI
and serial buses such as SpaceWire. SpaceWire as a backplane
bus gives the NVDR an advantage in terms of I/O signals. A
shared bus requires many I/O signals of connected devices.
However one SpaceWire node needs only four I/O signals with
LVTTL (low voltage transistor-transistor logic), PCI occupies
about 50 I/O signals. This advantage enables more NAND
flash memories to be connected in parallel to an FPGA or
ASIC. Although NAND flash memories have modest access
performance compared to SDRAMs, this wide parallel
connection increases the bandwidth between the device and
NAND Flash memories. This technique provides the NVDR
with comparable record and replay performance to SDRAM
type data recorders. A shared bus needs many more I/O signals
when taking into account redundancy. This results in low
record and replay performance. On the other hand, one
SpaceWire node needs only eight I/O signals with LVTTL
even when including nominal and redundant connections.

TABLE II. NVDR INTERFACES

Item Interface
Input
I/F LVDS/SpaceWire/Channel Link/RS422

Output
I/F

LVDS/SpaceWire
Wizard Link [6]/Channel Link

DH I/F SpaceWire/RS422/MIL-STD-1553B
Internal Mission
Data Bus Channel Link
Internal Control
Bus SpaceWire

V. RECORD AND REPLAY METHOD

When the NVDR starts recording, the software on the
control board decides the location of the storage area and
calculates the starting address for replaying. To do this
operation, the software sends several sets of commands and
addresses to memory boards by SpaceWire (Fig. 2). The
memory boards receive data from the input interface boards via
channel link. Then, they record the data in accordance with
area specified by the command and address. When replaying,
the memory boards read data from the indicated memory area.
Next, they transmit the data to the output interface board via
channel link. After these operations, the memory boards wait
for new sets of commands and addresses to continue recording
and replaying. To provide new sets of commands and
addresses rapidly, the software must recognize the end of the
operation, but NAND flash memories have quite different

305

access sequences compared to SDRAMs and SRAMs. The
NAND flash memory sequence makes it difficult to recognize
the end of sequence. NAND flash memory needs long busy
time after write data cycles (Fig. 3). This busy time is
indefinite and can vary with each access. To wait for the
fluctuating busy time, there are two general methods.

1) Polling
2) Interruption

Fig. 2. Control method by SpaceWire

Fig. 3. NAND flash write access sequence

Both methods have disadvantages. The polling method may
lower the software processing performance and the interruption
method requires an interrupt controller and many signal
connections between the memory boards and the control board.
SpaceWire can resolve these problems. The full duplex
communication of SpaceWire enables the memory boards to
send status messages to the control board. These backward
messages notify the control board of the sequence end. As a
result, the polling method and interruption method are not
necessary. The protocol for sending the messages is explained
in the next section.

Fig. 4. Photo of memory board

Fig. 5. Photos of evaluation test

VI. CONTROL BUS PROTOCOL

In the NVDR, the control board controls other boards by
SpaceWire with a unique protocol based on RMAP. RMAP is
suitable for the control bus. In this case, the initiator of RMAP

306

will be assigned to the control board and the targets to the
memory boards. However, each memory board should also be
an initiator to notify the control board of the sequence end.
Otherwise, the polling method or interruption method will be
needed. Another solution using RMAP is to assign the roles of
initiator and target to the control board and the memory boards
respectively. But to realize a network with multiple RMAP
initiators, complex hardware logic is required in the FPGAs in
the memory boards. Therefore, we did not employ the multiple
RMAP initiator method. Instead, we allow the memory boards
to send data with a fixed 64-bit payload to the control board at
any time from the target side. Any other rules follow the rules
for RMAP. In the payload, the memory boards can include the
status data of the record or replay completion. We call the data
an “interrupting packet”. The initiator in the control board can
easily descriminate between RMAP reply packets and
interrupting packets by decoding their protocol identifiers. The
targets have an arbitration circuit for sending RMAP replies
and interrupting packets.

The NVDR uses the unique RMAP with the interrupting
packets only in the internal control bus. The NVDR provides
standard protocols such as RMAP or CPTP [7] for the external
input/output interfaces or the DH interface.

VII. EVALUATION TESTS

We manufactured a BBM for the NVDR, which was
composed of one input interface board, one output interface
board, one control board and three memory boards (Fig. 4), and
evaluated it. In evaluation tests, we tests for the capability of
the data rate during recording and replaying, functions for
correcting data errors with ECC, and long time stability (Fig. 5).

TABLE III. RESULT OF THE EVALUATION

Item Specifications
EOL
storage 1.17 [Tbyte]

Input
Rate 1760 [Mbps]
Output
Rate 800 [Mbps]*

Mass 20 [kg]
BER < 1×10-16 [bit/day]
Power MAX. 98 [W]
Size 310 ×375 ×265 [mm3]

*The output rate was determined by specifications of receiving instruments

The results of the evaluation show the NVDR satisfies the
specifications shown in Table III. The FPGA logic in the
memory boards can generate intentional data errors for the
ECC functional tests. The intentional data errors mimic various
errors that happen in the NAND flash memories. We
concluded that data errors that may occur in GEO or LEO will
be properly recovered by the ECC. Moreover, we confirmed
the NVDR can continue the record and replay operation
without any failure for up to 80 hours.

VIII. CONCLUSION

In this paper, we showed how SpaceWire is applied in the
NVDR. SpaceWire contributes effectively to the record and
replay performance and the scalability. Our unique protocol
based on RMAP optimizes the network architecture of the
control bus. Our evaluation test showed that the NVDR
architecture is a good design that satisfies the required
specifications. The next step would be to develop an
engineering model and a flight model.

ACKNOWLEDGMENTS

The author thanks the many people who assisted with the
concept and offered support all along the way.

REFERENCES

[1] Karl F Strauss, “Memory Technologies and Data Recorder
Design,” IEEE Aerospace conference, Big Sky, Montana, p.1-15,
2009

[2] 3D Plus, “3D FN64G08VS8305 64Gbit FLASH Nand organized
as 8Gx8, based on 1Gx8,”

 http://www.3d-plus.com/doc/prod/2dfp_0305_2.pdf

[3] Space Micro Inc, “Radiation Hardened 8Gb NAND
FlashModule,”
http://www.spacemicro.com/pdfs/flash_8G_v6.0.pdf

[4] Texas Instruments Inc., “Channel Link Design Guide,”
https://www.national.com/assets/enboards/channellink_design_g
uid.pdf

[5] ECSS-E-ST-50-52C, “SpaceWire - Remote memory access
protocol,” February 2010

[6] Texas Instruments Inc., “1.6-Gpbs to 2.5-Gbps Class V
Transceiver,” http://www.ti.com/product/tlk2711-sp

[7] ECSS-E-ST-50-53C, “SpaceWire – CCSDS packet transfer
protocol,” February 2010

307

Fig. 1. HAYABUSA2 asteroid probe

Intelligent Navigation System with SpaceWire for
Asteroid Sample Return Mission HAYABUSA2

SpaceWire missions and applications, Short Paper

Hiroki Hihara, Koutarou Moritani
Space Engineering Division,

 NEC TOSHIBA Space Systems. Ltd.
10, Nisshin-cho 1-chome, Fuchu, Tokyo, Japan

h-hihara@bc.jp.nec.com, k-moritani@bk.jp.nec.com,

Ryu Funase
Department of Aeronautics and Astronautics

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

funase@space.t.u-tokyo.ac.jp

Tetsuya Masuda
Space Systems Division

NEC Corporation
10, Nisshin-cho 1-chome, Fuchu, Tokyo, Japan

masuda@jd.jp.nec.com

Hisashi Otake, and Tatsuaki Okada
Institute of Space and Astronautical Science (ISAS)

Japan Aerospace Exploration Agency (JAXA)
Sagamihara, Chuo-ku, Kanagawa 252-5210, Japan

ootake.hisashi@jaxa.jp, okada@planeta.sci.isas.jaxa.jp

Abstract—A hard real-time intelligent navigation system which
adopted SpaceWire has been developed for HAYABUSA2. A
deterministic communication scheme established by SpaceWire-
D draft standard is applied to the optical navigation system for
autonomous touch-down and take-off operation proceeded on an
asteroid. An image recognition unit and optical sensor interface
modules are connected through a SpaceWire router, which is
used as an active backplane. Real-time optical navigation
capability has been achieved in every one hertz with its natural
image recognition technology and SpaceWire-D compliant
transmission system.

Index Terms— SpaceWire, Image Recognition, Real-time,
Optical Navigation, Networking, Spacecraft Electronics.

I. INTRODUCTION
HAYABUSA2 is an asteroid probe planned to be launched

in 2014, and aims at sample-return from a C-type asteroid
considered to contain organic or hydrated materials. Figure 1
shows the HAYABUSA2 prepared for the preliminary
integration test.

Round trip communication time between an asteroid and
the Earth is more than thirty minutes, in consequence automatic
and autonomous operation by the probe itself is required for
compensating the navigation operation from the ground station
on the Earth in order to achieve touch-down onto the asteroid
and take-off from it. Autonomous optical navigation system
with LIDAR (Light Detection and Ranging), LRF (Lazar
Range Finder) , and ONC (Optical Navigation Camera) are
adopted for its optical navigation subsystem.

The electronics unit of ONC accommodates a real-time
natural image recognition module and 64bit central processor
unit (CPU) based on Space Cube2 design [1], [2], and its

SpaceWire interface complies with SpaceWire-D draft
standard [3], [4].

Since the deterministic implementation scheme of
SpaceWire, which is the premise of real-time operation, was
established by SpaceWire-D draft standard, the onboard
network system for satellite bus has been replaced with
SpaceWire as shown on Japanese scientific satellites and small
low earth orbit observation satellites [5], [6]. The first

308

mailto:h-hihara@bc.jp.nec.com
mailto:k-moritani@bk.jp.nec.com
mailto:funase@space.t.u-tokyo.ac.jp
mailto:masuda@jd.jp.nec.com
mailto:ootake.hisashi@jaxa.jp
mailto:okada@planeta.sci.isas.jaxa.jp

Fig. 2. The outlook of ONC-E

CPU

Sensor Interface extention
module

Image operation module

SpaceWire
router

Sp
ac

eW
ire

 a
ct

iv
e

ba
ck

pl
an

e

SpW RMAP Target

Im
ag

e
op

er
at

io
n

co
m

m
an

d/
st

at
us

64bit RISC
microprocessor

PC
I b

us

Se
ns

or
 c

om
m

an
d/

st
at

us
/d

at
a

SpW RMAP Target
SpW RMAP Target

SpW RMAP Target

R
ou

te
r p

or
ts

Fig. 3. SpaceWire active backplane inside ONC-E

HAYABUSA employed original onboard communication
protocol PIM (Peripheral Interface Module transmission
protocol). The second generation HAYABUSA2 inherited the
technology and equipment developed for the forerunner, and
we developed protocol bridges for the translation between PIM
and SpaceWire. The protocol for accessing the interface of
each components and the scheduling scheme is close to RMAP
(Remote Memory Access Protocol) and SpaceWire-D, so the
development of those protocol bridges were straight-forward.

Although the optical navigation subsystem for AOCS
(attitude and orbit control subsystem) of HAYABUSA2
accommodates SpaceWire interfaces and connected to legacy
onboard devices with PIM interfaces through protocol bridges,
the operation scheme is the same as its predecessor. As a result
the ground operation system is the same as that for fully
SpaceWire compliant satellites.

II. NATURAL IMAGE RECOGNITION MODULE
Natural image recognition module for the optical

navigation subsystem is a built-in module of an optical
navigation camera electronics unit (ONC-E).

Figure 2 shows the outlook of ONC-E, and the technical
feature of ONC-E is shown in table 1.

JAXA authorized 64bit microprocessor is used for ONC-E
CPU (Central Processing Unit) module, whereas preliminary
image processing is carried out by dedicated hardware
implemented on ACTEL RTAX2000S FPGA (Field
Programmable Gate Array). This architecture is inherited from
the ONC-E of prior HAYABUSA asteroid probe in order to
access local image buffer memories without accessing main
memory of CPU. This architecture enables synchronous
operation of the natural image recognition module with AOCS
(Attitude and Orbit Control Subsystem).

TABLE I. OPTICAL NAVIGATION CAMERA ELECTRONICS TECHNICAL
FEATURES

Parameter Value
Image
recognition rate

2Hz (max)
1Hz (nominal)

SpaceWire port
Telemetry/Command: 2ch (redundant)
Data recorder interface: 1ch
Sensor interface: 2ch (nominal)

Conventional
ports

PIM: 1ch
UART (RS422): 3ch (Proprietary

interfaces are included)

Memory Buffer
SDRAM: 1Gbytes (*)
Flash Memory: 2Gbytes (*)
(*) includes Reed-Solomon encoding

Size 95.2(W) x 230.8(D) x 177.8(H) (mm)
Mass < 2.94kg
Power
consumption < 33.8W

We have extended the deterministic communication

scheme with SpaceWire and RMAP protocol onto the inter-
module communication inside the ONC-E of HAYABUSA2.
SpaceWire active backplane have been implemented in order
to guarantee a hard real-time performance required for the

309

AOCU

PIM

Sensor I/F Image
Processor

ONC-AE
(Analogue Electronics)

ONC-W1
W: Wide

Data Recorder

Flash
Memory

NIRS3-AE
(Analog Electronics)

TIR-S
(Sensor)

Thermal Infrared
Imager (TIR)

SpaceWire port

PIM

Data Handling Unit
Peripheral Interface Module (PIM) bus

Sensor Digital
Electronics

(DE)

Space Cube2 CPU
TAOCP-A (SpC2)

AOCP-B (SpC2)

,

Deployable Camera
(DCAM)

UART

Drive Unit
(DRV)

ONC-T
T: Tele

ONC-W2
W: WideFilter Wheel

(FW)

SpaceWire

Navigation Status

Filter Wheel Control Command Record / Reproduce

T

H H H H

Navigation Command, AE Control Command

Navigation Processing
Result

Optical Navigation
Camera Electronics

(ONC-E)

DR control

DR HK telemetry

Local Bus

PIM bus
ONC-E HK Command

ONC-E HK Telemetry
Navigation Dump Image

T T

H H H H

T T

H H H H

T

T

H

H

N
av

ig
at

io
n

Pr
oc

es
si

ng
R

es
ul

t

PIM bus

N
av

ig
at

io
n

C
om

m
an

d
A

E
C

on
tro

l C
om

m
an

d

Filter Wheel Control

Proprietary LineProprietary Line

SpaceWire port

Local Bus

PIM

Sensor I/F Image
Processor

Flash
Memory

Space Cube2 CPU
T T

H H H H

UART+Proprietary Line

DR control
Science Data

DR HK telemetry

DE HK Command
Science Observation
Control Command

PIM bus
DE HK Telemetry

AE control right arbitration

H Host port

T Target port

Near Infrared
Spectrometer

(NIRS3)

NIRS-S

CAM-C
(Controller)

DCAM3

Optical Navigation Camera (ONC)
Fig. 4. Optical navigation subsystem block diagram

optical navigation subsystem.

TABLE II. IMAGE OPERATIONS EXAMPLES

Category OPE-code Operation

Arithmetic
Operation

ADD, SUB,
MULT, DIVOP

Arithmetic image
operation between
stored images

Compression
COMP_SPIXSEL,
COMP_JP2K

Lossless/lossy
compression with
StarPixle® or
JPEG2000

Operation
Control NOP, BUF_CLR Do nothing, Image

buffer clear operation
Transfer
Control MOVE Transfer an image

(copy)

Image
processing

MEDIAN, MEAN,
MODE, BIN

Calculate median,
mean, mode of
images or make 2x2
binning image

Image
processing
(Hardware
operation)

HW_THRES,
HW_EDGE,
TMPLBL, GRV

Binary image
acquisition, edge
detection, temporary
labeling, the center of
gravity acquisition

Since a large memory buffer is mounted on the natural
image recognition module, high resolution images are captured
and stored simultaneously with image recognition operation.

The images are used for the calibration of the result of image
recognition by an attitude and orbit control processor (AOCP)
as well as for scientific purposes. The images are stored in
Data Recorder through SpaceWire/RMAP port.

Image operations of ONC-E are programmable using its
dedicated script language. Examples of the operations are
shown in table 2.

One-chip SpaceWire router is mounted on the CPU in order
to configure SpaceWire active backplane system. The real-
time natural image recognition module and an optical sensor
interface module are connected to the router chip through
SpaceWire and RMAP protocol. Each module is connected
through bus connectors embedded inside the metal frames of
the modules, so that physical backplanes are eliminated, which
resulted in reducing the mass of ONC-E in order to meet the
requirement for the deep space mission. Figure 3 shows the
block diagram of ONC-E, and SpaceWire interconnections are
shown.

III. REAL-TIME OPTICAL NAVIGATION SYSTEM
The image operations of ONC-E described in previous

section are to be processed simultaneously along with the
operation of AOCP, which processes navigation calculation.
In order to synchronize operations processed by ONC-E and
AOCP, the deterministic operation scheme is adopted. The
scheme is compatible with SpaceWire-D draft standard, and
established through the activity of the SpaceWire user’s group,
Japan [7]. The guideline is adopted on ASTRO-H [5] for

310

satellite bus communication, so the same established manner is
also adopted for AOCS subsystem of HAYABUSA2.

Figure 4 shows the diagram of the real-time optical
navigation subsystem of HAYABUSA2.

The communication protocol of data handling subsystem is
PIM protocol, so the protocol bridge in implemented on AOCU
(Attitude and Orbit Control Unit), ONC-E, and DE (Sensor
Digital Electronics).

Time master of the SpaceWire network for AOCS
subsystem is AOCPs. One minute is divided into 64 time slots
in accordance with the guideline [7], and SpaceWire Time-
Code corresponds to each time slot. The time indicator (TI) is
distributed by DHU (Data Handling Unit) as 32bit value for
larger than one minute. The time indicator (TI) is concatenated
with the 6bit value of SpaceWire Time-Code, and 38bit value
of the time code is used to synchronize all components in
AOCS subsystem. In order to concatenate system time
indicator and SpaceWire Time-Code, CCSDS Unsegmented
Time Code is employed as proposed at SpaceWire working
group in ESA/ESTEC [8].

The operation scheme enables simultaneous operations by
ONC and AOCP, and real-time optical navigation is realized.
There are three optical navigation functions are implemented
through the deterministic communication scheme described
above,

- Asteroid Image Tracking (AIT)
- Target Marker Tracking (TMT)
- Characteristic Geography Tracking (CGT)
AIT is used for the tracking of the asteroid image. The

bright points in the field of view are evaluated through the
criteria of evaluation based on the brightness, and the center of
gravity is derived from several image of the surface of the
asteroid. This function is used for processing the whole image
of the asteroid.

TMT is used for the tracking of a target marker. As
HAYABUSA2 is approaching the surface of an asteroid, it
deploys bright target markers with fine reflectors. Once those
target markers have been ejected from the satellite bus towards
the surface of an asteroid, they are used for tracking.
HAYABUSA2 has a flash light for detecting target markers.
The target marker images of the off phase of the flash light are
subtracted from the images of the on state by ONC-E, then the
differential image is evaluated through the criteria based on
their size and brightness. The center of balance of those bright
points are calculated by ONC-E, and extracted information
through the images are transferred to AOCP for identifying
target markers.

CGT is used for natural image tracking identifying specific
geographical image as rocks and craters. Characteristic point of
view is specified by commands from ground stations or an
autonomous operation programmed prior to the operation.

Once the characteristic image is identified, a window is
associated with the image and ONC-E starts to track the
specific image within the associated window. The AOCU can
specify a template for specific image is the template can be
transferred to ONC-E for specific correlation calculation for
identifying a specific image. The representative value of axis
is transferred form ONC-E to AOCP in real-time, and AOCP
use the value for navigation.

IV. CONCLUSION
Real-time optical navigation has been achieved in every

one hertz for HAYABUSA2, which is an asteroid probe
planned to be launched in 2014. Its optical navigation is
realized by natural image recognition technology synchronized
between an optical navigation camera and an attitude and orbit
control processor through the deterministic synchronization
scheme established by SpaceWire-D draft standard.

ACKNOWLEDGMENT
Authors thank ASTRO-H project people for their precious

suggestions for implementing real-time system for asteroid
probe mission.

REFERENCES
[1] Tadayuki Takahashi, et al., ”The ASTRO-H Mission”, SPIE,

7732, 77320Z, 30 July 2010.
[2] Takahiro Yamada, and Tadayuki Takahashi, “Standard Onboard

Data Handling Architecture Based on SpaceWire”, International
SpaceWire Conference 2008, 4-6 November 2008, p.253-256.

[3] Takahiro Yamada, “Proposal for Defining Standard Services
Over SpaceWire –Revision A -”, The sixteenth SpaceWire
working group meeting ESTEC, Netherlands, 22 March 2011.

[4] Hiroki Hihara, Toshiaki Ogawa and Kenji Kitade, “NEXTAR:
Small Satellite Bus Based on SpaceWire Deterministic
Implementation”, International SpaceWire Conference 2011, 8-
10 November 2011, p.344-347.

[5] Takayuki Yuasa, Tadayuki Takahashi, Masanobu Ozaki and
Motohide Kokubun, “A Deterministic SpaceWire Network
Onboard the ASTRO-H Space X-Ray Observatory”,
International SpaceWire Conference 2011, 8-10 November 2011,
p.348-351.

[6] Toshiaki Ogawa, Yusuke Kobayashi, Shoichiro Mihara, Koichi
Ijichi, and Hideyuki Hamada “Outline and Progress of
ASNARO (Advanced Satellite with New System Architecture
for Observation) Satellite System”, 8th IAA Symposium on
Small Satellites for Earth Observation, Berlin, Germany, 04 – 08
April 2011.

[7] SpaceWire User’s Group, Japan, “SpaceWire Network Design
Guideline”, Version 1.0, 13 May 2010.

[8] Aeroflex Gaisler AB, “High Accuracy Time synchronization
over SpaceWire Networks - update”, April 2012.

311

Spacewire Network in MTG Satellites
Missions & Applications, Short Paper

Alain Girard

Command Control & Data Handling Engineer

Thales Alenia Space

Cannes, France

Alain-Felix.Girard@thalesaleniaspace.com

Alain Degardin

Mission Data Handling Engineer

Eurogiciel Sophia-Antipolis

Sophia-Antipolis, France

Alain.degardin@eurogiciel.fr

Abstract— The system integrator has to manage many

suppliers each providing specific data-source design constraints.

Designing a SpaceWire network based on each of these

constraints is a challenge at system level as progressive

refinement and modification during development phases might

impact all other data-sources performances. For instance,

insuring the routing for all network resources without losing data

requires to oversize all network and source’s performance from

the theoretical worst cases.

Based on traffic data analysis, consolidations have been

conducted to segregate all data flows of all data-sources in order

to optimize links rates and buffers with respect to the useful data-

rates and their required margins.

Network optimization had been checked with MOST

(Modeling of Spacewire Traffic), a toolset developed by Thales

Alenia Space as a SpaceWire library running on OPNET

Modeler®. The simulations of the network have been realized on

worst-case scenarios in order to verify the previous analytic

traffic analysis. The simulation successfully confirmed the

analytic analysis.

Index Terms—SpaceWire Networks, Traffic analysis, FDIR

I. INTRODUCTION

MTG satellites implement a SpaceWire (SpW) network for

handling the science data exchange between payload and

platform (mission data). Mission Data packets are provided by

four different sources, two instruments (Flexible Combine

Imager (FCI) and Lightning Imager (LI)), a RF payload called

Data Collection Platform (DCP) and the Satellite Management

Unit (SMU). MTG mission data handling main characteristics

are the following:

- Continuous acquisition of formatted data according to

Packet Utilization Standards (PUS)

- Continuous real time download of data to the ground

station from the geostationary orbit

- Fast configuration of FCI instrument with 8,3Mbytes

scanning tables

- Internal SpW network in the FCI instrument with

several sources routed to the satellite SpW network

through a SpaceWire switch

- Fully cross-strapped network to avoid any single point

of failure and maximize the network reliability.

As shown in Figure 1, the Payload Data Downlink system

(PDD) which holds the satellite SpaceWire routing switch is

the merging point of every source (FCI, LI, DCP, SMU).

The first hypothesis was made to cope with bottlenecks

possibly occurring at the SpW router side of the PDD. In order

to minimize this network access time and the corresponding

buffer sizes, all the link rates were specified to the highest rate,

200Mb/s in compliance with the maximal 10X-SpW router

theoretical capability. The second hypothesis was that each

source sends its packets at maximal rate without insertion of

NULL between data characters thanks to the preparation of its

packet in an emission buffer.

Fig. 1. MTG spacewire network presentation

This approach was considered not suitable because:

- It was difficult to implement the maximal link rate

due to severe skew and jitter constraints

- Bottlenecks between instruments creates a strong

coupling between multiple sources manufactured by

different suppliers, which can create contractual

issues. Traffic from each instrument had to be

partitioned to avoid this issue and facilitate the

network constraints break-down per units.

- Due to the FCI instrument internal SpaceWire

network including different link rates, the second

requirement (no Null characters interleaved within

packets) was not verified. For instance, a source from

312

the FCI is emitting at 50MHz inside a network

running at higher speed. Even if no Null character is

inserted on the 50MHz link, they are inserted on the

higher speed link to maintain the synchronization

In order to remove contractual and technical risks, the mission

data handling using the SpaceWire network has been

consolidated taking into account partitioning of the different

SpaceWire sources. This segregation has allowed optimizing

link-rates for all sources. FCI SpaceWire internal network has

been taking into account during the analysis. Analytic

occupation budgets on each link has been computed and

confirmed later by MOST simulations taking into account

satellite and FCI internal SpaceWire network. Initialization and

stop sequences, Fault Detection Isolation and Recovery (FDIR)

for SpW network have been specified in the frame of the MTG

project taking into account its specificities.

Finally, skew & jitter budget has been apportioned on receiver

and transmitter sides taking into account current skew & jitter

budget on FCI and PDD side.

II. SPACEWIRE CONSOLIDATION AND LINK-RATE RELAXATION

Mission data flows have been segregated to ensure that no

direct blocking from an instrument to another occurs on the

satellite SpW network to avoid taking into account the impact

of traffic congestions from an instrument to another due to the

routing through the network. To perform this segregation, it

has been decided to feed in parallel the Virtual Channel

Assembler (VCA) of the PDD system with four “links”, one

dedicated to each source (FCI, LI, DCP, SMU).

The merging of each source is ultimately performed by the

Virtual Channel Multiplexer (VCM) which merges the

different Virtual Channels allocated to each source on the

Master channel. As the global amount of data able to be

downloaded through the Master Channel is higher than the

nominal (mean) data input, the bottlenecks can be simply

managed by adding buffers on the VCA input. Hence we

considered in the analytic approach that each source is

independent from the other to size each SpaceWire link rate.

Each SpW link has been relaxed to fit with the real needs and

to maintain acceptable link margins with 50% as objective and

25% as minimum. On MTG, SpW links are specified to use the

same link-rate on both directions.

FCI SpaceWire internal network uses the following link-rates:

- 120Mbit/s for two of FCI internal links

- 50 Mbit/s for one of the FCI internal links.

On MTG, the satellite SpaceWire network uses the following

link-rates:

- 140Mbit/s for the FCI

- 100Mbit/s for the LI and the RF payload

- 50 Mbit/s for the SMU

Contrary to the first approach, the SpW network has now

heterogeneous link-rates. According to SpW standard and SpW

router behavior this impacts the method used to compute the

link margin.

III. SPACEWIRE NETWORK ANALYSIS AND MOST SIMULATION

RESULTS

FCI aggregates several sources into the output link to the DDU.

As the FCI internal SpaceWire network has heterogeneous

link-rates and according to the SpaceWire standards, the

margin on output link could not be easily computed. If packets

are forwarded from a 50Mbit/s link to a 200Mbit/s link, NULL

chars will be interleaved between each data characters. As an

output port is blocked to a specific source during packet

forwarding, this interleaving of NULL char wastes some part

of the Bandwidth. The result is the same when the destination

link has a lower link-rate than the input link, flow control will

be used to slow down the input flow, thus NULL char will be

interleaved.

On MTG, it has been decided to compute useful margin, i.e.

margin that could be used to increase the data flow. Thus,

NULL char interleaved inside a packet should not be taken into

account as they cannot be used to carry data.

As a first approach, the minimum time to transfer a packet

from a source node to a destination node across a SpaceWire

router is equal to the time required to transfer the packet across

the slowest link used.

Equation 1 allows computing the time “Ttransfer” taken to carry a

packet of size P flowing through a router from a link L1 with

link-rate C1 to another link L2 with link-rate C2

As the time to transfer a packet is constant through the

network, it is possible to estimate the equivalent size of a

packet in each link of the network according to the time needed

to transfer the packet and the link-rate.

Equation 2 allows estimating the equivalent packet size P’ on

the link L2 of a packet of size P flowing through a router from

a link L1 with link-rate C1 to another link L2 with link-rate C2.

 (2)

Equation 3 allows evaluating the equivalent mean data-rate

DR’(according to the equivalent packet size) of a flow F1 with

a data-rate of DR flowing through a router from a link L1 with

link-rate C1 to another link L2 with link-rate C2.

 (3)

313

As a router can merge several flows into a single output port, it

is necessary to sum-up each input data-rate to going on a single

output port to get the actual link margin.

Equation 4 allows calculating an estimation of the available

margin “Comargin” on the link 0 for n input flows with DRi

Data-rates from n links with link rate Ci merged to the link 0

with a link rate Co.

 ∑ (

)

 (4)

This latter formula has been taken into account for link margin

estimation on MTG SpaceWire network. This estimation is

based on the minimum required time to transfer a packet

without taking into account possible delays in the router.

(Routing delay, delay through the router etc...) Furthermore,

the required bandwidth for SpaceWire Flow control has not

been taken into account in this estimation. Thus it is clear that

the margin is slightly overestimated, but considered correct at

first order.

However, concerning flow control, as the mission data streams

are mainly from instruments to the PDD, flow control tokens

are principally from PDD to instrument thus flow control token

are not added to mission data flow. The only Flow control

token stream is in the same direction as the mission data and

has to be taken into account, is the one corresponding to the

FCI mission configuration sent from the platform (SMU) to the

instrument. Lower margin during this transfer is acceptable as

it is a transient state.

MOST simulations have been defined in order to check if

network specification is correct and to confirm the engineering

traffic analysis at satellite level.

MOST simulations have been done on the complete SpaceWire

network of the MTG mission including the overall satellite

network and the FCI actual internal network. As the aim of the

simulations is the validation of the nominal state of the

network, only the nominal part of the actual nominal &

redundant cross-strapped architecture flows have been

simulated. These simulations were performed with a worst case

scenario with:

 Data acquisition in parallel to the sending of FCI

configuration table

 All biggest packet of each source sent at the same

time to stress the VCM

 FCI data transfer is done in character forwarding

mode (null characters are interleaved within a packet

transfer instead of packet forwarding in which the FCI

network has to store and then forward the packet

without interleaving of NULL char)

Contrary to the margin estimation with analytic solution,

MOST simulations allow computing the margin in worst case

taking into account the hardware performance and the flow

control tokens. That will lead to a worst case margin taking

into account the full SpaceWire characteristics.

In MTG there is a requirement for maximum delivery delay

between acquisition and availability on ground, thus MOST

simulations results have been used to estimate the End to End

delay (ETE) between source and destination node in worst case

(All sources sending biggest packet at the same time). As all

sources are merged on a single RF downlink, the MOST

simulations simulated the nominal output data-rate of the PDD

in order to check if the mission data network is correctly

designed. MOST simulations have been defined to be as

relevant as possible to the embedded mission data network and

have allowed simulating the satellite network behavior during

short interruption and recovery. Moreover, the VCM input

buffers have been under-sized in MOST to worsen the traffic

analysis and check the impact on the communication from each

instrument.

Table 1 compares the available margins computed with MOST

simulations and analytic analysis. As expected FCI link margin

calculated with MOST simulations is lower than the analytic

one as flow control tokens and delay in SpaceWire router(s) are

taken into account by MOST. However analytics results are

really close to the simulated ones thus we considered that, as a

first approach, the proposed analytics computation is validated.

Note that in the below table in which both margins are

compared, analytic figure (for LI and DCP) may be slightly

pessimistic, lower than the one from the simulation, because of

short bottleneck terms that speed up the transfer when

recovered.

TABLE I. MARGIN RESULT WITH MOST SIMULATION AND ANALYTICS

SOLUTION

Link source Available margin

Source Link-rate Analytics calculus MOST simulations

FCI 140 Mb/s 28,80% 28,00%

LI 100 Mb/s 62.34 % 62,50%

DCP 100 Mb/s 53.97 % 54,10%

IV. SPACEWIRE NETWORK MANAGEMENT

SpW logical addressing without header deletion is used on

MTG instead of physical addressing. That allows having a

fixed address for each destination whatever the current network

configuration. Then, only the router configuration has to be

updated when the network configuration is changed for FDIR

purpose to use redundant equipments. As all the network is

cross-strapped and only one link is enabled at one time, it is

also possible to use Group Adaptive Routing (GAR), hence as

only one link of the group is active at one time, we can switch

the network configuration without having to reconfigure the

routing table. Use of Group Adaptive Routing is still optional

defined in the project and shall be consolidated in future

analysis.

PDD interfaces are configured in auto-start in order to accept

any communication started by mission data sources. This

314

allows commanding only source side of the link and managing

easily redundancy at source level. In order to start a

communication, the platform computer has to command

sources to enable their interfaces. This is performed in MTG

using an independent Command/Control link. The

disconnection is also very simple by commanding source to

disable its interface.

As SpaceWire link starts hand-shake procedure at a slower

link-rate than the nominal one, both sides of the link have to

alter their SpW emitter link-rate to the nominal link rate

autonomously after the connection success when reaching run

state. This alteration has to be done at each reconnection.

SMU is in charge of monitoring the SpaceWire network health

according to received telemetry packets and event packets from

instrument and payload.

The following FDIR detection and isolation actions are

performed on-board:

 level-1C for link transient disconnection detected at

source level and recovered autonomously by the source

 level 2 for persistent disconnection managed at source

and satellite level

As described in the SpW standards, any error on a SpaceWire

link leads to a disconnection of the link. A parity check could

lead to a disconnection from the receiver side, as showed in the

SpW connection process. After a disconnection, it is necessary

to request another start of the link to reconnect. In case of

transient error, the reconnection will be quick and then it is

better to let the source manage autonomously the recovery of

the error.

FDIR level 1C has been defined to try to reconnect a

disconnected link when detected by the source without

intervention of the SMU. In case of successful reconnection,

sources shall inform the platform computer that a

disconnection has been detected and autonomously recovered.

Since satellite safety is not endangered by a SpW failure, all

recovery for more severe errors are planned to be performed by

ground. Thus a fail-safe FDIR approach has been defined for

level 2.

If a link disconnection is not recovered 100 ms after the

detection, (Reconnection without any disturbance could be

done in few microseconds, thus 100 ms of disconnection

means a permanent anomaly on the link) the failed source shall

report to the SMU this problem and then a fail-silent approach

shall be performed.

In case of FDIR level 2 the platform computer will isolate the

failed link by disabling the two SpW link interfaces. (Source

and Destination). As the mission data link is not available, the

failed source is reconfigured in standby mode, and then the

ground is informed with an anomaly report. During ground

investigation the other sources of the mission continue to send

their mission data without any impact.

V. SKEW & JITTER APPORTIONMENT

One of the critical point for 200Mb/s SpaceWire link was the

electrical performance in terms of skew and jitter required at

Emitter and Receiver sides to allow correct transmission. To

ensure that SpW network will work properly, the electrical

level has also been consolidated in compliance with the

proposed link-rate relaxation.

As detailed in the SpW standards, the maximum data signaling

rate that can be achieved is different from one system to

another (Pending on device and harness), limited by skews and

jitters. Hence Skew & jitter performance requirement has been

built for both Emitter and Receiver. This budget allocation has

been needed to certify that any interface which is compliant

with this requirement will be able to communicate with any

other interface at the MTG maximum SpaceWire signaling

rate.

Skew and jitter at Emitter side are merged into a single value

which is called Encoder contribution. Encoder contribution

shall not exceed 1,4 ns.

As shown in SpW standards, Tds is defined as the minimum

specification for the separation of consecutives edges on Data

and Strobe signal at the input of the decoder. In MTG Tds shall

not be above 3,3 ns.

On MTG, maximum link-rate is 140Mb/s for FCI which leads

to 2,44 ns for both harness contribution and margin.

VI. CONCLUSION

Network has been consolidated and optimized, with suitable

contractual management, correct electrical, data-handling

designs and FDIR design.

The skew and jitter budget has been specified for Emitter and

Receiver and is in line with current SpaceWire chips used in

MTG and current maximum link-rates.

The new approach for link margin computation and

engineering spacewire network analysis has been confirmed by

MOST simulations.

Advanced validation of SpW interfaces for each protocol layer

will be performed by coupling payload and platform

representative test benches, in order to secure AIT sequences.

REFERENCES

[1] T. Ferrandiz,, “Maîtrise des latence de communication dans les

réseaux bord spacewire,” thesis delivered the 2 march 2012 by

« Institut Supérieur de l’Aéronautique et de l’Espace ».

[2] European Cooperation for Space Standardization, SpaceWire –

Links, nodes, routers and network, ECSS-E-ST-50-12C, 31 july

2008.

[3] European Cooperation for Space Standardization, SpaceWire –

CCSDS packet transfer protocol, ECSS-E-ST-50-53C, 5

February 2010.

315

The Swift Codec Development
Session: SpaceWire Components, Short Paper

David Juliusson, ASIC design
RUAG Space AB

Göteborg, Sweden
david.juliusson@ruag.com

Abstract— SpaceWire is widespread as data interface for flight
missions. In order to keep up with the demands from both
projects and test platforms a new, fully configurable, SpaceWire
codec called Swift has been developed by RUAG Space AB. The
codec is easy to integrate into projects, thanks to its internal data
buffers and standardized interface. The codec features self
calibrating timeout counters, reducing the need for configuration
pins or register accesses prior to link initialisation. In order to
improve timing and reach high data rates in both ASIC and
FPGA technologies, the codec has small and uncomplicated
receive and transmit regions. The Swift codec has been fully
tested and validated and has so far been incorporated into
several ESA funded and commercial projects.

Index Terms— SpaceWire, codec, Swift, component

I. INTRODUCTION

RUAG Space AB has developed systems and components
that utilize the SpaceWire interface for years. During this time
a couple of different SpaceWire codecs have been used, each
with their own merits and drawbacks. As more and more
projects use the SpaceWire interface, RUAG Space identified
the need for a single solution that is both easy to use for
designers and adaptable to suit the needs of different projects.

Furthermore we saw the need for a SpaceWire solution that
could be used in different test setups without the need to
incorporate more people than the engineers needed to assemble
the system.

A. Outline

This paper starts with stating the design goals for the Swift
codec development followed by a description of the
development process. The next chapter explains the design
partitioning of the Swift codec as well as the main features of
the new design. The last chapter holds the conclusion.

II. DESIGN GOALS

Going into this project our aim was to develop a codec that
was adapted to the needs of our everyday use of the SpaceWire
interface. This would be done by developing a SpaceWire
codec that incorporates our experiences of the interface so far
and focusing on the issues we would like to address.

Fast turnaround times for test setups as well as easy
instantiation were key factors when designing our new

SpaceWire codec. This brings us to the main design goals for
the new codec; these were twofold and primarily aimed at
usability and efficiency.

A. Usability

The codec should be easy to integrate into projects,
reducing the manual steps when performing detailed ASIC and
FPGA routing of the critical receive and transmit data paths.

The codec should also be a self contained entity and
provide an easy to use standardized system interface. This
means that the codec should handle all SpaceWire protocol
specific characters and be able to initialize and sustain a link
without interference from supporting logic.

B. Efficiency

The codec should be configurable to suit different projects.
In low bandwidth configurations the codec should be small
enough to be suitable for remote terminal applications. In high
bandwidth configurations it should have the capability to reach
the preferred 200 Mbps data rates in all commonly used ASIC
and FPGA technologies.

III. DEVELOPMENT

The development of the Swift codec was done in two
phases; the prototype phase and the industrialisation phase, i.e.
making the codec ready for flight missions.

A. Prototype phase

During the first phase a prototype was developed as part of
a master thesis [2]. The goal of the thesis was to design and
develop a new SpaceWire codec and in the process learn more
about the SpaceWire protocol and how to efficiently
implement it in hardware.

The prototype phase enabled us to test design ideas, in a
fast and inexpensive format, and to optimize the design from a
system point of view early in the process.

The design proposed in the thesis turned out well and
proved easy to integrate into projects. Initial tests also showed
that the design was both small and fast enough to be able to
provide high data rates in both FPGA and ASIC technologies.

316

The prototype was verified enough to make us confident
that the design concept worked. The prototype was also subject
to rudimentary live tests against both a well known, validated
SpaceWire codec as well as connected in loopback. The test
setup can be seen in Figure 1.

Figure 1 Prototype test setup

The thin arrows in Figure 1 represent the Data/Strobe

connections and the thick arrows represent the internal data
interface within the system clock region.

B. Industrialisation phase

During the second phase the design was finalized and a full
industrialisation procedure was performed. The documentation
as well as the specification was updated to incorporate findings
from the prototype phase.

A codec was subjected to a complete functional verification
of the design to ensure that the codec complied with the
documentation. After the verification procedure was complete
the Swift codec was validated to ensure that the codec is
suitable for space missions.

The codec has been validated using both commercial
products and certified flight hardware. The commercial
products used during the validation test where;

• 4Links RG401/8 [3]
• 4Links RG408-LS [4]
• Star Dundee SpaceWire Conformance Tester [5]

The Swift SpaceWire Codec has passed the tests conducted

with all the above mentioned commercial tools. Tests have also
been conducted using certified flight hardware developed both
in-house and externally.

IV. SWIFT DESIGN

The design partitioning of the Swift SpaceWire Codec
differs from the example design in the [1] Clause 8 in some
aspects. The subchapters below will go through each of the
major differences and give our reasoning for the decisions. The
first subchapter gives an overview of the design partitioning
within the Swift codec.

A. Design partitioning

The Swift design partitioning can be seen in Figure 2. A
walkthrough of the logic function of each block follows in the
subchapters below.

1) Control logic
The structure labeled Control Logic in Figure 2 is responsible

for handling the link initialization and link error recovery
procedures [1] Clause 8. The Control Logic also functions as a

hub for control and status signals inside the Swift codec,
relaying them to and from System. The Control Logic also
connects the functions of the receive and transmit data paths
that needs synchronization i.e. the reception and transmission
of flow control tokens.

System

Swift SpaceWire Codec

Character Generation

Transmitter

Transmit FIFO

Dout Sout

Character Check

Receiver

Receive FIFO

Din Sin

Control
Logic

Figure 2 Swift design partitioning

2) Transmit data path
Tracing the transmit data path, starting from the top of

Figure 2; The Swift SpaceWire Codec provides the System with
a standardized data interface. The structure labelled Transmit
FIFO contains the data buffer needed to store the bursts of data
from System. End of packet characters are automatically added
by the codec at packet limits. The size of the buffer is
configurable depending on system specifications. The structure
labelled Character Generation contains the logic that generates
SpaceWire L-Chars when commanded to by Control Logic.
This block is also responsible for making the N-Chars ready for
the Transmitter upon arrival of flow control tokens. The
Transmitter in the bottom left corner, handles serialisation of
the data bound for the link as well as parity and strobe
generation.

3) Receive data path
Next we trace the receiver data path, from the Data/Strobe,

Din/Sin in Figure 2, towards System. The Receiver samples the
data and feeds the data flow directly to the structure marked
Character Check. This is done without first decoding the
received characters. The Character Check serializes the data
stream, decodes the characters as well as performs the parity
check. All L-Chars are handles by the Control Logic and the
N-Chars are transferred to the Receive FIFO for credit check
and storage. The size of the Receive FIFO is configurable to
allow for stutter free data transfer up to at least 200 Mbps.

4) Clock regions
All structures except the Transmitter and the Receiver,

marked with dashed and dash-dotted lines in Figure 2, are
synchronous to the system clock. The transmitter region can be
configured to use the system clock in small applications where
size considerations are more important than transmit rates. The
receiver is always asynchronous to the system clock.

317

B. Configurable data rates

In order to make the Swift codec a general purpose design,
the codec is fully configurable with respect to the bandwidth
needs of the project. This enables the designer to trade
bandwidth for size when optimizing the system.

When opting for bandwidth, the codec can receive as well
as transmit one useful byte, i.e. 10 bits, each system clock
cycle. These bits can be any combination of SpaceWire
characters.

When opting for size, the Swift codec consumes less than
half the digital logic needed in high bandwidth applications.
Asymmetrical receive and transmit rates are allowed if the
application demands it.

Table 1Resource usage in RTAX FPGA

Size vs.
performance

Resource usage in RT AX2000

BAUD rate
with 40 MHz
System clock

Combinational
Cells

Sequential
Cells

Total
Cells

80 Mbps 1339 495 6 %

160 Mbps 2447 758 10 %

200 Mbps 2691 835 11 %

400 Mbps 3581 1012 15 %

The data in Table 1 is gathered from synthesis of the design.

As seen in the Total Cells column of Table 1, the size of the
Swift codec scales almost linearly with the bandwidth needed.

So far successful place and route have been performed up
to 200 Mbps in RT AX2000. The last entry seen in Table 1 will
not be able to transfer data at 400 Mbps due to the limitations
of the RT AX2000 technology. This configuration is rather an
option when high bandwidth is needed in slow system clock
implementations.

C. Self-calibrating timers

The Swift codec features self-calibrating timeout counters.
This means that the codec does not need to be configured by
the application to know the length of the timeout times.

Instead the codec uses the well defined bit rate during start-
up to calibrate its internal timeout counters. This is to avoid
forcing the codec to be pre-configured at instantiation, or
having to rely on configuration through strapped pins or
configuration registers.

This feature saves configuration pins or register accesses in
preconfigured off-the-shelf products, enabling us to use the
same build for different system clock speeds.

D. Internal data buffers

In order to make the Swift codec a self contained entity, a
few changes to the design proposed in the SpaceWire standard
was made. All data buffers needed to sustain the SpaceWire
link are codec internal, as is the logic responsible for handling
the exchange of flow control tokens.

These features, together with a system clock synchronous
data interface, make the Swift codec a self contained entity that

can connect and sustain the link without interference from
supporting logic. This means that all system level functions
need only to handle packets of data and time codes, all link
specific characters like EOP and EEP are handled by the codec.

E. Clock regions

In order to facilitate synthesis and reach high data rates,
special care has been taken to keep the fast running receive and
transmit regions as small and as uncomplicated as possible. No
advanced decoding or time consuming decisions are performed
in the fast running receive and transmit clock regions. Instead
all time consuming decisions are performed in the slower
running system clock region.

This means that there are three separate clock regions
inside the Swift codec. All interconnections and control signals
are running via the system clock region and all asynchronous
interfaces are codec internal for ease of use by designers.

The region running on the receive clock only contain
around 25 registers in a normal instantiation. The transmit
region is substantially larger than the receive region and
contains roughly four times the number of registers. This is
caused by the buffers for the asynchronous interface residing in
this region. However the timing paths are short and transmit
rates in excess of 200 Mbps are possible in all commonly used
technologies.

The decision to divert from the design proposed in the
SpaceWire standard [1] Clause 8 was taken since the design is
hard to optimize without centralizing all SpaceWire
functionality inside the codec.

V. CONCLUSION

The Swift SpaceWire codec has so far been successfully
incorporated into systems and IP-cores for ESA funded as well
as commercial projects. The codec is used daily in in-house test
equipment and has completed and passed all validation tests we
have conducted. The design can handle data rates of over 200
Mbps in all commonly used ASIC and FPGA technologies and
has proved to be easy to integrate into projects. The Swift
codec has fulfilled the design goals initially set up for the
project and is in use in flight programmes.

REFERENCES

[1] ECSS Secretariat, SpaceWire – Links, nodes, routers and
networks, ECSS-E-ST-50-12C, July 31, 2008, Noordwijk, The
Netherlands.

[2] D. Juliusson, Development of a SpaceWire Interface in VHDL,
unpublished, Master thesis, Chalmers, Gothenburg, Sweden

[3] 4Links product brief ESL-RG401/8,
http://www.4links.co.uk/spacewire-products/product-
briefs/4Links-EtherSpaceLink-ESL-RG401-8-product-brief.pdf.

[4] 4Links product RG-408-LS,
http://www.4links.co.uk/index.html.

[5] STAR-Dundee, SpaceWire Conformance Tester,
http://www.star-
dundee.com/sites/default/files/SpaceWire%20Conformance%20
Tester.pdf.

318

Components (Short)

319

High performance SpaceWire RMAP/DMA engine

for the CASTOR microprocessor
SpaceWire Components, Short Paper

Chris McClements, Steve Parkes, Albert Ferrer,

Alberto Gonzalez-Villafranca

STAR-Dundee Ltd

Dundee, UK

chris.mcclements@star-dundee.com, steve.parkes@star-

dundee.com

Abstract— CASTOR is a new radiation tolerant SPARC V8

processor chip which is currently being developed by Atmel in

partnership with STAR-Dundee. The chip is implemented on a

90 nm radiation tolerant process which will deliver an expected

processor clock speed of 200 MHz. The CASTOR chip is targeted

at data processing and instrument control applications, and will

deliver functional improvements over previous SPARC

processors. The chip has eight SpaceWire interfaces running at

200 MBits/s, a CAN bus interface and IEEE 1553 bus interface.

At the core of the CASTOR chip is a number of dedicated high

performance SpaceWire Remote Memory Access Protocol

(RMAP) and Direct Memory Access (DMA) engine’s connected

to the SpaceWire interfaces through a SpaceWire router. Each

SpaceWire engine is capable of acting as an RMAP target,

RMAP initiator or as a general purpose SpaceWire packet

transmitter and receiver between the SpaceWire network and

packet data defined in internal memory. Dedicated SpaceWire

DMA channels are used to ensure software involvement in

SpaceWire packet generation and reception is kept to a

minimum. The SpaceWire interfaces support the SpaceWire-D

protocol used for guaranteed latency and deterministic packet

delivery. In conjunction with the RMAP initiator the chip can

rapidly be configured as a highly capable SpaceWire-D initiator.

The chip can act as an RMAP target, initiator or both. The

RMAP target provides a mechanism to allow remote access to the

internal memory space. Two modes of operation are supported

to allow direct access to a pre-defined area of memory or

controlled access using authorisation by software. The RMAP

initiator uses information stored in internal memory by the

application software to access remote memory in equipment

connected to the SpaceWire network. The engine is capable of

initiating a number of RMAP transfers from remote memory,

either writing data from internal memory to a remote memory

location or receiving data from a remote memory location and

writing it to internal memory, then interrupting the host when all

transactions are complete.

The DMA channels allow the application software to send and

receive data packets using data structures defined in internal

memory. Each SpaceWire engine has a number of DMA channels

which can operate independently of each other.

Index Terms—SpaceWire, CASTOR, RMAP, Sparc V8

I. INTRODUCTION

An onboard SpaceWire [1] system comprises a number of

SpaceWire nodes and routers connected together through high

speed serial links. The nodes on the SpaceWire network can be

sensors, mass memories and processing units. CASTOR is a

new radiation tolerant SPARC V8 processor chip which is

currently being developed by Atmel in partnership with STAR-

Dundee.

The CASTOR chip has eight SpaceWire interfaces to

facilitate communication over the SpaceWire network. The

application software running on the processor has access to a

number of dedicated high performance SpaceWire Remote

Memory Access Protocol (RMAP) [2] and Direct Memory

Access (DMA) engines to provide RMAP and application

specific packet generation and reception without excessive

processor workload.

II. FEATURES

The CASTOR chip has dedicated RMAP target and

initiator hardware which offloads RMAP packet generation and

checking from the processor. The target can be configured to

allow a remote unit to read and write memory locations inside

the processor memory space without interrupting the host

software. The initiator facilitates access to remote memory

spaces through RMAP protocol commands and offloads

multiple transaction generation and reply packet checking from

the processor.

A multi-channel DMA packet transmission and reception

controller is available to the processor to send and receive data

through a SpaceWire router. The DMA channels are optimised

to support high throughput of SpaceWire packets with minimal

interruption of the processor. Generation and checking of

CRC-8 and CRC-16 checksums are supported by the DMA

channels.

Packets are routed to the SpaceWire network through an

eight port SpaceWire router. This allows the CASTOR chip to

connect too many peripherals and also act as a routing device.

320

Protocol support is provided for the SpaceWire-D deterministic

data delivery protocol [3], the SpaceWire plug and play

protocol [4], multiple time-code counters and distributed

interrupt time-codes [5].

III. SYSTEM ARCHITECTURE

The system architecture is defined in Fig. 1.

The SpaceWire engines contain an RMAP target [6], an

RMAP initiator and a multi-channel DMA controller. Each

engine facilitates packet generation and checking of RMAP

and DMA transfers between the processor and the SpaceWire

router, offloading the processor for other tasks. The SpaceWire

router [7] has 8 SpaceWire ports running at 200 MBps and 3

internal FIFO ports for connection to the engines. The routers

internal configuration port, port 0, facilitates configuration of

the internal registers through RMAP or Plug and Play. The

APB interface is used to configure and read status registers

from SpaceWire engines, time-code controller and SpaceWire

router. The interrupt controller provides event notification to

the host processor for packet, time-code and error events which

occur. The time-code controller implements time-code

forwarding and distributed interrupt forwarding.

IV. SPACEWIRE ENGINE

The CASTOR chip has three SpaceWire engines which can

act as an RMAP target, an RMAP initiator and to transmit and

receive data from internal memory through a multi-channel

DMA controller. The engine performs memory accesses

through an AHB master interface and is configured through an

APB interface.

The SpaceWire engine architecture is shown in Fig 2. The

engine is comprised of a protocol multiplexer which connects

to the SpaceWire router, an RMAP target, an RMAP initiator, a

multi-channel DMA controller, an AHB interface and an APB

interface.

A. Protocol Multiplexer

When sending, packets to the SpaceWire Router, the

multiplexer selects the next packet to be sent and waits for the

end of packet before selecting the next packet to be

transmitted.

When receiving, packets from the SpaceWire Router, the

protocol de-multiplexer checks the first four packet bytes

against a configurable pattern and mask to determine the

destination of the packet, either RMAP target, RMAP initiator

or a specific DMA channel. The pattern and mask are

programmable by the host processor through the APB registers.

The protocol multiplexer allows multiple destination nodes

or multiple protocols to be handled by the DMA channels. A

packet received at a node which conforms to the ECSS-E-ST-

50-51C [8] standard will have a leading logical address byte

and a protocol identifier byte, followed by the packet cargo

bytes and an end of packet. The protocol multiplexer transfers

data packets from the RMAP target, initiator and the DMA

channels into the SpaceWire FIFO. Arbitration is performed

between the channels using a fair arbitration scheme where

each packet source takes it in turn to transmit packets.

B. RMAP target

The RMAP target accepts RMAP commands from a remote

system, performs read and write memory access commands

over the AHB bus to system memory and returns an optional

reply packet to the remote system. The target supports all

RMAP commands with the option of limiting the commands

which can be performed by configuration from software. A 16

byte verified write buffer is provided to support verified write

commands.

An RMAP command received by the target is required to

be authorised before it can access system memory. The

processor can configure the RMAP target to act in two modes

of operation.

The first mode requires the host processor to authorise

commands through the APB register interface. Authorisation is

requested using the Interrupt output of the core. The host

software should read all the authorisation fields and then

decide if the command is valid by authorising the command

DMA Channel
(x3)

DMA Channel
(x3)

Protocol
Mux/

Demux

RMAP Target

RMAP Initiator

DMA Channel
(x3)

AHB
IF

APB
IF

Registers

AHB

APB

SpaceWire
FIFO
Interface

Target Data

Initiator Data

Channel Data

Register
Interface

Interrupt
Controller

Interrupt

Fig. 2. SpaceWire engine

SpW Engine 1

SpW Engine 2

SpW Engine 3

APB IF

SpW Router

AHB

AHB

AHB

APB

IRQInterrupt

SpaceWire
x8

Time-code

Fig. 1. System architecture

321

through the RMAP target command register. When the target

has completed the RMAP command it will interrupt the host

processor again with the notification status.

In the second operation mode the host processor sets which

RMAP operations are authorised and the address range in

which RMAP commands can operate. Any command which is

performed outside of the address range or other authorisation

fields is not authorised and recorded as an error.

C. RMAP initiator

The initiator uses the RMAP protocol to write data from

system memory to a remote system, or read data from a remote

system and place it in a pre-defined area of memory. The

initiator can be used by the processor to collect data from

remote targets into system memory and check the data

received. The initiator uses RMAP transaction specific data

structures in memory to control the command type and

command fields which will be used to generate the RMAP

packet. A transaction table is stored in memory to facilitate the

transmission of multiple command packets before the replies

for those commands have been received. The initiator validates

all reply packet fields against the expected fields stored in the

transaction table. If an error occurs the error is recorded and the

reply packet is not acted upon.

Before the initiator can be used to send RMAP commands

it must be given space in system memory to store outstanding

transactions. An outstanding transaction is required to tell the

initiator where in memory it should store reply data and

notification status

The initiator is split into three separate entities: the encoder,

decoder and timeout checker. Each of the initiator entities can

operate in a different mode. The encoder and decoder have

three modes of operation: notification mode, list mode and

watchdog mode (modes 1, 2 and 3). The timeout checker has

two modes of operation: notification mode and passive mode.

Encoder/Decoder modes:

In mode 1, notification mode, the initiator waits for the host

software to respond to each initiator command sent and reply

received before continuing. This mode is suitable for hosts

which wish to know when commands are sent or received and

process the command data and status immediately.

In mode 2, command list mode, the initiator can send a

number of commands or receive a number of replies before the

host software is notified. The status for each command and

reply is stored in a transaction defined notification area of

memory. The host can check the command/reply status after

the command list has been completed.

In mode 3, watchdog mode, the initiator can send a number

of commands and receive a number of replies while the host is

waiting for a timer to expire or another interrupt/event to occur.

The host uses the timer, or other interrupt/event, to check if the

commands have completed and the status of each command.

This mode is useful when the host needs to know if the

commands have been sent within a defined time period but

does not need to check the operation status until the time

period has expired.

The initiator implements an optional timeout counter for

each outstanding transaction. When a reply is not received

within the timeout period the transaction will be discarded and

an error recorded.

Timeout checker modes:

In mode 1, notification mode, a transaction which times

out, reply not received within the selected timeout period, will

cause the notification bit in the status register to be set. The

notification bit is acknowledged by the host software before the

initiator can perform any further operations.

In mode 2, passive mode, a transaction which times out will

be deleted from the initiator table and no notification will be

generated. The timeout status will be recorded in the

transaction defined notification area of memory.

D. Transmitting packets using the DMA channel transmitter

The DMA controller supports multiple concurrent TX

channels which can be programmed to send one or multiple

SpaceWire packets continuously. Channels can be disabled and

enabled at any time, affecting the data rate of the

corresponding channel without producing data loss. This

allows a simpler implementation of MAC algorithms by

software.

A packet consists of one or multiple data chunks stored in

different memory locations. This allows the packet header to be

stored in a different location that the packet data content.

Sending of PUS [9] packets is supported by providing the

hardware computation of its CRC-16. Continuous transmission

of packets is provided using circular buffer architecture with

data and packet descriptor pointers. Interrupts can be set to

monitor the progress of transmission of packets without halting

the actual operation. This makes it possible to achieve the

maximum SpaceWire data rate with minimum CPU utilization.

Errors in one channel do not affect the operation of other

channels.

E. Receiving packets using the DMA channel receivers

Each channel can be associated to a different packet type or

protocol using a packet filter based on the first four bytes of the

header. Packets which are received on the same DMA channel

are stored contiguously in memory and their packet length is

stored in packet descriptors. Reception of RMAP packets is

supported by providing the hardware computation of its CRC-

8. Reception of PUS packets is supported by providing the

hardware computation of its CRC-16. Continuous reception of

packets is provided using circular buffer architecture with data

and packet descriptor pointers. It is possible to enforce that a

packet is not split at the end of the memory region. Interrupts

can be set to monitor the progress of packets received without

halting the actual operation. The user application or the SW

driver should free the space used by packets already processed.

This procedure allows data to be received at the maximum

SpaceWire data rate with minimum CPU utilization. When an

error occurs the reception is halted and the system is

interrupted.

322

V. SPACEWIRE ROUTER

The SpaceWire router has eight SpaceWire interfaces, three

external port interfaces and an internal configuration port

which supports the RMAP protocol. The internal configuration

and status registers are also accessible through an APB

interface. A control register is used to determine if the router is

controlled through the configuration port or through the APB

interface. Configuration by both masters at the same time is not

supported although reading the status information from both

masters at the same time is supported.

The SpaceWire router architecture is illustrated in Fig 3.

VI. TIME-CODE CONTROLLER

The SpaceWire time-code controller has functions to

forward time-codes dependent on the time-code flags or to

generate time-codes from software, processor timer interrupt or

an internal dedicated time-code master count. The time-code

controller has a time-code register for each of the four time-

code flags, therefore allowing independent time-code

forwarding for each flag code.

The time-code controller stores the last time-code received

for each type of control flag and can indicate to the host that a

time-code has been received through the status/interrupt

interface.

The time-code forwarding mechanism checks that received

time-codes are one more than the last time-code received then

the time-code will be forwarded through all ports except the

port the time-code arrived on. If the time-code is a distributed

interrupt code then the interrupt vector is checked and the

controller will forward the time-code if the interrupt vector bit

is 0. If the interrupt vector bit is 1 the time-code is discarded as

the interrupt has already been set. The time-code will be

forwarded through all ports except the port the time-code was

received on.

The controller can act as a time-code master either by

software insertion of a time-code, sending time-code on a

processor timer interrupt or by setting up an internal time-code

master counter. The time-code frequency can be controlled by

the host software with up to 1 micro-second precision.

Status bits and processor interrupts are provided for

received time-codes for each time-code flag value, time-codes

transmitted for each time-code flag value and distributed time-

code interrupt occurred.

VII. CONCLUSION

The CASTOR chip is a capable SpaceWire processing unit

which comprises a SPARC V8 process with an enhanced

floating point unit and memory management unit running at

200 MHz on a radiation tolerant process. The SpaceWire

engines inside the CASTOR chip provide high performance

SpaceWire RMAP and DMA functions including dedicated

RMAP target and initiator hardware to reduce the processor

workload.

REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,

Nodes, Routers and Networks”, Issue 1, European Cooperation

for Space Data Standardization, July 2008.

[2] ECSS, “SpaceWire - Remote memory access protocol”, ECSS-

E-ST-50-52C, Feb 2010.

[3] S. Parkes, Albert. Ferrer, S Mills, A Mason, “SpaceWire-D:

Deterministic data delivery with SpaceWire”, International

SpaceWire conference, Russia, 2010.

[4] P. Mendham, S. Parkes, “SpaceWire Plug-and-play: a

Roadmap”, International SpaceWire conference, Nara, Japan,

2008.

[5] Yuriy Sheynin, Sergey Gorbatchev, Liudmila Onishchenko,

“Real-Time Signalling in SpaceWire Networks”, International

SpaceWire conference, Nara, Japan, 2008.

[6] Chris McClements, Steve Parkes, “SpaceWire RMAP IP Core”,

International SpaceWire conference, Russia, 2010.

[7] S. Parkes, C. McClements, G. Kempf, S. Fishcher, P. Fabry, A.

Leon, “SpaceWire Router ASIC”, International SpaceWire

Conference, Dundee, 2007.

[8] ECSS standard ECSS-E-ST-50-51C, “SpaceWire engineering:

SpaceWire protocol identification”, European Cooperation for

Space Data Standardization, February 2010.

[9] ECSS standard ECSS-E-70-41A, “Ground systems and

operations – Telemetry and telecommand packet utilization”,

European Cooperation for Space Data Standardization, January

2003.

Fig. 3. SpaceWire router architecutre

323

Fig. 1 Block diagram

Next Generation Microprocessor Functional
Prototype SpaceWire Router Validation Results

SpaceWire Components, Short Paper

Jonas Ekergarn, Jan Andersson, Andreas Larsson,
Daniel Hellström, Magnus Hjorth

Aeroflex Gaisler AB
Göteborg, Sweden

Roland Weigand
Microelectronics Section
European Space Agency

Noordwjik, The Netherlands

Abstract—The Next Generation Microprocessor is a quad-
processor system-on-chip that contains a SpaceWire router with
eight external SpaceWire links and four on-chip AMBA ports.
This paper describes the validation work done for the SpaceWire
router within the Next Generation Microprocessor functional
prototype development.

Index Terms— SpaceWire, Networking, Spacecraft
Electronics.

I. INTRODUCTION
The Next Generation MicroProcessor (NGMP) is a quad-

processor system-on-chip currently being developed by
Aeroflex Gaisler. The design includes four LEON4
SPARCV8+ processors with a shared Level-2 cache, DDR2-
800 SDRAM main memory interface, a SpaceWire router with
eight external SpaceWire links and four internal AMBA ports,
two 10/100/1000 Mbit Ethernet MACs, 32-bit 66 MHz PCI
interface and other interfaces.

The SpaceWire router allows the NGMP to act both
passively and actively in a SpaceWire network. The target
frequency for the NGMP device is 400 MHz. Preliminary
results for this target frequency show that, using only internal

routing, the architecture is able to sustain a data throughput of
1.5 Gb/s per SpaceWire AMBA port. In a scenario where the
two full-duplex Ethernet links and all SpaceWire AMBA ports
are run at full speed, the sustainable throughput is roughly 1.5
Gb/s for the Ethernet links and 1 Gb/s per SpaceWire AMBA
port. In addition to this, the SpaceWire router will also be able
to simultaneously route packets at maximum speed.

The implementation of NGMP in rad-hard technology was
put on hold in April 2011, pending advances in the
development of a suitable Deep-Sub-Micron technology for
space. Development has instead progressed in the development
of a NGMP functional prototype (NGFP) device targeting
eASIC Nextreme2, a structured ASIC technology based on a
45 nm process. Silicon was received in August 2012 and an
evaluation board has been manufactured.

One of the primary goals of the NGFP development is to
allow use of the architecture at higher clock frequencies than
what is attainable with FPGA prototype implementations. The
prototype devices do not reach the full target frequency of the
final device (400 MHz) but can be run at a system frequency of
200 MHz with the same clock frequency used for the
SpaceWire router.

324

II. DESCRIPTION OF NGMP FUNCTIONAL PROTOTYPE
ARCHITECTURE

The system consists of five Advanced High-performance
Buses (AHB); one 128-bit Processor bus, one 128-bit Memory
bus, two 32-bit I/O buses and one 32-bit Debug bus. The
Processor bus connects four LEON4 processor cores connected
to a shared Level-2 (L2) cache. The Memory bus is located
between the L2 cache and the main external memory
interfaces, DDR2-600 SDRAM and PC100 SDRAM, and also
connects a hardware memory scrubber. As an alternative to a
large on-chip memory, part of the L2 cache can be turned into
on-chip memory by cache-way disabling.

The two separate I/O buses connect all the peripheral cores.
All memory-mapped interfaces of peripheral cores that can be
directly accessed by the processors have been placed on one
bus (Slave I/O bus), and all master/DMA interfaces have been
placed on the other bus (Master I/O bus). The Master I/O bus
connects to the Processor bus via an AHB bridge that provides
access restriction and address translation (IOMMU)
functionality. The two I/O buses include all peripheral units
such as timer units, interrupt controller, UARTs, general
purpose I/O port, PCI master/target, Ethernet MACs, MIL-
STD-1553B, Serial Peripheral Interface bus and SpaceWire
router. All I/O master units in the system contain dedicated
DMA engines and are controlled by descriptors located in main
memory that are set up by the processors. Reception of, as an
example, Ethernet and SpaceWire packets will not increase the
CPU load. The cores will buffer incoming packets and write
them to main memory without processor intervention.

The fifth bus, a dedicated 32-bit Debug bus, connects a
debug support unit (DSU), PCI and AHB trace buffers and
several debug communication links. The Debug bus allows for
non-intrusive debugging through the DSU and direct access to
the complete system, as the bridge connecting the Debug bus to
the Processor bus allows unrestricted access to the memory
space.

The NGMP architecture has been designed to provide a
significant performance increase compared to earlier
generations of European space processors. The platform has
improved support for profiling and debugging and will have a
rich set of software immediately available due to backward
compatibility with existing SPARC V8 software and LEON3
board support packages. The design also includes specific
support for asymmetric multi-processing configurations. Five
memory management units (MMUs), one per CPU core, and
the IOMMU provide access protection. Several dedicated
interrupt controllers allow interrupt steering to a specific CPU
and duplicated timer units allow to run one operating system
per CPU core with full space-partitioning.

III. SPACEWIRE ROUTER IP CORE AND CONFIGURATION
The design includes Aeroflex Gaisler’s GRSPWROUTER

SpaceWire router IP core. The IP core implements a
SpaceWire routing switch as defined in the ECSS-E-ST-50-
12C standard. It provides an RMAP target for configuration
port 0 used for accessing internal configuration and status
registers. In addition to this, the implementation described by

this paper implements two different port types; external
SpaceWire links and on-chip AMBA interfaces.

One AMBA AHB slave interface is also provided for
access in the port 0 registers from the on-chip AMBA bus.
Group-adaptive routing and packet distribution are fully
supported.

The GRSPWROUTER was implemented with the
following characteristics:

• 64 entries per 9-bit receiver FIFO (N-Char FIFO)
• 32 entries per 32-bit AMBA port FIFO
• Four DMA channels per AMBA port
• Hardware RMAP target in each AMBA port

IV. SPACEWIRE ROUTER ROLE IN SYSTEM-ON-CHIP DESIGN
The system-on-chip architecture is a multi-processor

architecture that provides a significant performance increase
compared to earlier generations of European space processors,
with high-speed interfaces such as SpaceWire and gigabit
Ethernet on-chip.

The NGMP was initially specified to include for SpaceWire
codecs with AHB host interfaces and hardware RMAP targets.
The four SpaceWire codecs would use redundant ports giving a
total of eight external SpaceWire links, where four of the links
could be used separately.

The four SpaceWire codecs where later replaced by the
SpaceWire router. The register interface of the AMBA ports of
the SpaceWire router are software compatible with the register
interface of the previously used codecs, giving little or no
overhead for software implementations. While the SpaceWire
router supports redundant ports the choice was made to
implement the eight ports as separate links and instead to
recommend group-adaptive routing as an alternative to the
redundant port feature. This gives users the alternative to
forego redundancy and instead use all eight available links
simultaneously.

The NGMP is targeted at general payload processing with
the main design goal of increasing the average processing
performance. The main use of the SpaceWire router within this
context is not to route SpaceWire traffic from external entities
but instead to provide the same functionality as the previously
included SpaceWire codecs.

The inclusion of the SpaceWire router provides more
options to system designers. The device can be used to both
provide SpaceWire connectivity to the on-chip processing
components while also acting as a router for external entities.
Protection mechanisms in the architecture also allow the use of
the SpaceWire router to be completely separate from the rest of
the design. In effect packaging the router and microprocessor
components together with the gain of reducing the number of
required devices.

V. TRAFFIC ROUTING
The first use of the SpaceWire router within the NGFP

validation effort was to study the effects of routing AMBA
traffic either through or behind the system’s Level-2 cache.

The test consists of an RTEMS application that is
transferring data over the four AMBA ports simultaneously.

325

Fig. 2 Example of test rig setup

The router is configured to route the SpaceWire packets from
AMBA port 0 to AMBA port 1, then AMBA port 1 to port 2
and so on back to AMBA port 0. This means that every packet
will exercise eight DMA operation channels every time one
packet makes one round-trip. The number of round-trips is
counted and performance figures are calculated based on these
counts.

The packets are marked with a unique sequence number
and contain 16-bit incremented data. This is done to be able to
verify packet receive/transmit ordering and data correctness.
The packet sequence is verified for every received packet. The
data is verified after all transmissions are finished.

The tests were performed with the internal SpaceWire
fabric and AMBA system running at 200 MHz.

The test was run in several different configurations, of
which three are considered here:

• CFG2 – Cache-coherent system with Level-2
cache, caching all traffic

• CFG5 – Cache-coherent system with Level-2
cache, SpaceWire DMA buffers and traffic not
cached

• CFG10 – System with Level-2 cache. SpaceWire
DMA buffers not cached by Level-2 cache.
SpaceWire DMA traffic does not pass through
Level-2 cache. In this configuration the cache
coherency of the L1 cache cannot be maintained
through bus snooping. The processor MMU is
used to mark the DMA buffers as noncachable to
solve the coherency issue.

The results of the tests showed that the highest performing
configuration is CFG2 where the Level-2 cache caches all
DMA traffic. This is expected as the software execution causes
little interference and the Level-2 cache is essentially dedicated
for DMA buffers. In a configuration where additional software
instances made use of the Level-2 cache it is expected that the
SpaceWire traffic throughput and software application
performance would be negatively affected due to the shared
resource in the Level-2 cache. The combined throughput for all
DMA ports was measured to 1.54 Gbit/s.

The test case CFG5 showed that SpaceWire throughput is
more than halved when marking the DMA buffers as uncached
in the Level-2 cache. In this configuration the Level-2 cache
does not add any benefit when fetching data from external
memory, instead the cache only adds latency on each DMA
access.

The CFG10 test case showed the effects of bypassing the
Level-2 cache and routing traffic directly to the main memory
controller and was completed using a FPGA prototype due to
NGFP IOMMU silicon errata. The test showed that the
throughput decreases with 18% in CFG10.

While the data throughput for this particular test is lower
when bypassing the Level-2 cache it is important to recognize
the effects on the processor system. When bypassing the Level-
2 cache the DMA traffic will have negligible, if any, impact on
software instances with high Level-1 and Level-2 cache hit
rates. This allows large amount of data to be transferred to
main memory without processor intervention and without
impacting performance of software.

326

VI. SPACEWIRE ROUTING TESTS
The traffic routing test described in the previous section

studied the effects of using the AMBA ports to transfer large
amounts of data. The second set of validation tests performed
on the functional prototype device that involved the SpaceWire
router focused on the routing capabilities of the router. The
tests were divided into four major groups:

• All SpaceWire ports – Exercise the router by
generating traffic on all ports

• Group-adaptive routing
• Packet distribution
• Priority routing
• Packet timeout

All tests described below were performed with the internal
SpaceWire fabric running at 200 MHz and the AMBA system
running att 200 MHz. All SpaceWire links were configured to
operate at a bitrate of 200 Mbit/s.

A. All SpaceWire ports
To validate that all the SpaceWire ports of the SpaceWire

router can handle both receive and transmit at a rate of 200
Mbit/s, each SpaceWire port was connected to another
SpaceWire port. 4 MiB packets were then sent from an AMBA
port, routed out onto a SpaceWire port, received at another
SpaceWire port, and then routed to an AMBA port were the
data was validated. This test was repeated so that all
SpaceWire ports were utilized, and both path addresses and
logical addresses were used for the packets.

B. Group adaptive routing
The SpaceWire router supports group adaptive routing for

all path addresses and logical addresses. Group adaptive
routing means that packets can be routed through the network
over different paths depending on which of the router's ports
that are available when the packet arrives. For example, a
packet with address 0x40 arrives at SpaceWire port 1 of the
router, and address 0x40 is configured with group adaptive
routing to SpaceWire port 2 and 3. The router will then route
the packet to either port 2 or port 3 depending on which port
becomes available first. If both ports are available, the router
will send the packet on the port with the lowest port number.
The group adaptive routing mechanism was validated by
connecting four SpaceWire ports together and then sending
packets from an AMBA port where the address byte of the
packets were configured with group adaptive routing to two of
the four ports. When the packets arrived at the router again
they were routed to another AMBA port. It was then verified
that the packets arrived correctly as long as one of the two
SpaceWire used as output ports were connected to another
port. If none of the two SpaceWire ports used as output ports
were connected then the packet was not received at the AMBA
port used as destination. Group adaptive routing as also
verified further in the packet distribution validation (see
below).

C. Packet distribution
Packet distribution - which means that data arriving at a

input port is sent to multiple ports simultaneously - is
supported by the SpaceWire router for both path addresses and
logical addresses. This feature was validated by connecting
four SpaceWire ports to each other and then sending a packet
with two address bytes from an AMBA port. The first address
byte was configured with header deletion and packet
distribution out on the four SpaceWire ports, and the second
address byte was configured with group adaptive routing to
AMBA ports 0-3. When the packet was sent from the AMBA
source port the first address byte was removed by the use of
header deletion, and the packet was routed out onto the four
SpaceWire ports. It was then verified that the four packets,
arriving at one SpaceWire port each, was routed to one AMBA
port each (because group adaptive routing was used for the
second address byte). This test also adds additional validation
of group adaptive routing since the test validates that group
adaptive routing works when the destination ports are busy
with transmitting data. The validation of group adaptive
routing described above only validated the case when the
destination links were not running.

D. Priority routing
When packets are to be routed, each destination port is

arbitrated individually using a two level priotiy. The priority is
based on the first address byte of the incoming packet, and all
path addresses and logical addresses can be assigned either a
high or low priority. Round-robin is used when one or more
packets with the same priority competes about the same
destination port. The validation of the priority routing
mechanism was done by enqueueing four different packets,
each one from a different AMBA port, where all packets were
to be routed out on the same SpaceWire port. Three of the
packets contained an address that had been assigned a low
priority, while the fourth packet contained an address with high
priority. The SpaceWire port that the packets would be routed
out onto was connected to another SpaceWire port of the
router, and the second address byte in all packets was the path
address of one of the AMBA ports (same for all packets so that
the order could be observed). The three low priority packets
were sent slightly before the high priority packet, and it was
then validated at the destination AMBA port that the first
packet received was the first low priority packet, followed by
the high priority packet, and then followed by the two
remaining low priority packets. It was also validated that if the
high priority packet was instead changed to low priority it was
received last of the four packets.

E. Packet timeout
The SpaceWire router implements packet timers in order to

prevent situations where the ports becomes blocked for ever if,
for example, a source stops sending data without terminating
the packet with an end of packet marker (EOP and EEP). In
such a situation the router will detect that no data has been sent
for a certain amount of time (configurable), and the packet will
then be spilled and the destination port released. Connecting
two of the router’s SpaceWire ports to each other has validated

327

the packet timeout feature. Then a packet containing two
address bytes was sent from an AMBA port. The first address
byte made the router route the packet out onto the first of the
two mentioned SpaceWire ports. The second address byte
made the router try to route the packet to a SpaceWire port that
was not connected to anything. After the first packet was sent
another packet was sent from a second AMBA port. The first
address bytes of the second packet informed the router to route
the packet out onto the same SpaceWire port as the first packet,
and the second address byte was the address of a third AMBA
port. In the case that the SpaceWire routers timers were not
enabled it was verified that the second packet never reached its
destination (because the first packet blocks the outgoing
SpaceWire port for ever). If timers were enabled it was verified
that the second packet eventually reached its destination, since
the first packet was spilled by the router after a timeout period
when it failed to route it.

VII. CONCLUSION
The parts of the NGFP validation effort that included the

SpaceWire router aimed to prove the design decision to allow
AMBA traffic to be routed so that it bypasses the Level-2
cache and to demonstrate core functionality of the router.

The functionality to bypass the Level-2 cache was
successfully demonstrated using the SpaceWire router AMBA
ports and as a side effect also verified high-speed
communication between the router’s AMBA ports.

Core functionality of the router was also demonstrated by
generating traffic on all ports and execution of test cases using
group-adaptive routing, packet distribution, priority routing and
packet timeouts.

The NGMP is part of the ESA roadmap for standard
microprocessor components and it will be commercialized
under fair and equal conditions to all users in the ESA member
states. The NGMP is fully developed with manpower located
in Europe, and it only relies on European IP sources. It will
therefore not be affected by US export regulations.

ACKNOWLEDGMENT
The Next Generation Microprocessor is developed in

activities commissioned and funded by the European Space
Agency under contracts 22279/09/NL/JK and 18533/NL/JD.

328

Galvanic Isolation of SpaceWire Links
Components, Short Paper

G. Baterina, Y. Moghe, P. Francois

Silanna Group Pty Ltd

37 Brandl Street, Eight Mile Plains, QLD 4113, Australia

gil.baterina@silanna.com , Tel: +612 9763 4111

A. Senior

Systems Engineering & Assessment Ltd

Bristol, United Kingdom

alan.senior@sea.co.uk

Abstract—This paper summarizes the need for galvanic

isolation in SpaceWire networks, reviews the limitations of

current isolation solutions, and proposes a new SpaceWire Link

Isolator device based on radiation-hardened Silicon-on-Sapphire

(SOS) technology. As a stepping-stone to the proposed device, a

discrete galvanic isolation solution was demonstrated using

Silanna's core isolator chip along with commercial off-the-shelf

(COTS) LVDS transceivers and isolated DC-DC converters to

power all circuitry across the isolation barrier. SpaceWire links

operating at 200 Mbps were successfully isolated and handled the

introduction of up to 50 V of common-mode voltage on the

demonstration unit. The proposed integrated solution is expected

to have an on-chip isolated power and operate up to 400 Mbps,

handling a common-mode of 100 V-RMS, and a galvanic

isolation of 1 kV-RMS.

Index Terms— Spacewire, SpW, isolation, fault propagation,

LVDS, common mode voltage, galvanic, component

I. INTRODUCTION

SpaceWire (SpW) as defined in the standard [1] uses the

Low Voltage Differential Signaling (LVDS) electrical interface

which has the advantage of reducing the power required for a

high speed data link, however the existing LVDS buffer and

ASIC devices have 2 principal drawbacks for implementing

high reliability systems:

1. limited common mode voltage tolerance

2. fault propagation paths

The common mode tolerance is +/-1V; if this voltage is

exceeded then the link data may be corrupted. In the worst

case the transmitter/receiver devices may either be stressed or

permanently damaged. Stressing of the LVDS buffer may not

be evident but often results in a reduced reliability leading to

premature failure later. Within a spacecraft, it is practical to

control the common mode voltages within the specified limits

and thus once launched problems would not be anticipated.

Control of the common mode voltages during ground testing of

spacecraft with remote Electrical Ground Support Equipment

(EGSE) that use long cables becomes more problematic;

drivers and receivers have failed in test configurations either

due to incorrect test setups, poor grounding setups, or the

effects of EMC testing. Clearly it is important to implement an

effective grounding scheme and ensure that methods for

monitoring the common mode voltages are in place rather than

wait for failures to occur or assume acceptable conditions are

met.

Fault propagation paths exist between LVDS link ends due

to the direct silicon to silicon connection between the devices

at the two ends of a link [2]. A power supply failure in one

piece of equipment could propagate to another equipment by

injecting out of specification voltages at the LVDS buffer

terminals [3]. Due to the constraints of high speed signaling, it

is not practical to use series protection resistors in the signal

lines to reduce potential fault currents to an acceptable level;

thus, it is necessary to add protection to the internal supply rails

of each equipment.

The mitigation methods for both the common mode and

fault propagation issues are time consuming to analyse for

failure mode effects and they typically result in an increased

complexity of the flight equipments.

It is thus highly desirable to incorporate galvanic isolation

in the link paths, this will permit the legacy Mil-Std-1553B

command and control links to be replaced with the more

capable SpW bus and to eliminate failures in test environments

with EGSE.

II. LIMITATIONS OF CURRENT ISOLATION SOLUTIONS

The Data and Strobe lines of SpW are non-DC-balanced

signal streams with data rates up to 400 Mbps. Since the signal

streams are not DC-balanced, typical capacitive or inductive

(transformer) AC coupling methods for isolation are not viable;

in comparison, by design, high speed digital isolators are

capable of handling non-DC-balanced signal streams.

However, the high speed digital isolators available today have

maximum data rates of 150 Mbps; this falls below SpaceWire’s

Spacecraft
main bus

LVDS linkVsupply 1

Avionics unit 1 Avionics unit 2

V
Common mode voltage difference

Vsupply 2

Fault propagation
path between
supply rails

Fig. 1 Common mode voltages and fault propagation

329

mailto:gil.baterina@silanna.com�
mailto:alan.senior@sea.co.uk�

Fig. 3. Silanna SpW Demonstration Module
RIN1-

RIN1+

RIN2+

RIN2-

DOUT2-

DOUT2+

DOUT1+

DOUT1-

EN

ROUT1

ROUT2

GND

VDD

DIN2

DIN1

EN-

VDD

GNDGNDI

V
R

E
GDC-DC DC-DC

I/O
 C

O
N

T
R

O
L

V
R

E
GVDDI

ROUT1-

ROUT1+

ROUT2+

ROUT2-

DIN2-

DIN2+

DIN1+

DIN1-

Fig. 2. Silanna SpW Link Isolator

Fig. 4. Sample Statistics of Isolated SpW Link Transfer

400 Mbps maximum data rate. Isolators based on opto-

couplers are relatively slow (~10 Mbps), susceptible to

radiation, and degrade in performance over time. Silanna has

already demonstrated the digital isolation of signal streams

greater than 500 Mbps using a 0.5μm Silicon-on-Sapphire

(SOS) process. [4]

III. PROPOSED SPACEWIRE LINK ISOLATOR

The proposed SpW link isolator device would have four

high-speed data channels (two in each direction) to handle Data

and Strobe transmit & receive signaling; with LVDS levels on

the cable-side & selectable LVDS/LVTTL levels on the

module-side of the isolation barrier, both discrete and

integrated SpW links could be isolated with a nearly drop-in

isolation solution. To further simplify the adoption of the SpW

isolator, the device would also include the integration of a DC-

DC isolator to optionally provide power to the cable-side from

the device side without the need for additional active

components (see Fig. 2).

A summary of the target features are:

 4 high speed (400 Mbps) channels

 Cable-side: LVDS

 Module-side: LVTTL or LVDS

o LVTTL: LV049 Mode

o LVDS: Repeater Mode

 LVDS failsafe per SpW standard

 Cold sparing for redundant backup

 Isolation voltage: 1 kVrms

 Working voltage: 100 V (common mode

voltage)

 Integrated DC-to-DC isolator to power cable-

side from module-side

 Cable-side data lines align well w/ SpW cable

connection

 Ground-based device in 20-pin plastic package

 Space grade device in 20-pin ceramic package

 Silicon-on-Sapphire (SOS) technology

 Target Radiation Tolerance > 100 krad(Si) TID

(for Space grade)

IV. DEMONSTRATION MODULE

To demonstrate the high speed digital isolation capabilities

in a SpW application, a demonstration (demo) module was

built around the Silanna SIL1042L 4-channel isolator device

(Fig. 3). A pair of LV049 (dual channel LVDS transceiver)

type devices was used for the LVDS I/O. An isolated DC-DC

converter was also included as an option to power the isolated

side of the module. The module demonstrated the wide

common mode range of the isolated interface and the

capability to handle the non-DC-balanced SpW data streams

up to 400 Mbps.

V. INITIAL TESTING

The demonstration module was successfully tested with

non-DC-balanced pseudo-random bit streams at data rates up

to 400 Mbps; common mode voltages of up to 10 Volts were

also introduced without disruption.

Testing in SpW environments is currently in progress with

promising results, the links operating at DC and AC common

mode voltages up to 50V.

330

VI. CONCLUSIONS

The initial testing of the SpW demo module clearly

addressed one of the principal drawbacks for implementing

high reliability SpaceWire systems – limited common mode

voltage tolerance. The unit was able to pass 400 Mbps data

with up to 50 Volts of common mode voltage present; the

proposed integrated SpW link isolator is targeted to have 100

Volts of common mode voltage tolerance. Although galvanic

isolation should readily eliminate the problem of fault

propagation paths, testing continues at Silanna and within the

SpaceWire community to confirm that this drawback is also

addressed.

REFERENCES

[1] European Space Agency - ECSS Secretariat, “ECSS-E-ST-50-

12C, Space engineering, SpaceWire – Links, nodes, routers and

networks,” 31st of July 2008, 129 pages

[2] M. Suess, J. Ilstad, W. Gasti, “Galvanic Isolated SpaceWire

Links, Requirements, Design Options and Limitations,” 2009

ESA Workshop on Reliable Power & Signal Interfaces

[3] R. Malmberg, “Failure Propagations via Power and Signal

Interfaces,” 2009 ESA Workshop on Reliable Power & Signal

Interfaces

[4] Y. Moghe, A. Terry and D. Luzon, “Monolithic 2.5kV RMS,

1.8V - 3.3V Dual-Channel 640Mbps Digital Isolator in 0.5μm

SOS,” SOI Conference (SOI), 2012 IEEE International, On

page(s): 1 - 2

331

Low Mass SpaceWire and

Copper based SpaceFibre Links
Components, Short Paper

Gilles Rouchaud

Axo.com Space Products Division

Axon’ Cable SAS

Montmirail, France

g.rouchaud@axon-cable.com

Nigel Kellett

UK Division

Axon’ Cable Ltd

Rosyth, Scotland

n.kellett@axon-cable.co.uk

Abstract— This paper reports on the major achievements of

the ESA project to develop a Low Mass SpaceWire cable design,
the main content of which was previously presented at the last
International SpaceWire conference in San Antonio, November
2011.

Today, the team has completed the project with a cable mass
reduction by at least 50 per cent, and is able to report on the final
selections of the different cable versions presented in 2011, along
with their relative mechanical, electrical and shielding
performances versus mass savings.

Two versions remain from the 4 initial versions after final
selection. The first version uses twisted shielded pairs and
presents electromagnetic, mechanical and electrical
performances similar to the existing standard, and is therefore
recognized by ESA. The second version uses pairs of coaxial
cables and presents higher attenuation, thus limiting the usage
length, but significantly increased flexibility and an even lower
mass. This version, however, is not ESA recognized.

The project team additionally concludes on the maximum
advisable lengths for the different low mass versions assessed.

Therefore, taking all of this into account, the team is currently
working with ESA and Star Dundee to feed all of these
conclusions into the latest draft of the ECSS-ST-50-12 assembly
standard and the ESCC 3902/003 cable standard updates. The
screen termination method has been reviewed in depth. The
inner and overall shields are terminated together to the
connector shell at both ends.

SpaceWire, however, remains limited to 400Mbits/s or its
maximum usable length. The new SpaceFibre standard will be a
multi-gigabit protocol proposing copper or fiber optic solutions
for very high data rates and/or longer cable lengths. A good
connector candidate for a copper cable solution is named
Axomach®, an Axon’ connector previously developed with CNES
for transmissions up to 10Gb/s per channel. The latest tests run
by Star-Dundee demonstrate that this cable and connector
solution works very well for crossover transmission lines running
at 2.5Gb/s.

Index Terms— Relevant indexing terms: SpaceWire,
SpaceFibre, Micro-D, Nano-D. (key words)

I. BACKGROUND, EXISTING LIMITATIONS

This short paper intends to provide a brief overview of the

recently completed ESA project to develop a low mass

alternative to the existing SpaceWire cable, and will discuss

continued limitations and possible future developments in this

area.

An overview of the progress (at that time) has previously

been presented at the last International SpaceWire Conference

in San Antonio, Texas in November 2011. This paper also

serves as an update to that presentation.

The existing SpaceWire cables, recognized by the ECSS-

ST-50-12 standard, have a number of limitations. They are

relatively heavy, at approximately 80g/m for the lightest

(AWG28) version, they are fairly rigid, they are not

particularly radiation tolerant, and they have quite a large

minimum bend radius, particularly the bigger AWG26 version.

All of these limitations reduce the suitability of the current

SpaceWire cable for installation and use in spacecraft, although

they remain currently the only approved options.

In addition to these physical constraints with the cable

itself, the standardized interface connector, the 9 way Micro-D,

is not impedance-matched and therefore not optimized for the

application, and the standardized wiring schedule is not

optimized for EMC.

The ESA ITT sought to address many of these issues, the

principle one of which was weight reduction, and Axon’ Cable,

the winner of the tender, has therefore been developing such

optimized solutions along with their consortium partners, Star

Dundee in Scotland and EADS Astrium in Toulouse, France.

II. WAYS TO REDUCE MASS, TWO POTENTIAL VARIANTS

SELECTED

Mindful of the electrical performance requirements dictated

by the standard, it was necessary still to use certain minimum

dimensions and materials. However, three main areas were

focused on to bring about improvements:

- The use of lighter materials. Essentially broken down

into conductors and insulators, the use of lighter

conductors such as aluminium, was proposed where

332

appropriate, as opposed to copper; and for the

insulators or dielectrics, the use of expanded or

alveolar materials was selected, as being lighter than

their solid counterparts.

- Constructional changes. The existing SpaceWire cable

is a construction consisting of four individually

screened and jacketed twisted pairs all laid together in

an assembled bundle, which itself then has an overall

braided screen and an overall extruded outer jacket.

The project members sought to explore other

constructions which could achieve the same or similar

electrical performances while using a “lighter”

combination of elements.

- Flexibility and radiation. While considering weight

reduction, the project team also gave consideration to

possible ways of increasing the flexibility and radiation

tolerance of the finished cable.

In all, some 12 suggested constructions were put forward

for initial analysis and testing, following which two

constructions of interest were finally selected.

The first of these, known initially as Variant 03, and then

given the project designation C-OA-TPA-A-2819, is

similar to the existing SpaceWire AWG28 cable, with

the following key differences:

- The silver plated copper conductor is a 19 stranded

AWG28 conductor, giving it more inherent flexibility

than the existing 7 stranded version.

- The primary insulation is of an aleveolar PTFE (or

aPTFE) construction, where the material is not solid

but has a number of air gaps in a lattice-like structure,

see Fig 2. This has the twin advantages of improving

the dielectric constant whilst also reducing weight,

Fig. 1. Cross sectional view of an alveolar PTFE insulated conductor.

- The inner screens of each twisted pair are silver plated

aluminium instead of silver plated copper, thus

substantially reducing weight (and not requiring

termination)

- The filler between the four screened pairs is of

expanded PTFE, for which Axon’s trade name is

CELLOFLON
®
, a material which is inherently very

flexible,

- An outer screen has been retained, also in silver plated

aluminium, but which, very importantly, is in contact

with the four inner screens,

- And finally an outer insulation is constructed by the

use of a CELLOFLON
®
 expanded PTFE inner tape

and a polyimide (KAPTON) outer tape, providing an

excellent combination of lightweight flexibility and

good radiation tolerance.

Fig. 2. Variant 03 (C-OA-TPA-A-2819) Low Mass SpW cable (Outer shield

in contact with inner pair shields, all shields in silver plated aluminium)

Having been proven to have acceptable performance results

in all tests, this variant has been accepted in principle by ESA

as a potential lightweight “drop in” replacement to the existing

SpaceWire variants, and is in the process of being added to the

latest revision of the standard.

The second construction of interest, known as Variant 09,

(C-OC-CPC-P-3407) takes a completely different

constructional approach, based on four pairs of coaxial cables.

Although these are not 100 ohm impedance pairs each coaxial

has a 50 ohm impedance, and therefore under the required

SpaceWire tests as defined by the Project scope they

nevertheless perform satisfactorily. An enhanced version of

this variant employs an overall shield for improved EMC

underneath an outer insulation of similar construction to that of

Variant 03. The mechanical advantages of this variant are

substantial;

- Mass of around 33 g/m – almost 70% weight saving,

- Outer diameter of around 4.5 mm as opposed to over 7

mm for existing SpaceWire,

- Extremely small bend radius – the cable can almost be

bent double during installation and still perform

satisfactorily, see Fig 3.

Fig. 3. Alternative variant based on 8 x coaxial cables, with picture showing

the tight bend radius possible whilst maintaining electrical performance

However, it is important to note that according to ESA, the

coaxial construction is not theoretically suitable for a floating

333

load LVDS application such as SpaceWire, and as such ESA

does not currently endorse its use.

This cable can be terminated using existing 9 way Micro-D

connectors, or indeed the much smaller 15 way Nano-D

connectors, thereby saving even more space and weight (but

clearly that would then require devices with Nano-D mating

halves). It is not suitable for re-work, however, being based on

AWG34 wires, significantly smaller than the minimum

acceptable gauge size recognized by ESA, AWG30.

III. COMPARISON BETWEEN BOTH VERSIONS

Both cable types meet the SpaceWire performance criteria,

although because of the smaller gauge size it would not be

appropriate to use the coaxial version in longer lengths. If we

assume that an “acceptable” value for Insertion Loss over the

whole assembly is 6dB, then we can calculate maximum usable

lengths for each type, (not including connectors) and

summarize as follows:

TABLE I. INSERTION LOSS COMPARISON

Part number/ Bach N°
P551259A /

X19623

P551260A^ /

X19371

Comments
43g/m, twisted

pairs, ESA

endorsed

33g/m, coaxial

pairs, not ESA

endorsed

Code
C-OA-TPA-A-

2819

C-NO-CPC-P-

3407

Performance
at 250MHz

Data rate
100Mb/s

S21 (dB/m) @

250MHz

0.6 1.24

Max length to

reach 6dB in m
10 4.8

Performance
at 500MHz

Data rate
200Mb/s

S21 (dB/m) @
500MHz

0.85 1.8

Max length to

reach 6dB in m
7 3.4

Performance
at 1000MHz

Data rate
400Mb/s

S21 (dB/m) @

1000MHz

1.27 2.57

Max length to

reach 6dB in m
3.7 2.2

IV. SPACEWIRE SCREEN TERMINATIONS AND CONNECTOR

CHOICE

The wiring and screen bonding schedule for the current

SpaceWire cable is not optimized, but rather was adopted at the

time, partially due to the constraints imposed by a combination

of the construction of the cable (where all the inner screens are

isolated from the outer screen) and the 9 way Micro-D

connector (which does not have enough contacts to terminate

all 8 wires and all 4 inner screens). We therefore have the

existing standard wherein two of the inner screens are short

circuited together and terminated to pin 3 at one end, and the

other two inner screens are similarly terminated to pin 3 at the

other end, meaning that no inner screen is continuously

connected from one end to the other. This was considered

acceptable under previous EMI guidelines, but it is generally

accepted today that shield bonding at both ends is far better.

The outer screen is terminated to the shell of the connector (or

backshell) but there is no specific requirement for a 360° shield

termination.

Fig. 4. Existing SpaceWire wiring schedule

Assuming, for backward compatibility reasons, we wish to

retain the 9 way Micro-D connector for some time to come, we

can now substantially improve this wiring schedule with the

new (ESA endorsed twisted pair) cable construction. Here,

because all the inner screens are now directly in contact with

the outer screen, we can remove any screen termination to pin

3, thus avoiding the transfer of any EMI interference directly

into the electronics. We can then simply terminate the outer

screen to the body of the connector or backshell, thus

effectively terminating all screens together in one go. For

EMC purposes, it is highly recommended to employ a

backshell at the rear of the Micro-D connector, with a cable

entry funnel optimized to be only slightly larger than the inner

bundle of four pairs, and then to terminate the overall shield

over this funnel with some recognized form of 360° screen

termination, such as a EMC band clamp. This simplified, but

improved, wiring schedule will now resemble Fig. 5.

Fig. 5. Proposed Low Mass SpaceWire Wiring Schedule

The Micro-D connector family, however, is not designed to

be EMC optimized. There are no guaranteed 360° points of

contact between the male and female bodies, so much of the

screen connection tends to travel through the jackscrew and

jackpost fasteners, known in the Micro-D industry as the

334

“hardware”. This can be improved, however, by the addition

of an EMC gasket on the mating face of the male flange, which

if applied on both ends, will result in significantly better EMC

performance, as shown by the Zt (Transfer Impedance) figures

in Table II.

TABLE II. TRANSFER IMPEDANCE OF A SPACEWIRE LINK WITH AND

WITHOUT EMC GASKETS

Frequency in
MHz

Transfer Impedance (Zt) in mΩ

Version Without gasket
With gasket on

one end

With gasket

on both ends

DC 31.3 31.3 31.3

0.03 29.7 31.6 28.1

0.10 30.5 31.6 28.45

1 38.2 39.6 34.3

10 120 107 60.2

20 182 150 75.9

50 341 329 108

100 646 453 146

250 1642 594 378

500 2929 2240 1505

1000 28619 25855 1075

As part of the Project scope, a survey was undertaken to

identify possible connectors better suited to increasing data

rates than the existing, non-impedance matched, 9 way Micro-

D (which nevertheless remains adequate for SpaceWire

transmission, even at 400Mb/s). A number of potential

connector candidates were identified with varying degrees of

performance, including both circular and rectangular varieties.

These included connectors from Sabritec (US), Airborn (US),

Molex (US) and Axon’ (F). In all some 10 different connector

families were reviewed on paper. All have limitations relating

either to performance, ease and suitability for SpaceWire

termination, size, or restricted availability.

In summary, there is no optimized connector (for both

performance and size) available from a European source,

indeed even although only one in particular from the US does

appear promising, it is patent pending, and will therefore likely

be restricted to a single source.

There is scope, therefore, for a European manufacturer to

come up with a suitably optimized connector for existing

SpaceWire and Low Mass SpaceWire, which should be

impedance matched to 100 ohms, EMC optimized, and with

body dimensions that may allow for “forward compatibility”

for future higher data rate applications, such as SpaceFibre.

V. SPACEFIBRE – COPPER CABLE SOLUTION FOR UP TO 10GB/S

Out with the Low Mass SpaceWire project, work is

ongoing to develop the multi-gigabit SpaceFibre protocol, with

potential media solutions in both copper and optical cable.

Axon’ has already developed a space grade copper based

solution in association with the CNES, which (cable and

connectors combined) is capable of operating at up to 10Gb/s

per 2 way channel. A four channel version of this exists

permitting total data transfer rates across the link of up to

40Gb/s. This solution is based on pairs of high frequency

coaxial cables.

In order to comply with the intended SpaceFibre

requirements, a two way version of such an assembly, trade

name, AxoMach
®
, would be required in a crossover

configuration, permitting full duplex operation servicing

transmitter and receiver at both ends. Such an assembly has

been tested by Star Dundee at 2.5Gb/s with satisfactory results,

see Fig. 6.

Fig. 6. AxoMach crossover 2 way link connected to a Star Dundee

SpaceFibre test unit at 2.5Gb/s (with eSATA adaptors)

VI. CONCLUSIONS

A low mass alternative to the current SpaceWire cable now

exists at approximately 50% of the standard weight, and can be

used as a drop-in replacement with existing 9 way Micro-D

connectors for compatibility with most systems. This cable is

currently being added to the updated SpaceWire standard.

An ultra-low mass version, (70% weight saving) based on

coaxial cable pairs also exists, but despite satisfactory test

performance, is not ESA-endorsed for SpaceWire. User testing

would be required to determine if this solution could really be

used in actual LVDS applications.

The most common SpaceWire interface connector, the 9

way Micro-D, is neither impedance-matched nor EMC

optimized, and there is no ready European solution for an

improved SpaceWire connector. There is therefore scope to

develop a matched impedance connector standard for

SpaceWire, particularly if it can also provide forward

compatibility for SpaceFibre operation.

A fully compatible space grade copper-based cable and

connector solution already exists for SpaceFibre transmission,

and indeed can support much higher data rates of up to 10Gb/s

per channel.

ACKNOWLEDGMENT

Axon’ would like to acknowledge, with thanks, the

collaboration and support throughout the duration of the Low

Mass SpaceWire project of J. Ilstad (ESA), S. Parkes (Star

Dundee), C. Carron (EADS Astrium Toulouse) and their

respective teams.

335

A Modular Connector for SpaceWire Backplanes
SpaceWire Components, Short Paper

Keir Boxshall

Smiths Connectors

London, U.K.

keir.boxshall@smithsconnectors.com

Alan Senior

Systems Engineering and Assessment Ltd

Bristol, U.K.

alan.senior@sea.co.uk

Sanjay Sharma

Systems Engineering and Assessment Ltd

Bristol, U.K.

sanjay.sharma@sea.co.uk

Abstract— SpaceWire can be considered a de-facto standard

for onboard payload data systems to implement data links up to

400 Mbps. SpaceWire has been adopted by all the major space

agencies throughout the world and most future missions will use

it. ESA, NASA, JAXA and ROSCOSMOS, for example, are all

specifying missions with a requirement to use SpaceWire

standard for the interface links. The standards are maintained

and issued formally as ECSS documents (e.g. ECSS-E-ST-50-

12C) and this means that equipments designed by different

agencies are interoperable, this is a significant advantage.

Presently SpaceWire is mainly used between instrument units,

however in order to facilitate a higher level of integration of

onboard systems based on SpaceWire there is a need for a

suitable connector for backplanes which offers a high number of

power and discrete signal pins as well as impedance matched

connectivity for high speed serial links.

An extensive market survey of available connector types has

revealed a lack of space qualified connectors that offer the high

I/O density required as well as matched 100 Ω impedance paths

for SpaceWire links. Looking at the market perspective, such a

connector would be useful for applications not only for

SpaceWire but also for the next generation of high speed serial

links such as SpaceFibre Copper that will have a minimum data

rate of 2.7 Gbps.

This paper presents a new modular connector that Smiths

Connectors, has designed and prototyped specifically for high

integrity aerospace backplane applications, it incorporates a

configurable set of power and discrete pins as well as controlled

impedance pins that can operate at up to 10 Gbps.

Index Terms—SpaceWire, SpaceFiber, connector, backplane,

high speed, controlled impedance. (key words)

I. INTRODUCTION

The requirement for a robust, space qualified backplane

capable of supporting 400 Mbps, 100 Ω impedance matched

SpaceWire (SpW) links and capable of transmitting power and

high density discrete signals was established. An extensive

market study of pre-existing backplane connectors was

performed yielding no suitable candidates for the application.

Initially three configurations were defined containing

differing numbers of SpaceWire links, power and discrete

contacts. The three configurations were estimated to cover a

wide variety of, as yet undefined, applications for the

connector standard within the SpaceWire community.

Smiths Connectors proposed a highly configurable

connector system that satisfied all three defined configurations

and numerous additional configurations by virtue of a

connector with a singular, columnar modularity in terms of its

contact architecture. The modular connector proposed will

become a standard connector range for Smiths Connectors

which would be intended to be sold into numerous other

markets requiring robust backplane connectors.

The aim of this paper is to detail the features and explore

the simulated performance of the connector system in various

configurations and to demonstrate its ability to fulfill the

requirements of numerous applications without requiring

additional development and qualification.

II. REQUIREMENTS

The minimum requirements for the connector were defined

by Systems Engineering and Assessment (SEA) with reference

to ECSS specifications where applicable. Table 1 contains the

requirements as defined by SEA.

Requirements Table
Req.

No.
Requirement Comment

010 The SpW backplane connector

shall fit 3U and 6U size cards.

To support the 2 proposed

card sizes.

020 The SpW backplane connector

shall permit 20mm pitch boards.

030 The mass of the connector shall

be minimised within the scope of

environmental and material
constraints.

040 Both the connector body and
contact materials shall be

ECSS-Q-ST-70C [REF 1]
ECSS-Q-70-71 [REF 2]

336

mailto:keir.boxshall@smithsconnectors.com�
mailto:alan.senior@sea.co.uk�
mailto:sanjay.sharma@sea.co.uk�

Requirements Table
Req.
No.

Requirement Comment

compatible with ECSS standards
for flight connectors.

ECSS-Q-ST-70-02 [REF 3]

050 The connector shall meet ECSS

standards for durability.

ECSS-Q-ST-70C [REF 4]

060 The connector shall allow for

through hole solder fitting to both
the backplane and daughter-card.

070 Alignment pins shall be provided

on the connector.

To aid connector mating and

prevent contact damage.

080 A minimum of 8 connector

polarisation or keying options
shall be provided.

To allow selective mating

between connectors on
different card types.

090 The connector shall support a

minimum of 4 SpW links.

A SpW link is a full duplex

communication path as
supported by a standard SpW

cable, (4 differential pairs).

100 Each differential pairs shall have

an impedance of 100 Ω .

This is for all 4 differential

pairs within a SpW link. To

allow high speed

communications.

101 Each SpaceWire differential pair

shall be shielded from cross-talk.

110 Each SpW pair shall support a

data rate of at least 2.75Gbit/s.

To allow the use of SpFi

Copper without changing the
contact types. Ideally, the

SpW pair should support a

data rate of up to 10Gbit/s.

120 The SpW connector shall have 12

power pins and 12 returns (24
contacts) capable of 5A constant

carry and a minimum of 85V

rating for each contact.

Voltages envisaged to be

+50V, +28V, +15V, +12V, -
12V, +5V, -5V, +3.3V, 0V

130 The SpW connector shall have a

minimum of 60 discrete contacts,

each capable of 200mA (de-rated)
constant carry and a minimum of

50V rating for each.

For carrying non-SpW

signals.

140 There shall be a minimum of 12

contacts with a differential

impedance of 100 Ω within the
provided discrete contacts.

For use as LVDS clocks.

 The connector will also meet the requirements of ECSS

3401 [REF 5], ECSS-Q-ST-70-08C [REF 6] & ECSS-Q-ST-

70-38C [REF 7] where applicable. In addition to the

requirements defined by SEA and ESA Smiths Connectors

identified further requirements that were deemed attractive and

incorporated those elements into the design of the connector.

III. FEATURES & PERFORMANCE

The connector is comprised of two main sub-assemblies; a

socket contact housing backplane mounted receptacle and a 90º

daughter-card mounted plug containing pin contacts. The

connector (mated) is 97.5mm x 25 mm x 12.5mm enabling

comfortable mounting of 1 connector on a 3U card or two

connectors on a 6U card (see fig.1 & fig. 2).

Fig. 1. Mated 3U connector, shown on 100mm PCBs.

The potential exists to expand the range to include a 6U all

in one connector to increase the capacity of the overall

solution. The 3U connector was designed with a capacity of 22

bays and can, therefore, house 22 modules. A single connector

6U solution would contain up to 49 modules. The 12.5 mm

depth allows for adjacent connector stacking heights of ~ 12.7

mm in a surface mount (SMT) connector.

Located at either end of the plug connector are polarizing

guide pins which also form part of the mounting system

connector mounting system. Each of these pins can be

positioned in one of 4 orientations giving a total number of 16

polarization permutations (see fig. 2).

Chassis and insulator components have been manufactured

from a nonconductive Polyether Ether Ketone (PEEK)

composite but can be supplied in a conductive or selectively

conductive PEEK composite to improve electromagnetic

compatibility (EMC). In the aforementioned screened state the

cross-talk between modules is minimized. Mounting hardware

is stainless steel.

The contacts located in both ‘halves’ of the connector are

scoop proof, that is to say they are very well protected from

accidental damage when unmated or during transport by virtue

of being located wholly within small cavities (see figures 2, 3,

4 & 5).

Fig. 2. Unmated 3U connector, shown on 100mm PCBs

337

A system for preferential mating has been devised and

implemented for all module types, whereby early mate contacts

will make electrical connections before late mate contacts (see

figures 2, 3, 4 & 5). Mating interfaces of all contacts have a

minimum of 1.27 µm of gold plating as per ECSS-3401.

All modules have been designed to maximise their

dielectric withstand voltage (DWV) capability without the

requirement for interfacial seals and therefore enabling a high

DWV offering without the typically associated (and deemed to

be undesirable) increase in mating force. Further features have

been incorporated into the internals of the connector to reduce

mating force, which, when coupled with the use of

Hyperboloid sockets throughout, are intended to yield a

backplane connector with industry leading low mating forces.

Both plated through hole (PTH) & SMT technologies are

supported by the connector system. Connections to either

and/or both printed circuit boards (PCBs) can be accomplished

by three different methods, dependent upon application or

customer preference; PC-tails suitable for plated through holes,

surface mounted (soldered) and a solder-less, compliant,

surface mounting method utilising spring probes.

A. Power3.1 module

Power3.1 modules contain 3 x 1 mm (size 20) contacts.

These are rated at 7.5 Amps (A) nominally and are typically

de-rated to 5 A when in a bunched configuration – i.e. when

located in close proximity to one another whilst all are working

at 5 A. Existing receptacle modules (see fig. 3) are configured

with 3 x early mate contacts or with 3 x late mate contacts

although a mixture of the two within one receptacle module is

possible.

Fig. 3. Two Power3.1 daughter modules shown with early and late mate

Power3.1 receptacle modules.

B. Power5.075 module

Power5.075 modules contain 5 x 0.75 mm (size 22)

contacts. These are rated at 5 A nominally and are typically de-

rated to 4 A when in a bunched configuration. Existing

receptacle modules are configured with 5 x early mate contacts

or with 5 x late mate contacts (see fig. 4) although a mixture of

the two contact types within one receptacle module is possible.

Fig. 4. Two Power5.075 daughter modules shown with early and late mate

Power5.075 receptacle modules.

C. Signal10.04i module

Signal10.04i modules contain 10 x 0.4 mm contacts. These

are rated at 400 mA nominally and are de-rated to 200 mA

when in bunched configuration. Existing receptacle modules

are configured as follows: early mate; containing 10 x early

mate contacts, late mate; containing 10 x late mate contacts and

mixed mate; containing 5 early mate and 5 late mate contacts,

with the module exhibiting an early and late mate sidedness

(see fig. 5). The module has been designed such that a higher

rated contact can be used as a direct replacement to upgrade the

current rating to 2 A nominally and 1 A de-rated whilst using

the same mouldings (Signal10.04 module).

338

Fig. 5. Three Signal10.04i daughter modules shown with (from the left)

mixed mate, early mate and late mate Signal10.04i receptacle modules.

The Signal10.04i module is impedance matched (100 Ω +/-

6 Ω differentially). Differential pairs are routed across the

connector, i.e. there are potentially 5 rows of differential pairs

in each Signal10.04i module. Within each differential pair

there is no skew as each line in a differential pair is comprised

of identical contact components to its partner. Figure 6 shows

the return loss simulated from 0 to 8 GHz in CST microwave

studio for each differential pair. The 1 ns rise time particular to

the SpW transfer protocol is, for the sake of the interpretation

of these results, considered to be approximately equivalent to

the Gaussian pulse used for all simulations at 1 GHz. Ports

were labelled sequentially, i.e. differential pair row 1 was port

1 to port 2, and row 5 was port 9 to port 10. Odd numbered

ports were adjacent to one another, as were even numbered

ports. Only the differential mode (mode 1) was simulated.

Fig. 6. Differential return loss for Signal10.04i module configured with 5

differential pairs.

If all contacts are to be utilised as differential pairs, cross

talk will be at a maximum within the system. As the following

figures show, cross talk (X-talk) between differential pairs

progressively diminishes with distance from the excited pair.

Figure 7 shows the near (s1,3) and far (s1,4) end cross talk

(NEXT and FEXT), when port 1 is excited, and the NEXT

(s2,4) and FEXT (s2,3) when port 2 is excited. Simulations

were performed with a Gaussian pulse from 0 to 8 GHz.

Simulated s-parameter data in figures 8, 9 & 10 follow the

same nomenclature as used in figure 7.

Fig. 7. Differential X-talk between pair 1 & pair 2.

Differential X-talk between pair 1 and 2 was approximately

-23 decibels (dBs) for a 1 ns rise time pulse (see fig. 7).

Fig. 8. Differential X-talk between pair 1 & pair 3.

Differential cross talk between row 1 and row 3 is

approximately -47 dBs for a 1 ns rise time pulse (see fig 8).

339

Fig. 9. Differential X-talk between pair 1 & pair 4.

Differential X-talk between row 1 and row 4 is approximately -

66 dBs for a 1 ns rise time pulse (see fig 9).

Fig. 10. Differential X-talk between pair 1 & pair 5.

Differential cross talk between row 1 and row 5 is

approximately -85 dBs for a 1 ns rise time pulse (see fig 10).

The Signal10.04i module was also simulated with the

intermediate pairs (rows 2 & 4) grounded to assess whether

changes in configuration could be implemented to improve s-

parameter performance. This configuration allows 3

differential pairs per module.

Differences in return loss performance were negligible

between the two configurations and are not reported here.

The differential X-talk between pairs 1 & 3 with

intermediate pair 2 grounded exhibited an improvement of

approximately 20 dBs at 1 GHz (see figures 8 & 11).

Fig. 11. Differential X-talk between pair 1 & pair 3 with pair 2 grounded.

The differential X-talk between pairs 1 & 5 with

intermediate pairs 2 & 4 grounded exhibited an improvement

of approximately 15 dBs at 1 GHz (see figures 9 & 12).

Fig. 12. Differential X-talk between pair 1 & pair 5 (pairs 2 & 4 grounded).

D. Quadrax Module.

The Quadrax module differs in its construction from all the

previously described modules. The module housing is

constructed from a conductive material (either manufactured

from aluminium or a conductive composite) acting as a

waveguide for each of the differential pairs and screening them

from electromagnetic interference (EMI). The 90º transition is

accomplished via a PCB minimising inter and intra differential

pair skew; the connections to which are made compliantly with

a robust methodology suitable and specifically designed for

high speed transmission lines situated in high vibration

environments. The configuration of the differential pairs within

this module is columnar and therefore orthogonal to those

located within the Signal10.04i module (see figure 13).

340

Fig. 13. Two Power3.1 daughter modules shown with early and late mate

Power3.1 receptacle modules.

The transmission line characteristics of the Quadrax

module differential pairs were simulated up to 20 GHz,

corresponding to a digital pulse with a rise time of

approximately 20ps. The simulated return loss s-parameters

pertaining to the SpW protocol rise time were approximately -

40 dBs in the worst case (see figure 14).

Fig. 14. Return loss of both differential pairs within the Quadrax module.

The simulated intra modular differential X-talk was

approximately -80 dBs at the 1 GHz point under consideration

in these analyses (see figure 15).

Fig. 15. Near and Far end X-talk between pairs within the Quadrax module.

IV. CONCLUSIONS

The goal of designing a robust highly configurable

backplane connector system, capable of satisfying a large

number of different signal types, was successfully achieved.

The 3U connector can be populated with up to 22 of the 4

types of module:

 Power3.1, containing 3 x 7.5 A contacts.

 Power5.075, containing 5 x 5 A contacts.

 Signal10.04(i), modules which can contain up to 5

differential pairs (400 mA) suitable for multi gigabit

per second transmission rates or up to 10 discrete 2 A

contacts.

 Quadrax, containing 2 differential pairs, suitable for

multi gigabit per second transmission rates with

exceptional screening performance.

The requirements set out by SEA and ESA have been

designed for in full and in many cases exceeded.

The connector, in its simulated performance, is suitable for

use in SpaceWire and is certainly a candidate for SpaceFibre

Copper applications.

V. FURTHER WORK

The prototype connectors currently being manufactured

will be tested and their performance characterized at

temperature and under vibration with respect to the following

aspects:

 Return loss

 Insertion loss

 Near end cross talk (intra and inter modular)

 Far end cross talk (intra and inter modular)

 Insulation resistance

 Dielectric withstand voltage

 Electrical lengths of all signal paths.

 Mating forces (modular & connector)

341

Suitable test boards will be designed (& manufactured) in

such a way as to enable the above outlined performance to be

characterized in isolation.

Further development of the Quadrax module design will be

performed to optimize all s-parameter performance

characteristics at higher frequencies.

De-rating curves specific to the connector system will be

derived from empirical data with respect to both bunching and

temperature.

Assess the optimized, simulated and measured s-parameter

performance against the requirements of SpaceFibre Copper.

342

Networks & Protocols (Long)

343

SpaceWire-RT/SpaceFibre Specification and
Modeling

Session: SpaceWire networks and protocols

Long Paper

Valentin Olenev, Irina Lavrovskaya, Ilya Korobkov
Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, Russian Federation
Valentin.Olenev@guap.ru, Irina.Lavrovskaya@guap.ru, Ilya.Korobkov@guap.ru

Abstract— The growing autonomy of scientific missions to

remote planets requires highly capable on-board networks that
are robust and durable, able to recover from transitory errors
and faults automatically. SpaceFibre is a very high-speed serial
data-link being developed by ESA which is intended for use in
data-handling networks for high data-rate payloads. SpaceWire-
RT is then introduced as a logical development of SpaceWire and
SpaceFibre, which aims to cover many on-board communications
applications from low to very high data-rate networks.
SpaceWire-RT standard is being developed under the scope of
the 7th Framework programme. SpaceWire-RT uses the upper
layers of SpaceFibre, which provide QoS, FDIR and multi-laning.
The lower layers could be represented by both SpaceWire and
SpaceFibre lower layers.

The specification of the SpaceWire-RT standard, and its
modeling is one of the key aspects of the proposed research
programme. From the textual specification a formalised
specification for the SpaceWire-RT was developed using the SDL
language, which is itself a test of the specification for
completeness and unambiguousness. As a result the consistent
readable textual description and formalised specification in SDL
were produced. The SystemC simulation language was used to
model reconfigurable SpaceWire-RT networks with multiple
nodes and routing switches. Such models can be used for
investigating and proving the network level features and
characteristics of the novel SpaceWire-RT technology: scalable
performance, responsiveness, robustness, provision of quality of
service, and ultimate low latency signalling.

The research leading to these results has received funding from
the European Community's Seventh Framework Programme
([FP7/2007-2013]) under grant agreement n° 263148. This paper
gives and overview of the specification and modeling work that is
done by SpaceWire-RT Consortium. The main focus of the paper
is application of modeling for the protocol stack development
purposes, which advantages could it give and what the
implemented models could be used for.

Index Terms— SpaceWire-RT, SpaceFibre, modeling,
specification, protocols, SDL, SystemC

I. INTRODUCTION

Simulation plays a very important role in a process of
communication protocols design. It is used to validate the
specification and to find ambiguities and inconsistencies in it.
This was one of the key tasks in the newest onboard
communication standard developments flow. The SpaceWire-
RT standard is developed in the scope of the 7th Framework

Program project. The main project’s task is to conceive and
create communications network technology, suitable for a wide
range of demanding space applications where responsiveness,
determinism, robustness and durability are fundamental
requirements. This is a critical component technology for
future spacecraft avionics and payloads.

The project began with gathering of the requirements for
the future network technology from Russian and European
companies involved in the space and avionics industry. Based
on these requirements the draft of the SpaceWire-RT
specification was produced. So the next step was to validate the
specification and check the standard for inconsistencies,
ambiguities and errors in developed mechanisms. This was
done by using the simulation models of SpaceWire-RT.

The current paper gives an overview of the developed
SpaceWire-RT standard and presents the simulation and
research results. Moreover, it provides the description of SDL
point-to-point model and SystemC network model that were
implemented for the SpaceWire-RT simulation and validation.

II. SPACEWIRE-RT

Aerospace industry is one of the most rapidly growing
areas in terms of communication protocols development.
Avionics and robotics impose requirements on network
responsiveness and determinism. The increasing international
collaboration on scientific and Earth observation spacecraft
requires standard network technology where a component
developed by one nation will interoperate effectively with
equipment developed by another nation. SpaceWire-RT is the
newest onboard communication protocol standard, which aims
to fulfill these demanding requirements with a flexible, robust,
responsive, deterministic and durable standard network
technology that is able to support both avionics and payload
data-handling applications [1].

SpaceWire-RT aims to cover many on board
communication applications from low to very high data-rate
networks. This is a critical component technology for future
spacecraft avionics and payloads.

SpaceWire-RT will:
 use virtual channel concepts to provide a variety of

QoS;

344

Figure. 1. Overview of SpaceWire-RT layered architecture

 provide broadcast and multicast capability;
 increase performance;
 provide low latency message delivery;
 include extremely low latency time and out-of band

signalling mechanisms;
 incorporate novel fault detection, isolation and

recovery methods;
 make the network fully responsible for information

transfer;
 decouple application and data transfer;
 implement appropriate communication mechanisms in

relatively simple hardware.
SpaceWire-RT standard is based on the SpaceFibre

technology [1].
SpaceFibre is a very high-speed serial data-link, which is

intended for use in data-handling networks for high data-rate
payloads. SpaceFibre is able to operate over fibre optic and
copper cable and support data rates of 2 Gbit/s in the near
future and up to 20 Gbit/s long-term. SpaceFibre will provide a
coherent quality of service mechanism able to support best
effort, bandwidth reserved, scheduled and priority based
qualities of service. It will substantially improve the fault

detection, isolation and recovery (FDIR) capability of
SpaceWire [11].

SpaceFibre provides robust, long distance communications
for launcher applications and will support avionics applications
with deterministic delivery constraints through the use of
virtual channels. SpaceFibre enables a common onboard
infrastructure to be used across many different mission
applications resulting in cost reduction and design reusability.
SpaceFibre can run over fibre optic or copper cables [11].

The CODEC design for SpaceFibre has many advantages in
comparison with SpaceWire [5,11]:

 It uses fewer wires reducing cable mass;
 It operates at data rates of 2 Gbits/s and potentially

higher;
 It uses matched impedance connectors;
 The size of all the characters are the same (32-bits);
 Parity coverage is per character;
 It uses a DC balanced encoding scheme;
 It provides simple capacitive, magnetic, or optical

galvanic isolation;
 The initialisation protocol is base on a double

handshake [1].

345

An overview of the SpaceWire-RT architecture is provided
in Fig. 1.

Although the SpaceWire-RT is primarily based on the
SpaceFibre, it has an additional functionality which is
necessary for network operation. Therefore, the SpaceWire-RT
comprises SpaceFibre protocol layers which are complemented
by the Network Layer. The Network Layer is responsible for
routing SpaceWire-RT packets over a SpaceWire-RT network,
comprising SpaceWire-RT routing switches, SpaceWire-RT
links, and SpaceWire-RT nodes. Moreover, it is also
responsible for validating and broadcasting SpaceWire-RT
broadcast messages over a SpaceWire-RT network.

In turn SpaceFibre defines ten conceptual layers [11]:
 Virtual Channel Layer which is responsible for quality

of service and flow control over the SpaceFibre link.
 Broadcast Layer which is responsible for sending short

broadcast messages across a SpaceFibre link and for
receiving those messages.

 Framing Layer which is responsible for framing
SpaceWire-RT packet data, broadcast messages and
FCTs to be sent over the SpaceFibre link. It is also
responsible for scrambling SpaceWire-RT packet data
for EMC mitigation purposes.

 Retry Layer which is responsible for recovering from
transient errors on the SpaceFibre link, and for
reporting errors and link failure. It also detects missing
and out of sequence frames.

 Lane Control Layer which is responsible for managing
the operation of several SpaceFibre lanes in parallel to
provide a higher data throughput and to provide
redundancy with graceful degradation.

 Lane Layer which is responsible for initialising the
lane, detecting lane errors and re-initialising the lane
after an error has been detected.

 Encoding Layer which is responsible for encoding the
data and control words into a suitable form for sending
over the SpaceWire-RT link and decoding received
data and control words. Uses 8B/10B encoding.

 Serialisation Layer which is responsible for serialising
and de-serialising encoded data and control words for
sending and receiving over the serial interfaces.

 Physical Layer which is responsible for sending the
SpaceWire-RT information over the physical media
used in SpaceWire-RT: fibre optic, Current Mode
Logic (CML) and Low Voltage Differential Signalling
(LVDS).

 Management Layer which is responsible for
configuring, controlling and monitoring the status of
the various layers of the SpaceWire-RT protocol stack.
This can be done by a local or remote network
management application [1].

From the textual specification a formalised SDL model of
the SpaceWire-RT was developed, which is itself a test of the
specification for completeness and unambiguousness. In turn,
the SystemC simulation language was used to develop
reconfigurable SpaceWire-RT networks model with multiple

nodes and routing switches. The following sections give the
description of SDL and SystemC models and provide with the
results of the simulation.

III. SPACEWIRE-RT P2P MODEL IN SDL

Figure 2. General structure of the SpaceWire-RT node

SDL (Specification and Description Language) is a
language for unambiguous specification and description of the
telecommunication systems behavior. The SDL model covers
the following five main aspects: structure, communication,
behavior, data and inheritance. SDL language is intended for
description of structure and operation of the distributed real-
time systems. Writing an SDL model on the basis of the
specification is itself a test of the specification for
completeness and unambiguousness. As a result the consistent
readable textual description and formalised specification in
SDL are produced [7].

SDL language was used for SpaceWire-RT specification
and simulation on a per layer basis as the most reasonable
solution. The SDL model formally describes all mechanisms,
interactions and functionality which are stated in the
SpaceWire-RT specification [7].

The SDL model implements all layers of the SpaceWire-
RT protocol stack (excepting Serialisation Layer). Figure 2
shows the general structure of the SpaceWire-RT node in SDL.

According to the figure above the SDL model describes the
internal mechanisms and functionality of the layers starting
from the Encoding Layer and up to the Virtual Channel Layer.
Each pair of adjacent layers communicates via a special
interface between them, which is called a Service Access Point

346

Figure 3. General structure of the SpaceWire-RT SDL/SystemC tester

(SAP). All SAPs are defined as sets of service primitives which
are specific for each layer.

Simulation and investigation was done in two steps. First of
all we performed verification of the SpaceWire-RT protocol
stack by simulation in IBM Rational SDL Suite. The test
system was represented by the two SpaceWire-RT nodes
communicating through the Serialisation Layer channel.
Configuration and generation of test sequences was performed
by a special Test Engine. This simulation gave an ability to
check all internal mechanisms of investigated layers and verify
them.

The second step was validation of the SpaceWire-RT
protocol stack by load testing by means of simulation within an
SDL/SystemC tester. The SDL/SystemC tester provides a
possibility for simulation of a point-to-point interconnection
between two nodes, implemented in SDL and communicating
via a channel. The tester is a flexible tool for setting different
configurations, generating various test sequences and gathering
statistics.

The general structure of the SpaceWire-RT SDL/SystemC
tester is given in Fig. 3.

The SystemC Test Engine provides facilities for creation of
different complicated test sequences with different
configurations and efficient logging of the events in the model.

In order to implement interconnection between the
SpaceWire-RT SDL model and the test environment an
SDL/SystemC co-modeling approach was used [6]. This
approach assumes that special wrappers (SDL/SystemC up

wrapper and SDL/SystemC low wrapper) should be
implemented for conversion of data from the SDL
representation to the SystemC representation and vice-versa.
The wrapper receives SystemC data, converts it into the SDL
signals and sends to the SDL model via the correspondent
SAP. Thus, the up wrapper is responsible for communication
of test engine and SDL model and the low wrapper is
responsible for communication of the SDL model and the
channel.

The target SDL model of the whole SpaceWire-RT
protocol stack can be used for checking, how all mechanisms
operate in common in one node by means of simulation in the
IBM Rational Tool and by means of simulation within the
SDL/SystemC tester. This way, the SDL layered SpaceWire-
RT model can be used for validation of consistency of the
specification and checking of functional requirements, defined
for the standard. The main advantage of this model is that it is
implemented in a formal high-level language. This model can
be used for further investigation of SpaceWire-RT technology
because any changes in new versions of the standard could be
applied to the SDL specification without any changes in the
test environment.

IV. SPACEWIRE-RT NETWORK MODEL IN SYSTEMC

The SystemC modeling is one of the most efficient and
widely used methods for studying, analysis and constructing
multi-component systems, such as stacks of protocols,

347

embedded networks of a large number of nodes, systems-on-
chip, networks-on-chip, etc.

SystemC is a set of C++ classes and macros that provide an
event-driven simulation engine. It is specifically designed for
modeling parallel systems. This library allows describing
multi-component systems and program components, and
modeling their operation. By using the internal mechanism of
events it allows to model operations distributed in time of the
modeled system [3].

The aim of the network SpaceWire-RT model development
is to simulate communication of devices (switches and nodes)
via the SpaceWire-RT links. In the SystemC network model
some interactions of components and processes inside the
device (e.g. between levels of a stack) could be not considered,
because the model is primarily focused on the mechanism of
devices’ communications, such as transfer of packets, routing
and performance characteristics of the network [7].

The SpaceWire-RT network model consists of the
following SystemC modules:

 SpaceWire-RT stack model, which provides main
functions of SpaceWire-RT;

 SpaceWire-RT node model;
 SpaceWire-RT switch model.
The SpaceWire-RT stack model is a part of the node and

the switch models. For these models it is possible to set
different parameters like: a data transmission speed (Gbps), a
number of nodes and switches, size and amount of packets, a
destination address for a particular packet, a time delay and a
routing table for the switch, a number of ports in the switch,
etc.

The SpaceWire-RT network model contains a number of
nodes and switches. It could contain no switches so the model
would be point-to-point. It gave an ability to simulate operation
of the various number of devices in a network with different
topologies: point-to-point, tree and circular.

Using a point-to-point configuration we had an ability to
check correctness and consistency of the SpaceWire-RT stack
specification. An example of the point-to-point configuration is
shown in Fig. 4.

Figure 4. Point-to-point network configuration

For testing of network mechanisms we used the mixed
configuration, which is a combination of tree and circular
topologies. Mixed configuration gave an opportunity to check
the following network parameters: latency for different packet
sizes, reliability of data transfer with specific BER (Bit Error
Rate), various QoS (Quality of Service), fault packet detection
and identification, failure and fault tolerance of a network
(deadlock and babbling idiot), broadcast and multi-cast, path
and logical addressing. An example of the used mixed network
configuration is given in Fig. 5.

Figure 5. An example of a mixed network configuration

V. SIMULATION RESULTS

Beforementioned SDL and SystemC models were used for
the scientific studies and research. SpaceWire-RT standard was
checked on conformance to the Russian and European industry
requirements and also on existence of inconsistencies and
ambiguities. Some of the most important results of our research
are given below.

A. SpaceWire-RT packet length

The SDL model was used for testing and proving a
possibility of transmission of a 32 Mbytes packet over a single
link (as the SDL model provides only point-to-point
simulation). Simulation proved that a 32 Mbytes packet can be
successfully transmitted over a link. Transmission took 160 ms
at a data rate 2 Gbit/s. The SystemC network model also
proved the possibility of a 32 Mbytes packet transmission.
Moreover, SystemC simulation provided the results for the
packet lengths of 32 Mbytes to 8 bytes.

For such kind of test we used the network configuration
shown in Figure 5. During simulation we measured latencies
for packet delivery between Node 2 and Node 8.

The latency results for each packet length are given in
Table 1.

TABLE I. LATENCY RESULTS

Packet length Latency
32 Mbytes 247,84 ms
16 Mbytes 123,92 ms
8 Mbytes 61,95 ms

512 Kbytes 3,86 ms

348

Packet length Latency
64 Kbytes 474,2 μs
32 Kbytes 239,9 μs
16 Kbytes 124,9 μs
8 Kbytes 67,9 μs
512 bytes 14,8 μs
256 bytes 13,5 μs

8 byte 665,352 ns

B. Broadcast data transfer

SpaceWire-RT standard supports broadcast data transfer
mechanism which is described in SpaceFibre. The broadcast
mechanisms were tested on three different topologies: tree
configuration, circular configuration and mixed configuration.
The broadcast messages were successfully generated, sent and
delivered to all destination Nodes in the SpaceWire-RT
network. However, the latency for the broadcast messages does
not fit the requirement of 100 ns even if we have only one
switch between the nodes. So the requirement is too strict for
the current technology.

Moreover, the network simulation shown that the current
version of the SpaceWire-RT standard does not provide the
mechanism for the broadcast messages to be discarded in
Switches during the repeated transmission over a network with
a circular structure.

C. Reliability

SDL and SystemC simulation shown that SpaceWire-RT,
based on SpaceFibre, provides a capability for reliable data
delivery. It provides a mechanism of automatic
acknowledgements (ACK) and negative acknowledgements
(NACK), which are used for indication about the validity of the
received data in the Retry Layer. To check this mechanism in
SDL a channel with a capability of errors insertion was used.
For the purpose of acceleration of getting testing results we
increased BER for the channel and assumed it equal 10-6.
Simulation shown, that all transmitted data was delivered
correctly. The increased BER (e.g. 10-5) leads to a corruption of
a large amount of data, so that the connection cannot be
established or re-established in some cases.

The same test was used for the SystemC point-to-point
topology. The ACK/NACK mechanism works and the remote
Node successfully got the data.

D. Determinism

The determinism requirement was checked on SystemC
model. For proving this requirement the scheduling QoS was
tested on the network model. The topology used for testing this
requirement is shown in Figure 5. Testing was done using 2
different schedules. Both of them used three virtual channels
for the transmission of data packets.

The SystemC SpaceWire-RT network successfully
operated using both test schedules. So SpaceWire-RT provides
deterministic data delivery using scheduling mechanism.

E. Automatic acknowledgement

SpaceFibre is the basis for the SpaceWire-RT and one of its
main features is reliable data delivery. This is achieved by the
automatic acknowledgements on the Retry Layer of

SpaceFibre. This mechanism was tested by the simulation of
SDL model of the Retry Layer. During the simulation, data
was transmitted via a channel. This channel corrupted
transmitted data with the BER = 10-6. All transmitted data was
delivered correctly.

Simulation shown that SpaceWire-RT, based on
SpaceFibre, provides automatic acknowledgement mechanism
at the Retry Layer which is not configurable. However, this
requirement relates to the end to end acknowledgement and not
to a link level function like the SpaceFibre retry. So an
automatic acknowledgement should be implemented above the
network layer.

F. Failure and fault tolerance

The failure and fault tolerance of network had been
checked on the SystemC network model. The Network Layer
of the SpaceWire-RT provides mechanisms for failure and
fault tolerance of a network. These mechanisms were checked
by testing the following situations:

 Deadlock. Some kind of deadlock situation was
modeled by a special configuration of Switches and
Channels. The Channel between a Switch and a Node
was made full so the data transmission for the
particular VC stopped. All the other data transmissions
for this VC to this Node also stopped. The model
started to work slower, but the transmission of the data
to the Node via the other virtual channels did not stop.
This test shown that even in a deadlock situation for
one virtual channel, the other virtual channels will
continue to send data.

 Babbling idiot. The traffic generator of a Node
continuously generated 8 bytes packets to all the
network addresses using all available virtual channels.
The most part of the packets were discarded during the
transmission through Switches but some packets were
transmitted to Nodes. This made the transmission of
the data in the whole network much slower. But
anyway the other data traffic from other Nodes was
successfully delivered to the destinations.

VI. SPACEWIRE-RT MODELS FUTURE USE

Currently, the SpaceFibre standard, which is the basis for
the SpaceWire-RT standard, is in process of development.
Consequently, any changes in SpaceFibre will result in changes
of the SpaceWire-RT specification. New mechanisms and
updated old ones can be successfully simulated on the
SpaceWire-RT SDL and SystemC models by changing
necessary parts of the models. Although the specification of the
standard is updated, the test environment will remain the same.

Any changes in the new releases of the specification can be
applied to the SpaceWire-RT SDL model. This would not
cause any difficulties, as local changes in one layer will not
affect the other layers. Therefore, the SDL model can be used
for verification of the new mechanisms in a stack. Moreover,
the SDL/SystemC tester gives opportunities for creation of
complicated test sequences and for non-nominal testing.

349

In its turn, the SystemC model can be effectively used for
obtaining network performance characteristics such as
latencies, QoS mechanisms operation, etc. Since the
SpaceWire-RT Network Layer is currently under development
the SystemC model can be applied for its further validation.
Moreover, SpaceWire-RT SystemC network model can give an
opportunity for investigation of Transport Layer protocols
operation over the SpaceWire-RT network (e.g. RMAP, STP,
etc.).

Finally, SDL and SystemC models can be used for
development of applications and drivers for future SpaceWire-
RT devices.

VII. CONCLUSION

The paper describes the new SpaceWire-RT technology.
SpaceWire-RT standard was validated by means of SDL and
SystemC models and was checked on conformance to the
Russian and European industry requirements. A number of
inconsistencies in the specification were found during the
simulation and some solutions and additional mechanisms were
proposed to solve them. The new version of the SpaceWire-RT
standard is produced and it is based on the simulation impact.
The latest news and results of the project are available on our
website http://www.spacewire-rt.org.

REFERENCES

[1] S. Parkes, “SpaceWire-RT Outline Specification, version 2.1”,
University of Dundee, 6th September 2012.

[2] International Telecommunication Union, “Recommendation
Z100: Specification and Description Language (SDL)”, 2007.

[3] Open SystemC Initiative (OSCI), “IEEE 1666™-2005 Standard
for SystemC”, 2005.

[4] J. Gipper, “SystemC the SoC system-level modeling language.
Embedded computing Design”. 2007.

[5] ESA (European Space Agency), standard ECSS-E-50-12A,
“Space engineering. SpaceWire – Links, nodes, routers and
networks. European cooperation for space standardization”,
ESA Publications Division ESTEC, Noordwijk, The
Netherlands, 2003.

[6] S. Balandin, M. Gillet, I. Lavrovskaya, V. Olenev, A. Rabin, A.
Stepanov, “Co-Modeling of Embedded Networks Using
SystemC and SDL”, International Journal of Embedded and
Real-Time Communication Systems (IJERTCS), IGI Global, pp.
24-49, 2011.

[7] Y. Sheynin, E. Suvorova, V. Olenev, I. Lavrovskaya, “D3.1
SpaceWire-RT Simulation and Validation Plan”, Saint-
Petersburg State University of Aerospace Instrumentation, 3rd
October 2012.

[8] V. Olenev, “Different approaches for the stacks of protocols
SystemC modelling analysis”, Proceedings of the Saint-
Petersburg University of Aerospace Instrumentation scientific
conference, Saint-Petersburg University of Aerospace
Instrumentation (SUAI), Saint-Petersburg, pp. 112-113, 2009.

[9] A. Jantsch, “Modeling Embedded Systems and SoCs”, Morgan
Kaufmann Publishers, Stockholm, 2004.

[10] Y. Sheynin, T. Solokhina, Y. Petrichkovitch “SpaceWire
technology for the parallel systems and onboard distributed
systems”, ELVEES, 2006,
http://multicore.ru/fileadmin/user_upload/mc/publish/SpW-
part1.pdf.

[11] Parkes SM, Ferrer Florit A, Gonzalez A, and McClements C,
“SpaceFibre”, Draft E1, Space Technology Centre, University
of Dundee, 28th September 2012.

350

http://multicore.ru/fileadmin/user_upload/mc/publish/SpW-part1.pdf
http://multicore.ru/fileadmin/user_upload/mc/publish/SpW-part1.pdf

1

OPNET Modeler
®
 Co-Simulation for Modeling

SpaceWire Plug-and-Play Protocols
SpaceWire Networks and Protocols, Long Paper

Sandra G. Dykes, Carlos Quiroz, Paul Wood, and Allison Bertrand

Communications and Embedded Systems Department

Southwest Research Institute
®

San Antonio, TX, USA

sdykes@senomedical.com, cquiroz@swri.org, pwood@swri.org, abertrand@swri.org

Abstract—Co-Simulation is a method for integrating external

hardware and/or software with a simulation model, commonly

referred to as “in-the-loop” simulation. We describe a co-

simulation investigation that combines the Space Plug-and-Play

Architecture (SPA) Services Manager (SSM) software with a

newly developed OPNET Modeler SpaceWire model. The

advantage of this approach is that spacecraft designers can

rapidly and accurately verify behavior for a variety of topologies

and use cases. To simplify tool use, we are building a library of

spacecraft components with common traffic generation

characteristics. This paper describes the co-simulation

implementation, the OPNET SpaceWire model, our spacecraft

component library, and a set of simulation studies.

Index Terms—SpaceWire simulation, OPNET Modeler,

SpaceWire model, SPA, SSM, Space Plug-and-Play Architecture.

I. INTRODUCTION

Simulation is a well-established practice used in the design

of network infrastructure. SpaceWire (SpW) networks are no

exception and simulation network designers benefit from the

ability to experiment with various hardware configurations and

topologies before committing to a specific design.

OPNET Modeler is a commercial, dynamic discrete event

simulator widely used for analyzing and designing

communication networks, devices, protocols, and applications.

Its co-simulation interface allows the simulation model to be

integrated with external hardware and software systems. This

“in-the-loop” approach enables a simulation to measure the

network contention and delays incurred by actual components

under various scenarios.

This paper describes a co-simulation approach that

combines an OPNET Modeler SpaceWire model with a

software implementation of the Space Plug-and-Play

Architecture (SPA-S) middleware, the SPA Services Manager

(SSM). The SSM is a software layer between the application

and the SpaceWire interface that provides network discovery

and message delivery services. In our approach, one or more

external hosts run the SSM and application processes that

model spacecraft components, such as imagers, StarTrackers,

or data recorders. These external host processes generate

traffic that is passed through the OPNET model. Inside the

simulated network, the system measures congestion on links

and at router ports that result from a combination of network

topology and traffic load. Congestion delays may cause

messages to miss deadlines or cause retransmissions that

further increase congestion. Moreover, port blocking can delay

high priority messages, potentially causing serious faults. Our

simulation tool reports statistics on delays, missed deadlines,

and other quality of service (QoS) metrics, in addition to

logging data that can be used to understand behavior.

We describe the process of building and operating the co-

simulation, the implementation of the SSM, and the results of a

series of simulation studies. Finally, we analyze the results to

expose factors that influence performing a simulation in this

way and look at benefits/disadvantages and possible limitations

of co-simulation with external software.

II. BACKGROUND

The Air Force Research Laboratory (AFRL) is pursuing the

goals of standardizing the Space Plug-and-Play Architecture

(SPA) standards along with supporting the development of

various tools to aid network designers and developers in the

successful application of the standards.

To achieve the first goal, AFRL has been working to have

the SPA standards adopted and published by American

Institute of Aeronautics and Astronautics (AIAA). Although

the SPA has been recently renamed the Modular Open

Network Architecture (MONARCH), we have used SPA

throughout this paper.

The Space Dynamics Lab (SDL), under AFRL contract, has

been working on the development the SPA software

middleware known as SPA Services Manager (SSM). The

SSM implements the functionality described in the SPA

standards.

AFRL’s second thrust has been in the area of SpW network

simulation. AFRL has contracted with OPNET Technologies,

Inc. to produce a low-level network simulation module for

OPNET Modeler. This simulation captures SpW interactions

between nodes and routers at the character level and includes

flow control characteristics such as the credit counts and flow

control tokens that are part of the SpW standard.

In addition to the OPNET Modeler SpW module,

simulation of the SPA is desired. The SPA behavior is

complex, and direct integration into OPNET Modeler is not

351

2

practical. Although OPNET Modeler includes a mechanism to

create custom behaviors for network components including

nodes, the multi-process implementation of the SPA is not

conducive to direct integration into OPNET Modeler. Also,

SPA complexity is such that rewriting the behavior directly in

OPNET Modeler would be excessively time consuming and

costly.

 Thus, an alternative approach was developed that takes

advantage of SSM, which implements SPA. This approach

uses the “co-simulation” capability of OPNET modeler to link

externally running SSM processes (i.e., producers and

consumers) into the OPNET Modeler SpW simulation in order

to give a high fidelity result that incorporates the complex

behavior of the SPA middleware into a network simulation.

The OPNET Modeler co-simulation facility provides an

Application Program Interface (API) that allows an external

program to interact with and control the OPNET simulation.

This external program provides the interface that links the

simulation to independent devices and applications. This

interface forwards data between nodes in the simulation model

and the physical nodes they represent. For example, the

interface can receive SpaceWire packets from a physical

producer node and forward them to the corresponding producer

node in the simulation. This approach allows for the full

fidelity of the external programs to be included in the

simulation model.

Co-simulation raises a unique problem in synchronizing

simulation time to the wall clock time on the physical devices.

In some cases, the physical hosts must use simulation time.

For example, a node that sends a network discovery probe

should use simulation time for the timeout for the reply.

However, there are other cases when the physical host should

use its local clock time. An example is the timeout for

acquiring a mutex or semaphore. In this case, the events are

local to the physical host and should use wall clock time rather

than simulation time.

If the simulations ran faster than real time, the time could

easily be synchronized by slowing the simulation. However,

the OPNET SpW simulation, like most simulations, runs

slower than real time. Time synchronization therefore requires

adjusting event times on the physical systems. The balance of

this paper describes details of the simulation approach with a

focus on describing how this issue of time synchronization was

accomplished.

III. DESIGN OF SPA CO-SIMULATOR

A. Co-simulator System Design

The OPNET/SSM Co-Simulation system is composed of

external hosts which generate and consume traffic used as

input and outputs of an OPNET simulation, creating a “system-

in-the-loop” environment (see Figure I). The system can be

broken down into the following three pieces:

1. External hosts running SSM on Linux PC’s

2. OPNET/SSM Co-Simulation Controller

3. OPNET simulation with custom SpaceWire models

OPNET

OPNET/SSM Co-Simulation

Controller

Socket Server

OPNET Controller

OPNET

Local Network

Monitor

Producer Consumer

SpaceWire
Router

Producer Consumer

Monitor

Fig. 1. OPNET/SSM Co-Simulation System Overview

In an SSM system, several processes execute on each node,

coordinating via shared memory that is protected by

semaphores. Table I contains a list of the SSM components

and a description for each.

TABLE I. SSM COMPONENTS

Service Description

Producer Application The Producer Application publishes a notification
message and accepts a command which alters the

data being published.

Consumer Application The Consumer Application queries for and
subscribes to data provided by the Producer

Application.

SPA Local Manager The SPA Local Manager allows SPA components

to interoperate on a local processing node.

SPA SpW Manager The SPA SpW Manager is responsible for

performing discovery for a particular subnet. It
maps incoming packets to the correct SPA

endpoint on the subnet, encapsulating the SPA

packet with the correct protocol header. In the

reverse direction, it removes the protocol header

and possibly adds a new header conforming to the
subnet the packet is about to enter. It is also

responsible for topology discovery and reporting

within the subnet. The SPA SpW implements the
interface that transmits and receives SPA messages

over a network.

Central Addressing

Service

The Central Addressing Service (CAS) is

responsible for providing logical address blocks to

be assigned to each hardware or software
component. The CAS stores the logical address

block and logical address for each SPA Manager in

the SPA Network.

SPA Lookup Service The SPA Lookup Service is responsible for

accepting component registration and providing
data source route information for components

requesting a particular type of service.

352

3

For the studies presented in this paper, three external SSM

hosts were used: a Producer, a Consumer, and a Monitor, as

seen in Figure 1. The Producer generates data that is

transmitted over the network to the Consumer. The Consumer

receives and logs the data. The Monitor contains the Central

Addressing and Lookup services, which the Producer and

Consumer discover by sending network probes. In addition,

each node runs the SPA Local Manager and SpW Manager

processes. Table II summarizes the SSM services running on

each of the external hosts.

TABLE II. SERVICES ON EXTERNAL HOSTS

Producer Consumer Monitor

Producer Application
SPA Local Manager

SPA Spw Manager

Consumer Application
SPA Local Manager

SPA Spw Manager

SPA Local Manager
SPA SpW Manager

Central Addressing Service

SPA Lookup Service

In order to integrate the external hosts with the OPNET

simulation, an additional interface was added to the SPA SpW

Manager service. Typically, the service is intended to use

interfaces to physical devices such as SpW or Universal Serial

Bus (USB). In our co-simulation, we replace the SpW

interface with a SpW-Sim interface. Rather than connecting to

a physical SpW network, the SpW-Sim connects to the OPNET

simulation model. It does this by wrapping the SpW message

in a Transmission Control Protocol/Internet Protocol (TCP/IP)

packet and sending that packet over an Ethernet network to the

OPNET computer. This TCP/IP connection is part of the co-

simulation controller and is transparent to both the SSM

processes and to the simulation model.

The OPNET/SSM Co-Simulation Controller bridges the

external hosts to the OPNET simulation. Its external interface

is a TCP/IP Socket Server that connects to the SpW-Sim

interfaces on external hosts (see Figure 2). When a TCP/IP

message is received, the server extracts the SpW message and

stores it in a buffer, where it waits to be forwarded to the

appropriate node within the OPNET simulation.

OPNET/Co-Simulation Computer

Co-simulation Program

Interface to OPNET Simulation

TCP/IP Socket Server

SPA Message

SPA Message

OPNET’s External Simulation
Access API Package

SPA Spw Manager 1

TCP/IP Socket

Client

SPA Spw Manager 2

TCP/IP Socket

Client

SPA Spw Manager 3

TCP/IP Socket

Client

SPA Spw Manager X

TCP/IP Socket

Client

SPA Message SPA Message SPA Message SPA Message

...

OPNET Simulation

Fig. 2. OPNET TCP/IP Socket Interface

The Controller is also responsible for driving the OPNET

simulation forward. Using the OPNET External Simulation

Access (ESA) API package, the Controller specifies a

simulation time and hands over the thread of execution to the

OPNET simulation. At this time, the buffered messages

received by the Socket Server are forwarded to their

corresponding simulation nodes where they become traffic

generators for the simulation. As seen in Figure 3, the thread

of execution is not returned back to the Controller until the

simulation has advanced to the specified simulation time.

Single Thread Execution Path

Advance Simulation /
Send Messages to

External Hosts

Receive Incoming
Messages from
External Hosts

TCP/IP Socket
Server

OPNET
Simulation

Receive Incoming
Messages from
External Hosts Advance Simulation /

Send Messages to
External HostsReceive Incoming

Messages from
External Hosts

Forward Messages

Forward Messages

Wall Clock Time

Fig. 3. Co-Simulation Controller Execution Path

Data flow in the opposite direction is achieved by a

callback function implemented in the Controller program. The

callback function is registered using the ESA APIs when the

Controller program is initialized. As SPA messages traverse

the simulated OPNET network, eventually they reach the

destination node. When a simulation node receives a message,

a callback function is triggered. There, the message is

forwarded to the corresponding external host using the

established TCP/IP socket connection.

Fig. 4. OPNET Simulated Network Topology

The OPNET simulated network topology, as seen in Figure

4, was configured to have the same number of simulated nodes

as the number of external hosts in order to have one-to-one

correspondence. The nodes are interconnected using a

simulated SpW router. Two models were created for the

OPNET simulation: a SpW Node model and a SpW Router

model. The models were developed as means to feed traffic

353

4

generated from external SSM hosts into the OPNET

simulation. The SpW Node model uses OPNET’s External

System (Esys) package to establish a link to the Co-Simulation

Controller. The Esys package is similar to the ESA API

described earlier in that they both allow communication

between an OPNET simulation and an external program.

However, the Esys package is used in OPNET models within

the simulation while the ESA package is used in external

programs. Together, the Esys and ESA packages allow the

SpW Node model to establish a bidirectional link with an

external SSM host through the Co-Simulation Controller. The

model receives SpW messages from an external host and

forwards the messages into the simulated network. When

messages are received from within the simulation, the model

forwards them to the external hosts. The SpaceWire Router

model simply uses SpW path addressing to forward messages

out the appropriate port.

B. SSM Time Implementation Description

The SSM uses two classes to implement time-related calls:

SpaTimers and SpaTimingUtils. The SpaTimers class is based

on an operating system timer. For Linux, these are Portable

Operating System Interface (POSIX) timer calls. When the

operating system (OS) timer expires, the SpaTimers class uses

a dispatcher method to invoke a specified handler function. As

such, the SpaTimers class allows a given handler function to

run at a specified frequency, and, therefore, implements a

periodic callback functionality. In this way, the SSM

periodically publishes messages to subscribers on the network.

The SpaTimingUtils class manages a high resolution time

known as SPA Time that can be synchronized with an external

time source such as the global positioning system (GPS). Upon

receiving an update, the time is stored in shared memory.

Between updates, the elapsed time since the last update is

added to the stored time to create a SPA Time with up to one

nanosecond resolution (see Figure 5).

SPA Time

Wall Clock Time

tt00

tSPA = tGPS + t - t1tSPA = t

tGPS update

t1

tGPS update

tSPA = tGPS + t - t0

SPA Time tSPA

GPS Time tGPS

Wall Clock Time t

Fig. 5. SPA Time Synchronization and Calculation

C. Solution to Time Synchronization Problem

The Co-simulation Controller program is responsible for

advancing the OPNET simulation, and the interface between it

and the OPNET process is provided by the OPNET ESA API

library. The co-simulation controller calls the ESA function

Esa_Execute_Until() with an absolute simulation time. This

causes the co-simulation process to block and the OPNET

simulation process to execute until certain conditions are met

(see OPNET ESA library documentation for details). At that

point, the OPNET simulation pauses and hands control back to

the Co-Simulation Controller process.

Esa_Execute_Until() returns the current simulation time to

the Controller. The Controller then sends a User Datagram

Protocol (UDP) multicast broadcast with the current simulation

time. This functionality in the Co-Simulation Controller is

known as the SimTime Server. Figure 6 illustrates the

interface between the OPNET simulation process and the

SimTime Server in the Co-Simulation Controller. Table III

describes fields and format for the SimTime multicast message.

OPNET/Co-Simulation Windows XP PC

Co-simulation Controller Program

Interface to OPNET Simulation

SimTimeServer

(UDP Multicast of Simulation Time)

SimTime

Esa_Execute_Until()

SimTime

OPNET’s ESA API Package

SimTime Subscriber 1

UDP Listener

SimTime Subscriber 2

UDP Listener

SimTime Subscriber 3

UDP Listener

SimTime Subscriber X

UDP Listener

SimTime SimTime SimTime SimTime

...

Fig. 6. Simulation Time Distribution Interface

TABLE III. SIM TIME MESSAGE FIELDS AND FORMAT

Offset 0 1 2 3 4 5 6 7

0x0000 Sequence Number
unsigned short – 2 octets 0x0008

0x0010 Reserved
N/A – 2 octets 0x0018

0x0020

Sim Time Seconds
unsigned int – 4 octets

0x0028

0x0030

0x0038

0x0040

Sim Time Microseconds
unsigned int – 4 octets

0x0048

0x0050

0x0058

Our initial approach to the time synchronization problem

was to treat simulation time as the external time source, using

the existing SSM “SPA Time” utility. This would solve the

problem for cases where the external host uses simulation time,

such as timeouts for network discovery. However, SPA time is

354

5

also used for local events where simulation time is not

appropriate, such as timeouts on acquiring a mutex for local

shared memory. Consider that a mutex is used to protect the

SPA time in shared memory – it makes little sense to use the

shared memory time as the timeout for acquiring that shared

memory.

We were faced with two choices; either modify the timers

in the OS kernel to use simulation time, or implement our own

versions of these timers. Because the SSM is designed to

execute on Windows, Linux, and VMWorks, modifying the

kernel is not practical. We therefore decided to implement

simulation time replacements for the OS timers. The

remainder of this section describes our implementation.

In the existing SSM code for Linux, SPA timers are

implemented using POSIX timers based on the wall clock.

When a timer expires, the OS kernel runs the SpaTimer

dispatch function, which in turn invokes the callback function

for that timer ID. This callback function executes on a newly

created thread. Since POSIX timers cannot be converted to

simulation time without modifying the OS kernel, an

application-level timer mechanism was implemented instead.

This mechanism consists of three components, as shown in

Figure 7.

Fig. 7. Simulation Time SSM Design

 Shared Memory

The Shared Memory contains the local simulation

time variable and a table of timers. This memory is

shared by the SimTime Subscriber thread and SSM

thread within a single process. The fields included in

the timer table are shown in Table IV.

TABLE IV. SIM TIMER TABLE FIELDS

Field Description

State

Possible states include:
 EMPTY
 STOPPED
 RUNNING

Expiration Time Timer expiration time (timespec)

Interval Time Timer interval time (timespec)

Timer Args
Timer arguments which include a pointer to
the callback handler function.

 SimTime Subscriber

The subscriber runs as a thread within each SSM

process. It is created when the process starts and is

deleted when the process exits. The subscriber

blocks waiting for a SimTime multicast. When a

message arrives, the subscriber updates the local

simulation time, checks the timer table, and invokes

callback functions for expired timers. The dispatch

functionality of the SpaTimer class is moved to this

thread.

 Extensions to the SpaTimer Class

The SpaTimer class contains methods for managing

timers, including create, start, stop, and destroy. For

system (wall clock) timers, these methods use the

corresponding POSIX timer functions. For

simulation timers, these methods modify the timer

table in shared memory as shown in Table V.

TABLE V. SPATIMER MODIFIED METHODS

Method Description

timer_create ()

Adds a new timer to the timer table. The function
returns a value of -1 if the table is full. Otherwise, it
returns 0, sets the state to STOPPED, and stores the
callback function pointer. The timer is stored in the
first empty slot in the table, which is found by a linear
search from index 0 to last_entry. If no empty slot is
found in this range, last_entry is incremented and the
timer is stored at this location. An empty slot is
denoted by state = EMPTY.

timer_start ()
Sets timer state to RUNNING and updates the timer
table entry expiration and interval times.

timer_stop () Sets the timer state to STOPPED.

timer_stop () Sets the timer state to EMPTY, effectively removing it
from the table.

In the SpaTimingUtils class, the SPA Time functionality

was modified to use simulation time. Instead of adding elapsed

wall clock time to SPA Time, the elapsed simulation time

acquired by the SimTime Subscriber is used.

IV. RESULTS

Upon analyzing the experimental results for our studies, we

were able to perform the following verifications.

355

6

The OPNET Co-Simulation with SSM was intentionally

slowed down to run at speeds well below real-time. This was

done to verify the SSM interface to the OPNET simulation,

along with the changes to utilize simulation time. The co-

simulation ran successfully with the described Producer,

Consumer, and Monitor setup. Each of the external hosts was

able to perform network discovery through the OPNET

simulation and establish connections among each other. The

Consumer was able to successfully acquire messages and

utilize the data sent by the Producer. The overall functionality

of the SSM with the OPNET Co-Simulation was validated

against the same SSM setup over a physical SpW interface

which included three SpW cards and a SpW router. With the

exception of the slowed time, the two systems displayed nearly

identical characteristics.

Secondly, we wanted to verify that the simulation time

increased in a sequential manner as traffic flowed through the

co-simulation system. Messages were logged as they went

through every step in the system along with the simulation time

at the time of arrival/departure. Figure 8 shows an example of

the flow of traffic and the points in the co-simulation at which

messages were logged.

SSM Nodes Controller Program OPNET Simulation

SSM Node 1
Sends Message

@ Simulation Time T1

TCP/IP Socket OPNET APIs

OPNET APIsTCP/IP Socket

Message Routing Address

SpaceWire Router

SSM Node 1

SSM Node 2 SSM Node 3

Message Arrives at
Controller

@ Simulation Time T2

Message Arrives at
OPNET SSM Node 1

@ Simulation Time T3

Message Arrives at
OPNET SSM Router

@ Simulation Time T4

Message Leaves
OPNET SSM Router

@ Simulation Time T5

Message Arrives at
SSM Node 2

@ Simulation Time T6

Message Arrives at
Controller

@ Simulation Time T7

SSM Node 2
Sends Message

@ Simulation Time T8

Fig. 8. Expected Simulation Time and SPA Message Flow

We were able to verify that simulation time increased as

SPA messages traversed the SSM Co-Simulation. Table VI

shows the sequential simulation time at time of arrival for

different points in the co-simulation for one SPA message. No

simulation time discrepancies were found in the experimental

results.

TABLE VI. SINGLE MESSAGE SIMULATION TIME LOG

Message Location SimTime (s) Delta SimTime (s)

Monitor Sent 2066.715 -
Controller Received 2066.715 0
OPNET Monitor Received 2066.715 0
OPNET SpW Router Received 2066.715001 0.000001
OPNET SpW Router Sent 2066.72 0.004999
OPNET Consumer Received 2066.720002 0.000002
Controller Sent 2066.720002 0
Consumer Received 2066.720002 0

V. CONCLUSIONS AND FUTURE WORK

A hybrid simulation that integrates a traditional discrete

event simulation with a software in the loop simulation for

SpW networks and the SSM SPA middleware has been

successfully demonstrated. The work has shown that through

small modificatiosn to the SSM, time synchronization to the

simulation time can be achieved. Simulations can be achieved

that are suitable to investigate networks of typical complexity

for SpW networks.

Several areas remain to be investigated. First, the Co-

Simulation must be integrated with the SpW modules created

by OPNET Technologies, Inc. to ensure high fidelity of SpW

within the OPNET simulation. As described earlier, the

OPNET models created for this experiment were developed as

a means to demonstrate a proof-of-concept for the OPNET Co-

Simulation with SSM but do not accurately represent the SpW

standard. Second, a validation of the simulation against a

physical network implementation is needed to confirm fidelity

of the simulation with reality. SwRI and AFRL plan to work

together to build a configuration AFRL can realize in the

laboratory to demonstrate strong coherence between the

simulation and a real world implementation. Third, several

network topologies representing realistic potential spacecraft

SpW networks need to be generated to demonstrate that the

process can be scaled. Last, real networks experience data

loss, and the OPNET Modeler SpW module includes facilities

to generate a variety of faults in the communication process.

Experimenting with fault injection in the network simulation

can be used to verify acceptable SPA behavior, identify

weaknesses, and test modifications that increase SPA

robustness.

VI. ACKNOWLEDGEMENTS

This was partially supported under AFRL contract number

P010213604. We want to thank Dr. James Lyke of AFRL and

Robert Vick of SAIC for their support. We also want to

acknowledge the efforts of SDL on the SSM and the OPNET

Technologies team.

VII. REFERENCES

[1] Lyke, James C., “U.S. Air Force’s Plug-and-Play Satellites,”

IEEE Spectrum Inside Technology, August 2012. Reprint from

Plug-and-Play Satellites.

[2] “Space Plug-and-Play Architecture Standards Development

Guide” (draft), AIAA, August 2011.

[3] “Space Plug-and-Play Architecture Standard Networking”

(Draft), AIAA.

[4] “Space Engineering SpaceWire – Links, Nodes, Routers and

Networks,” ECSS, July 2008.

[5] SDL’s Modular Software Redmine Website,

pnpsoftware.sdl.usu.edu/redmine/

[6] OPNET Website, www.opnet.com

[7] Lu, Zheng, H. Yang, “Unlocking the Power of OPNET

Modeler,” Cambridge, 2012.

356

SpaceWire Time Code Latency and Jitter
Session SpaceWire networks and protocols, Long Paper

Martin Suess
European Space Agency / ESTEC

Noordwijk, the Netherlands
martin.suess@esa.int

Felix Siegle
University of Leicester

Leicester LE1 7RH, UK)
fs131@leicester.ac.uk

Abstract—SpaceWire Time-Codes are intended to be used for

time synchronization on board of spacecraft. So far not many
reports are available on the synchronization accuracy that can be
actually achieved with this mechanism. This paper describes a
series of Time-Code latency measurements that have been made
using a SpaceWire network built up from SpW-10X routers
(AT7910E). During these measurements not only the link speed
but also the length of the path through the network and data
traffic load is varied. The obtained time delay data are
statistically analyzed in terms of mean Time-Code latency and
jitter. A simple linear model is fitted to the data to allow the
prediction of the mean latency for data rates and network sizes
which have been not directly covered by the measurements. The
size of the observed Time-Code jitter is reported as well.

Index Terms—SpaceWire, network, time-code, jitter, latency,
measurement, distributed interrupt, SpW-10X, AT7910E.

INTRODUCTION

Space systems frequently have the need to synchronize
time within the distributed avionics system or between the
spacecraft platform and the instruments. Today a separate time
distribution network is normally used for distributing a pulse
per second time synchronization signal. For platform
applications the required time synchronization precision is
typically ranges from 10µsec to 1msec. Within some specific
instruments the required time synchronization precision can be
significantly higher from several 10nsec to several 100nsec [1].
With the time-codes the SpaceWire standard offers a time
synchronization mechanism which could be used as an
alternative. This would allow to remove the need for the
separated dedicated time synchronization network.

The time-codes are specified and the mechanism is
described in the SpaceWire standard [2] but there is not much
information available about which time synchronization
performance can be reached in practice. The expected
performance is not only dependent on the actual
implementation of the SpaceWire routing switches but also on
a number of other parameters like the link speed and the
network topology, i.e. how many routing switches have to be
passed by the Time-Code on its way from the source to the
destination. The same is the case for the mean time-code
latency. While the latency may not be so important for clock
synchronization as it results only in a fixed time off-set its

knowledge is very important for the safe operation of the
distributed interrupt mechanism which is going to be
introduced in the next revision of the SpaceWire standard.

MEASUREMENT TEST SETUP

In order to better assess the real achievable time
synchronization performance of SpaceWire Time-Codes and
its dependence on various system parameters a series of
measurements have been conducted in a network based on the
SpW-10X SpaceWire router (AT7910E). For the time
measurements a high precision Time Interval Counter SR620
from Stanford Research Systems was used with a relative time
measurement error that is specified to be less than 100psec.

Fig. 1: Time-Code latency measurement setup with 5 SpW-10X routers

A block diagram of this measurement set-up is depicted in
Fig. 1. The SpaceWire network consists of a chain of 5 SpW-
10X routers, one packet generator from 4Links is used for the
injection of Time-Codes and a SpW-10X USB Router with
deactivated Time-Code forwarding is used for the generation
of auxiliary traffic in the network. The SR620 Time Interval
Counter measures with high accuracy the time interval between
the start and the stop pulses at its two trigger inputs. The start
pulse is taken from the TICK_OUT pin of time-code interface
of first router in the chain. The stop pulse is taken from the
TICK_OUT pin of one of the later routers in the chain
dependent on how many hops in the network shall be taken
into account for the measurement. Each of the SpW-10X

routers is supplied with its own, independent 30 MHz system
clock. The routers in the chain are interconnected with 0.5m
long SpaceWire cables. This arrangement has been chosen to
measure the Time-Code latency due to the routers and the
connecting links and to avoid any latency variation due to the
Time-Code injection or generation.

A picture of the actual Time-Code latency measurement
setup is shown in Fig. 2. It was used to measure the following
combination of parametric test cases:
- The number links between the routers in the chain is

varied between 1 to 4,
- The data rate of all links is set to one of the following

2.73, 3, 30, 60, 120 and 200 Mbps,
- The influence of data traffic on the links is evaluated by

injecting no traffic or 100% in the direction of the time
code propagation and 100% traffic in the opposite
direction.

In each of these 72 combinations of conditions the latency
between the TICK_OUT signal from the first router to the
TICK_OUT signal of the last router in the chain was measured
15000 times in order to get a good statistical basis.

Fig. 2: Picture of actual measurement set-up

CAUSES FOR TIME CODE JITTER

There are two fundamental mechanisms that are the cause
for Time-Code jitter. The Time-Code jitter is defined here as
the maximum time difference observed between the 15000
individual Time-Code latencies.
a) The first cause of jitter is described in NOTE 2 of clause

8.12.2 p. in [2]. Before the a Time-Code can be transmitted
on a link interface the transmitter has to finish the current
data character, control character or control code. If no other
traffic is on the network NULL characters with a length of
8 bits are sent over the link. In this case the jitter at the link
interface is in between 0 and 8 transmit bit periods.

b) The second origin of jitter is the fact that the Time-Code
signal has to cross the boundaries of incoherent clock
domains inside the router. The signal arriving at the receive
port of the router contains the clock from the transmitting
side which is recovered from the data/strobe encoding used
to sample the signal and to decode the Time-Code. The
Time-Code arrival needs then to be synchronised into the
system clock domain of the router as it is also the case for

an external TICK_IN signal. Similar the Time-Code signal
needs to be synchronised when crossing from the system to
the transmit clock domain. In the presented measurement
setup the transmit clock is derived from the same oscillator
as the system clock. The presence of synchronisation jitter
depends therefor on the ratio between the transmit and the
system clock.
For low link data rates the overall jitter is dominated by the

first cause while for high data rates the second cause for jitter
can reach a similar order of magnitude as the first one. The
methods to improve the Time-Code jitter published in [1] and
[3] mainly aim to reduce the jitter contribution described in a).

The clock domain transitions on the path of the of the
Time-Code signal in the SpW-10X for the situation of idle
links is shown in Fig. 3.

Fig. 3: Clock domain transitions on the path of the Time-Code signal in the
SpW-10X router

LATENCY AND JITTER MEASUREMENTS

The first set of measurements shown in Fig. 4 has been
acquired with a link data rate of 3 Mbps and no additional
traffic being injected in the network. The plots a) to d) show
the histograms of the measured Time-Code latency for 1 to 4
links respectively. As each histogram contains 15000
statistically independent latency measurements it can be
interpreted as approximation for the random distribution of the
Time-Code latency.

For this test case the mean latency is 11.07µsec per link and
the worst case jitter increases by 2.665µsec per link. This worst
case jitter corresponds very well to the 8 transmit bit periods of
jitter introduced by the link transmit interface at a data rate of
3Mbps as described in 0 a). As expected this case results in a
uniform random distribution of the Time-Code latency as
shown in Fig. 4a).

All the random distributions shown appear to be very well
symmetric and the mean and the median value agree with a
remaining difference of less than 0.05%.

The development of the Time-Codes latency random
distribution when passing over several links can serve as a
demonstration of the Central Limit Theorem [4] as known in
statistics. The jitter introduced when a Time-Code passes over
a single link results in a uniformly distributed Time-Code
latency as shown in Fig. 4a). When passing over a second link
which adds a second statistically independent uniformly

distributed jitter causes the Time-Code latency random
distribution to become triangular as shown in Fig. 4b).
According to the Central Limit Theorem sum of a sufficiently
large number of independent random variables of similar shape
will result in a normal (or Gaussian) random distribution which
is nicely visible in Fig. 4c) and d).

Fig. 4: Histograms of the measured Time-Code latency for 1 to 4 links at a
data rate of 3Mbps with no additional traffic on the network.

Fig. 5: Histograms of the measured Time-Code latency for 1 to 4 links at a
data rate of 200Mbps with no additional traffic on the network

The second set of measurements shown in Fig. 5 has been
acquired with a link data rate of 200 Mbps and no additional
traffic being injected in the network.

For this test case the mean latency is 0.385 µsec per link
and the worst case jitter increases by 70.2 nsec per link. As
expected the significant increase of the link data rate has
drastically reduced the Time-Code latency and the jitter. The
worst case jitter introduced per link corresponds to about 14
transmit bit periods which shows that there must be an
additional significant cause of jitter. As described in 0 b) this
additional jitter is due to the clock domain crossings of the
Time-Code signal on its path within the router. This additional
statistically independent random variable makes the latency
distribution to look somewhat triangular already for a single
link case as shown in Fig. 5a). When passing through
additional routers and over additional links the Time-Code
latency random distribution becomes a more and more
Gaussian shape as visible in Fig. 5b) to d).

MODEL FOR THE MEAN TIME-CODE LATENCY

The mean Time-Code latency as measured for the different
link speeds over a distance of 1 to 4 links is shown in Fig. 6. It
shows nicely a linear increase of the mean Time-Code latency
with link distance.

Fig. 6: Mean Time-Code Latency for different link speeds and no traffic

Based on these data a generalised parametric model for the
mean Time-Code latency as a function of link speed and the
number of links is derived in the following.

Fig. 7 Time-Code latency measurement setup with 5 SpW-10X routers

As a first step all the elements contributing to the measured
Time-Code latency are analysed with the help of Fig. 7.

SpW-10X

RX TX
TRouter

TTick

TICK_OUT

SpW-10X

RX TX
TRouter

TTick

TICK_OUT

TLink+ TCable

The boxes marked with RX and TX belong to receiver and
the transmitter clock domain while the rest of the router
belongs to the system clock domain.

The time delay Tm measured with the time counter is the
time between the TICK_OUT signal of the first and the Nth
router in the path of the Time-Code. There is a time delay TTick
between the reception of the Time-Code in one of the ports of
the router and the raising of the TICK_OUT signal. The time
delay inside the router TRouter between the reception of the
Time-Code in one of its ports and its retransmission through
the other ports which can be expressed in terms of system
clock periods Tsys. The time delay TLink over the link between
the transmission of the Time-Code at one router and its
reception at the next router is assumed to be proportional to the
link bit period Tbit = 1/Link_Rate. In addition to this there is the
cable delay TCable which is proportional to the cable length and
assumed to be 1/(0.59·c) or 5.6 nsec/m for twisted pair cables
[5]. For the 0.5m long cables used in between the routers the
parameter TCable is set to 2.8 nsec. In the mean all the time
delays listed above are assumed to be the same for all routers
and all links.

The measured time delay can be therefore modeled as
follows.

Tm (N, Tbit) = TICK_OUTN - TICK_OUT1 Eq. 1

 = N·TRouter+ N·TLink+ N·TCable+TTick-TTick
 = N·A·TSys+ N·B·Tbit+ N·TCable

The resulting equation which is a function of the number of

links N and the transmit bit period has two unknowns A and B.
Only two independent measurements with different link rates
could be sufficient to determine the unknowns. In order to be
able to take benefit of all 24 measurements available the over
determined system of equation is written in matrix form. The
Moore Penrose pseudo inverse of the matrix M can be
calculated and used to solve the equation. The use of the Moore
Penrose pseudo inverse minimizes the global error between the
model and the measured data in the least square sense.

 ሬܶԦ െ ܶ ሬܰሬԦ ൌ ࡹ ∙ ቂܣ
ܤ
ቃ Eq. 2

ܶ	ଵ
⋮

ܶ	ଶସ

൩ െ
ܶ ଵܰ
⋮

ܶ ଶܰସ

൩ ൌ
ଵܰ ௌܶ௬௦ ଵܰ ܶ௧

⋮ ⋮
ଶܰସ ௌܶ௬௦ ଶܰସ ܶ௧

 ∙ ቂܣ
ܤ
ቃ

 ቂܣ
ܤ
ቃ ൌ ൫ሬܶԦ	ሻࡹሺݒ݊݅ െ ܶ ሬܰሬԦ൯ Eq. 3

The time delay inside the router TRouter results to 260.2 nsec

or A=7.806 system clock periods. The mean delay introduced
by a link is calculated to be B=32.42 transmit bit periods. By
inserting the derived values for A and B in Eq. 1 the expected
mean time delay can be calculated for any N number of links
and any link data rate 1/TLink. This very simple linear model fits
well to the measurements in particular for low data rates and
has still less than 10% error at the maximum data rate.

INFLUENCE OF DATA TRAFFIC ON TIME-CODE LATENCY

The measurements presented so far have all been obtained
with no auxiliary data traffic in the network. If no other data
traffic is waiting for transmission SpaceWire inserts NULL
control codes (ESC + FCT) of 8 bits length to keep the link
active. Data is transmitted with data characters of 10 bits length
and one FCT (flow control token) of 4 bits length is transmitted
for every 4 data characters received. These two kind of
characters together with the NULL control code are normally
the most frequent characters present in a SpaceWire network.
Due to their different length they are expected according to 0 a)
to have an influence on the mean Time-Code latency and the
jitter introduced by each SpaceWire link. In order to quantify
this influence the Time-Code latency has been measured with
two additional traffic load cases where in the first case the
Time-Code transmitting side is sending data at maximum rate
and in the second it is receiving data at maximum rate.

The changes in latency and jitter are nicely visible in the
measured data. In the first case where the Time-Code
transmitting side is sending at 3 Mbps data characters of 10 bit
length the mean latency increases by 338.5 nsec which
corresponds to an increase by 1.015 transmit bit periods. For
the same data rate the maximum observed jitter over a single
link increase by 666.9 nsec corresponding to 2.001 transmit bit
periods. The same increase of jitter is also found for the other
data rates which were measured.

In the second case the Time-Code transmitting side is
transmitting an FCT control code for every four data characters
received. This means at maximum data rate 9 NULL and 2
FCT control codes are transmitted for every 8 data characters
received. Considering the length of the two characters the
probability that the transmission of a Time-Code has to wait for
the completion of a FCT instead of a NULL control code is
only 1/9. If the received data rate is lower than 100% this
probability reduces proportionally. Accordingly the changes in
latency and jitter are much less pronounced. At a data rate of
3 Mbps the mean latency decreases by 35.85 nsec
corresponding to a reduction by 0.1076 transmit bit periods.
For the same data rate the maximum jitter over a single link
remains the same within the measurement accuracy.

Also for the two test cases with auxiliary data traffic on the
network the linear model for the mean Time-Code latency
given in Eq. 1 can be calculated.

In the first case where the Time-Code transmitting side is
also sending data at maximum data rate the modeled time delay
inside the router TRouter results to 262.6 nsec or A=7.879 system
clock periods. The mean delay introduced by a link is
calculated to be B=33.04 transmit bit periods. This is the worst
case traffic load situation which causes the maximum mean
Time-Code latency.

In the second case where the Time-Code transmitting side
is receiving data at maximum data rate the modeled time delay
inside the router TRouter results to 261.7 nsec or A=7.852 system
clock periods. The mean delay introduced by a link is
calculated to be B=32.33 transmit bit periods.

STANDARD DEVIATION OF THE TIME-CODE JITTER

The following maximum Time-Code jitter has been measured
for a single link at different data rates when no auxiliary data
traffic is present.

MAXIMUM TIME-CODE JITTER WITH NO TRAFFIC

Link data rate Maximum jitter in nsec Maximum jitter in
transmit bit periods

3 Mbps 2665 7.996
30 Mbps 266.7 8.002
60 Mbps 133.5 8.015

120 Mbps 83.41 10.01
200 Mbps 70.24 14.05

For the link data rates 3, 30 and 60 Mbps the maximum

jitter corresponds nicely to the 8 transmit bit periods expected
from the length of the NULL characters present on the link. For
the link data rates 120 and 200 Mbps this jitter is increased
through an additional jitter source internal to the router.

MAXIMUM TIME-CODE JITTER WHEN TRANSMITTING DATA AT MAXIMUM
DATA RATE

Link data rate Maximum jitter in nsec Maximum jitter in
transmit bit periods

3 Mbps 3332 9.997
30 Mbps 333.3 10.00
60 Mbps 166.9 10.02

120 Mbps 100.1 12.01
200 Mbps 80.16 16.03

The maximum jitter in the maximum transmit data rate case

is consistent with the jitter values provided in 0but extended by
two transmit bit periods as expected from the two bit longer
data characters now being present on the network. This worst
case jitter data apply also when the data is transmitted at lower
than maximum data rate.

MAXIMUM TIME-CODE JITTER WHEN RECEIVING DATA AT MAXIMUM DATA
RATE

Link data rate Maximum jitter in nsec Maximum jitter in
transmit bit periods

3 Mbps 2666 7.999
30 Mbps 266.8 8.005
60 Mbps 133.5 8.012

120 Mbps 83.73 10.05
200 Mbps 69.98 14.00

The maximum jitter in the case where auxiliary data is

received at maximum rate matches very well the data obtained
for the no traffic case. This is not surprising as the presence of
the shorter FCT characters does not influence the worst case
situation.

In order to calculate of the worst case Time-Code jitter in
the network these values provided in TABLE I to III have to be
multiplied with the number of links to the destination.

For some applications it is not the worst case but the
standard deviation of the jitter is needed to assess the impact.
For this case the standard deviation of the time code latency is

provide in Fig. 8 for the no traffic case and in Fig. 9 for the
maximum transmit data rate case for a network distance of 1 to
4 links.

Fig. 8: Standard Deviation of Time-Code Latency for different link speeds in
the no traffic case

Fig. 9: Standard Deviation of Time-Code Latency for different link speeds in
the maximum transmit data rate case

CONCLUSIONS

In this paper a series of Time-Code latency measurements
for a set of different network parameter settings has been
reported. The statistical behaviour of the measurements has
been analysed in terms of mean value and jitter. This gives
an indication on the synchronisation accuracy that can be
reached with the SpaceWire time code mechanism. A simple
linear model for the mean Time-Code latency dependent on
the number of links and the data rate has been fitted to be
able to predict the mean latency also for cases not directly
covered by the measurements. This information may give a
first indication about the guard times and time-out values to
be used for the safe operation of the distributed interrupt
mechanism which is going to be introduced in the next
revision of the SpaceWire standard.

ACKNOWLEDGMENT

The authors want to thank Chris McClements from the
University of Dundee for the discussion of the clock domain
boundaries and synchronization inside the SpW-10X router and
for providing Fig. 3.

REFERENCES

[1] F. Pinsard and C. Cara “High resolution time synchronization
over SpaceWire links”, Aerospace Conference 2008, IEEEAC
paper#1158, 10.1109/AERO.2008.4526462

[2] SpaceWire - Links, nodes, routers and networks - ECSS-E-ST-
50-12C, 31 July 2008

[3] Barry M Cook, “Reducing Time Code Jitter on SpaceWire”,
http://www.4links.co.uk/bibliography/Reducing-Time-Code-
Jitter-on-SpaceWire.pdf

[4] John A. Rice, Mathematical Statistics and Data Analysis
(Second ed.), Duxbury Press, 1995

[5] http://stason.org/TULARC/networking/lans-ethernet/3-11-
What-is-propagation-delay-Ethernet-Physical-Layer.html

SpaceWire – Time Distribution Protocol
SpaceWire Networks & Protocols

Long Paper

Sandi Habinc, Anandhavel Sakthivel

Aeroflex Gaisler AB

Gothenburg, Sweden

info@gaisler.com

Martin Suess

European Space Agency

Noordwijk, The Netherlands

Abstract— Aeroflex Gaisler has developed, under European

Space Agency (ESA) contract 4000104519, a draft ECSS protocol

for the transmission and synchronization of CCSDS

Unsegmented Code (CUC) time in SpaceWire networks. The

working name of the protocol is "Time Distribution Protocol“.

Index Terms—SpaceWire, Networking

I. INTRODUCTION

The objective of the referenced “High Accuracy Time

Synchronization over SpaceWire Networks” ESA activity is to:

• Establish a time message distribution mechanism over

SpaceWire

• Establish an offset correction mechanism between

local times which is correcting for the time distribution latency

in SpaceWire networks

• Establish a method for clock synchronization by

correcting the drift between clocks as well as the jitter

experienced in SpaceWire networks

The first point above is fully covered in the Time

Distribution Protocol, support is provided in the draft protocol.

The implementation of the second point and the third point is

actually outside of the draft protocol since it does not affect the

protocol itself (see discussion further down).

The target is for example SpaceWire networks for critical

on-board control applications where current on-board buses

such as Mil-Std-1553 and CAN 2.0B can be replaced. For this

type of applications the time accuracy is important to allow

implementation of isochronous communication over the

inherently asynchronous SpaceWire network.

Also SpaceWire networks for science payloads where time

synchronization is an important factor are targeted. An

example could be multiple distributed sensors in an antenna

that communicate via SpaceWire and need be synchronized for

coherent measurements, or when two instruments exchange

data to correlate their results.

II. DRAFT PROTOCOL

The Time Distribution Protocol provides the capability to

transfer CCSDS Time Codes (i.e. time message) between

onboard users of a SpaceWire network. The CCSDS Time

Codes may be of variable length or fixed size at the discretion

of the user and may be submitted for transmission at variable

time intervals, providing a communication service.

The Time Distribution Protocol provides the capability to

synchronize nodes in a SpaceWire network by using

SpaceWire time control codes (Time-Codes), providing a

timing service.

An Initiator is a SpaceWire node distributing CCSDS Time

Codes and SpaceWire time-control codes (Time-Code). An

Initiator is also an RMAP initiator, capable of transmitting

RMAP commands and receiving RMAP replies. There is only

one active Initiator in a SpaceWire network during a mission

phase.

A Target is a SpaceWire node receiving CCSDS Time

Codes and SpaceWire time-control codes (Time-Codes). A

Target is also an RMAP target, capable of receiving RMAP

commands and transmitting RMAP replies. There can be one

or more Targets in a SpaceWire network.

The protocol also provides means for time-stamping of

incoming and outgoing Distributed Interrupts in the Target and

makes this information accessible to an Initiator by means of

RMAP accesses. Note that Distributed Interrupts are currently

being defined in ECSS‐E‐ST‐50‐12C Rev.1 [3].

The protocol also provides means for transferring latency

correction information (which can be calculated from the above

time-stamp information) from an Initiator to a Target by means

of RMAP accesses.

III. LATENCY MEASUREMENT AND CORRECTION

Due to the natural latency of transferring time control codes

(Time-Codes) in a SpaceWire network, the clock state

correction accuracy discussed in [2] will be limited by an offset

difference between the initiator and the target (or between

targets).

The proposed protocol utilizes the new Distributed

Interrupts defined in [3] which are distributed using similar

methods as time-control codes and can therefore be used a

means for measuring the propagation delay of the latter. Each

Target can be configured by the Initiator to perform a time-

stamp whenever a Distributed Interrupt with a specified value

has been sent or received. The time-stamping is done with the

time that is maintained by the Target.

363

mailto:info@gaisler.com

The Initiator performs similar time-stamping at its end and

then uses the time-stamps in both ends to calculate the latency

or (propagation delay) in either direction. The calculated

latency can be written by the initiator to a specific Target

register which can be used for correcting the time maintained

in the Target.

The proposed protocol thus provides a means for measuring

latency between an Initiator and a Target, and provides means

for communicating the result to the Target. The methods for

how to send and receive Distributed Interrupts, to perform

measurements, and to realize the correction in the Target are

left to the implementers.

IV. JITTER AND DRIFT MITIGATION

Statistical methods and regulation techniques can be used

to mitigate the jitter seen on time control codes (Time-Codes)

in a SpaceWire network, as discussed in [1]. Jitter and drift

mitigation discussed hereafter could be combined.

Drift mitigation by means of clock rate correction [2] can

be performed based on periodically received time control code

(Time-Code) by a Target. The mean interval between received

time control codes (Time-Codes) could be measured with the

local time maintained by the Target as reference, and any long

term variation could be fed back to the generation of this local

time.

The proposed protocol does not provide any means for jitter

and drift mitigation, since this does not affect the Time

Distribution Protocol itself, being a problem to be solved

locally in the Target. The draft ECSS standard could however

be extended with implementation guidelines as part of an

informative annex.

Fig. 1. Problem formulation of jitter and drift problem in a SpaceWire network. The Elapsed Time in the Initiator and the Target(s) are to be synchronized by

means of SpaceWire Time-Codes, over SpaceWire links that introduce latency and jitter, and oscillators that introduce drift.

V. DISCUSSION

The proposed protocol is based on distribution of time

control codes (Time-Codes) throughout a SpaceWire network,

as a means for synchronizing the local time in targets with the

local time of the initiator in a system, i.e. providing the timing

service. As discussed above, continuous and periodic reception

of time control codes (Time-Codes) can also be used for

mitigating jitter and drift in the Target.

It has been argued that Distributed Interrupts should not

only be used for latency measurements in a SpaceWire

network, but also be used as the sole means for synchronization

instead of time control codes (Time-Codes). This argument

could be valid for low-end systems, but when high accuracy

time synchronization over SpaceWire networks is required, one

would anyway need to rely on the continuous and periodic

distribution of such interrupts to allow jitter and drift

mitigation. Time control codes (Time-Codes) are considered

364

more suitable for periodic distribution and have therefore been

selected for the timing service in the proposed protocol.

VI. STATUS AND CONCLUSION

The SpaceWire Time Distribution Protocol is based on

existing ECSS standards and CCSDS recommendations. It

utilizes basic functionalities such as packet transport and Time-

Code distribution, but also takes advantage of newer functions

such as Distributed Interrupts. The protocol is fully compatible

with RMAP, but it is envisaged that the protocol will have its

own protocol identifier in the future, or be part of the future

SpaceWire Plug-and-Play protocol. The current draft

specification of the protocol does not prevent either solution.

Currently a VHDL IP core is being developed that

implements the proposed standard. Additionally, the latency,

jitter and drift mitigation methods are being prototyped, with

the objective to include them in the aforementioned IP core.

The goal is to include the new IP core in future RASTA

prototyping systems and standard ASICs. The IP core will be

made accessible through ESA or through Aeroflex Gaisler as

part of their GRLIB VHDL IP core library.

An excerpt from the first draft of the proposed standard text

is provided as an annex to this article. The excerpt only

includes the background and the principles of the protocol. For

the detailed requirements the reader is invited to submit a

request to the authors.

REFERENCES

[1] High Accuracy Time Synchronization over SpaceWire

Networks - Problem formulation: Jitter and drift of Time-Codes

in SpaceWire networks, Sandi Habinc, SPWCUC-REP-0002,

25th June 2012, Version 1.2, Aeroflex Gaisler

[2] Integration of Internal and External Clock Synchronization by

the Combination of Clock-State and Clock-Rate Correction in

Fault-Tolerant Distributed Systems, Hermann Kopetz, Astrit

Ademaj, Alexander Hanzlik, Proceedings of the 25th IEEE

International Real-Time Systems Symposium (RTSS 2004),

1052-8725/04, 2004

[3] Space engineering - SpaceWire – Links, nodes, switches and

networks, ECSS‐E‐ST‐50‐12C Rev.1 Draft 1

[4] European Cooperation for Space Standardization, “Space

Engineering; SpaceWire Links, nodes, routers and networks,”

ECSS-E-ST-50-12C, July 2008.

365

Annex to article: excerpt from proposed standard

High Accuracy Time

Synchronization over

SpaceWire Networks
Time Distribution Protocol

SPWCUC-REP-0003,

29 September 2012, Version 1.1

Introduction

This document represents a draft of an ECSS

standard which is in development. The document

has been written as far as possible according to

ECSS drafting rules. The document should not be

considered an ECSS standard.

This version of the document encompasses basic

time distribution and initialisation/ synchronization.

It does not completely cover configuration, status

and low level synchronization.

Foreword

This Standard is one of the series of ECSS

Standards intended to be applied together for the

management, engineering and product assurance in

space projects and applications. ECSS is a

cooperative effort of the European Space Agency,

national space agencies and European industry

associations for the purpose of developing and

maintaining common standards. Requirements in

this Standard are defined in terms of what shall be

accomplished, rather than in terms of how to

organize and perform the necessary work. This

allows existing organizational structures and

methods to be applied where they are effective, and

for the structures and methods to evolve as

necessary without rewriting the standards.

This Standard has been prepared by the

ECSS‐E‐ST‐50‐## Working Group, reviewed by

the ECSS Executive Secretariat and approved by

the ECSS Technical Authority.

Disclaimer

ECSS does not provide any warranty whatsoever,

whether expressed, implied, or statutory, including,

but not limited to, any warranty of merchantability

or fitness for a particular purpose or any warranty

that the contents of the item are error‐free. In no

respect shall ECSS incur any liability for any

damages, including, but not limited to, direct,

indirect, special, or consequential damages arising

out of, resulting from, or in any way connected to

the use of this Standard, whether or not based upon

warranty, contract, tort, or otherwise; whether or

not injury was sustained by persons or property or

otherwise; and whether or not loss was sustained

from, or arose out of, the results of, the item, or any

services that may be provided by ECSS.

Scope

There is a number of communication protocols that

can be used in conjunction with the SpaceWire

Standard (ECSS‐E‐ST‐50‐12), to provide a

comprehensive set of services for onboard user

applications. To distinguish between the various

protocols a protocol identifier is used, as specified

in ECSS‐E‐ST‐50‐51.

This Standard specifies the Time Distribution

Protocol, which is one of these protocols that work

over SpaceWire.

The aim of the Time Distribution Protocol is to

synchronize time across a SpaceWire network. It

does this by an initiator writing a CCSDS Time

Code using an RMAP command placed in a

SpaceWire packet, transferring it across the

SpaceWire network and then extracting the CCSDS

Time Code at the target, and by means of

SpaceWire time control codes (Time-Codes) used

to convey the time instant at which the CCSDS

Time Code becomes valid.

This standard may be tailored for the specific

characteristic and constrains of a space project in

conformance with ECSS‐S‐ST‐00.

Normative references

The following normative documents contain

provisions which, through reference in this text,

constitute provisions of this ECSS Standard. For

undated references, the latest edition of the

publication referred to applies.

 ECSS-S-ST-00-01 - ECSS system – Glossary

of terms

 ECSS-E-ST-50-12C - Space Engineering -

SpaceWire - Links, nodes, routers and

networks

 ECSS-E-ST-50-51C - Space Engineering -

SpaceWire protocol identification

 ECSS-E-ST-50-52C - Space Engineering -

SpaceWire - Remote memory access protocol

 CCSDS 301.0-B-4 - Time Code Formats, Blue

Book

364

Principles

Purpose

The Time Distribution Protocol has been designed

to allow time synchronization across a SpaceWire

network, by means of SpaceWire packets and

SpaceWire Time-Codes.

Protocol features

The Time Distribution Protocol provides the

capability to transfer CCSDS Time Codes between

onboard users of a SpaceWire network. The

CCSDS Time Codes may be of variable length or

fixed size at the discretion of the user and may be

submitted for transmission at variable time

intervals, providing a communication service.

The Time Distribution Protocol provides the

capability to synchronize nodes in a SpaceWire

network by using SpaceWire time control codes

(Time-Codes), providing a timing service.

An Initiator is a SpaceWire node distributing

CCSDS Time Codes and SpaceWire time-control

codes (Time-Code). An Initiator is also an RMAP

initiator, capable of transmitting RMAP commands

and receiving RMAP replies. There is only one

active Initiator in a SpaceWire network during a

mission phase.

A Target is a SpaceWire node receiving CCSDS

Time Codes and SpaceWire time-control codes

(Time-Codes). A Target is also an RMAP target,

capable of receiving RMAP commands and

transmitting RMAP replies. There can be one or

more Targets in a SpaceWire network.

The protocol also provides means for time-

stamping of incoming and outgoing SpaceWire

time-control codes (Time-Code) in the Target,

make this information accessible to an Initiator by

means of RMAP accesses.

Note: SpaceWire time-control codes (Time-Code)

in this context should be interpreted as the

Distributed Interrupts currently being defined for

ECSS‐E‐ST‐50‐12C Rev.1.

The protocol also provides means for transferring

latency correction information from an Initiator to a

Target by means of RMAP accesses.

Operation

The Initiator and the Target maintain their own

time locally, for which the implementation is

independent of this standard. The Time

Distribution Protocol provides the means for

transferring the time of the Initiator to the Targets,

and for providing a synchronization point in time.

The time is transferred by means of an RMAP

write command carrying a CCSDS Time Code. The

synchronization event is signalled by means of

transferring a SpaceWire time control code (Time-

Code). The transfer of the SpaceWire Time-Code is

synchronized with the time maintained by the

Initiator.

To distinguish which SpaceWire Time-Code is to

be used for synchronization, the value of the

SpaceWire Time-Code is transferred from the

Initiator to the Target by means of an RMAP write

command prior to the actual transmission of the

SpaceWire Time-Code itself.

When there is more than a one Target, the CCSDS

Time Code need be transferred to each individual

Target separately (unless SpaceWire packet

broadcast or multicast can be used). Only one

transmission of the SpaceWire Time-Code is

however need, although one can imagine systems

where different SpaceWire Time-Code values are

used for different Targets.

Services

The Time Distribution Protocol provides users with

communication services based on RMAP service

primitives and parameters, transferring amongst

others CCSDS Time Codes.

The Time Distribution Protocol provides users with

timing service based on SpaceWire time-control

codes (Time-Codes).

The followings services are defined in this

Standard:

 Configuration

 Status

 Command (CCSDS Time Code)

 Datation

 Timing (Initialisation/Synchronization)

 Time-Stamp (of SpaceWire time-control codes

(Time-Codes))

 Latency

365

Papers Indexed by Author

Author Surname A – J

G. Baterina, Y.Moghe, P. Francois, A. Senior; GALVANIC ISOLATION OF SPACEWIRE LINKS 329

A. Belger, F. Bubenhagen, B. Fiethe, H.Michalik, H. Michalik; A SOFTWARE SOCWIRE PROTOCOL

HANDLER FOR NOC MANAGEMENT 236

K. Boxshall, A. Senior, S. Sharma; A MODULAR CONNECTOR FOR SPACEWIRE BACKPLANES 336

V. Burkhay, A.Rocke, C. Boatella Polo, G. Furano, F. Guettache, J. Ilstad, G. Magistrati; RADIATION-

TESTED EXTENDED COMMON MODE LVDS COMPONENTS (S) 112

C. Cara, M. Donati, E. Doumayrou, M. Lortholary, F. Pinsard; FAST READOUT CCD CAMERA

WITH HIGH PERFORMANCE SPACEWIRE TO PCI EXPRESS ACQUISITION BOARD 300

R. Castillo, J. Almena, A. Carrasco, A. Montalvo, O.Gutiérrez, M. Prieto, S. Sánchez;

IMPLEMENTATION AND USE OF SPACEWIRE IN THE EPD INSTRUMENT FOR SOLAR

ORBITER 222

Y. Chen, M. Takada, R. Kurachi, H. Takada; A SCHEDULING METHOD OF RMAP

PACKETS FOR SPACEWIRE-D 205

M. De Meo, G. Saldi, G. Rosani, W. Gasti, J. Noyes, J. Windsor, J.Poeckentrup, R. Eilenberger;

BEPICOLOMBO SOLID STATE MASS MEMORY EMPLOYING SPACEWIRE 134

C.Delay, S. Humbert; 1 TBITS OF DATA SERVICED BY SPW 167

B.Dellandrea, D. Jameux; MOST: MODELING OF SPACEWIRE TRAFFIC 281

A. Eganyan, E. Suvorova, Y. Sheynin, A. Khakhulin, I. Orlovsky; DCNSIMULATOR – SOFTWARE

TOOL FOR SPACEWIRE NETWORKS SIMULATION 216

J. Ekergarn, J. Andersson, A. Larsson, D. Hellström, M. Hjorth, R. Weigand; NEXT GENERATION

MICROPROCESSOR FUNCTIONAL PROTOTYPE SPACEWIRE ROUTER VALIDATION

RESULTS 324

G. Fernάndez Berzosa, P.Rodriguez Perochena, A. Pérez Gómez, R.Regada Álvarez, L. R. Berrojo

Valero, L. Basanta Alonso; SPACEWIRE INTEROPERABILITY CHARACTERISATION 277

A. Ferrer Florit, A.G. Villafranca, C. McClements, S. Parkes; STAR-FIRE: SPACEFIBRE

DIAGNOSTIC INTERFACE AND ANALYSER 290

N. Ganry; ATMEL’S NEW RAD-HARD SPARC V8 PROCESSOR EMBEDDING STATE-OF-THE-

ART SPACEWIRE 98

A. Girard, A. Degardin; SPACEWIRE NETWORK IN MTG SATELLITES 312

S. Gorbachev, L.Koblyakova, Y. Sheynin, A.Stepanov, E. Suvorova, M. Suess; DISTRIBUTED

INTERRUPT SIGNALLING FOR SPACEWIRE NETWORKS 35

V. Grishin, P. Eremeev, S. Gorbunov, T. Solokhina, A. Glushkov, I. Alekseev, L. Menshenin,

J. Petrichkovich, Y. Sheynin, E. Suvorova, B.Berne; PROTOTYPE OF ONBOARD MASS STORAGE

DEVICE BASED ON SPACEWIRE AND SPACEFIBRE INTERFACES 130

S. Habinc, J. Ekergarn, M. Simlastik, F. Ringhage, S.Redant, K Stinkens, G. Thys, J. Das Arul Mahesh,

M.Suess; 18X SPACEWIRE ROUTER BASED ON THE DARE 180NM LIBRARY 93

S. Habinc, A.Sakthivel, J. Ekergarn, A.Björkengren, R. Pender, S. Landström, F. Cordero, J.Mendes,

T.Ho, K. Stohlmann; MASCOT ON-BOARD COMPUTER BASED ON SPACEWIRE LINKS 240

S. Habinc, A. Sakthivel, M. Suess; SPACEWIRE – TIME DISTRIBUTION PROTOCOL 363

H. Hihara, K. Moritani, T. Masuda, R. Funase, H. Otake, T. Okada; INTELLIGENT NAVIGATION

SYSTEM WITH SPACEWIRE FOR ASTEROID SAMPLE RETURN MISSION HAYABUSA2 308

D. Jameux, A.Tavoularis; SPACEWIRE STANDARD REVISION 248

S. Jörg, M. Nickl, T. Bahls. S. Strasser; SPACEWIRE-HS HOST ADAPTER – AN FPGA BASED

PCI EXPRESS DEVICE FOR VERSATILE HIGH-SPEED CHANNELS 244

D. Juliusson; THE SWIFT CODEC DEVELOPMENT 316

Author Surname K - Q

S. Kawakami, Y.Takeda, H.Hihara, T. Masuda, M. Ebara, R. Funase, T.Yamada; REAL-TIME DATA

RECORDING SYSTEM WITH SPACEWIRE FOR ASTEROID SAMPLE RETURN MISSION

HAYABUSA2 209

C. Kimmery, S. Belvin; SPACEFIBRE QUALITY OF SERVICE AND NETWORK ROUTING 19

C. Kimmery; RUNNING DISPARITY MANAGEMENT FOR DC-BALANCING A 10-BIT CODE SET 42

L. Koblyakova, S. Oleynikova, K. Khramenkova; NETWORK MANAGEMENT ALGORITHM FOR

HIGH SPEED ONBOARD SYSTEMS 226

J. Larsen, Rob Ciccariello; RELIABILITY STUDY OF OVER/UNDER VOLTAGE FOR LVDS

PHYSICAL LAYER OF SPACEWIRE 102

Y. Li, X. Li, R. Wang, Y. Guan, J. Zhang, X. Song; PROBABILISTIC ANALYSIS OF

SPACEWIRE COMMUNICATION PROCESSES 55

G. Lin, S. Huixian, C. Xiaomin; A LOW-POWER SPACEWIRE CODEC IP CORE 186

P. Luo, X. Li, Y. Guan, R. Wang, J.Zhang, X. Song; MODELING AND VERIFICATION

OF SPACEWIRE INTERFACES BY TIMED AUTOMATA 70

T. Masuzaki, M. Nakamura, T. Kato, Y. Ido, T. Sasaki; IMPLEMENTATION AND

INTEROPERABILITY TESTS OF SPACEFIBRE 267

N. Matveeva, E. Suvorova, V. Olenev, I. Lavrovskaya, I. Korobkov, A. Eganyan; SPACEFIBRE

QUALITY OF SERVICE FEATURES SUPPORT IN A NETWORK LEVEL 158

N. Matveeva, E. Suvorova,; LATENCY JITTER ESTIMATION AND CONTROL IN

SPACEWIRE 193

C. McClements, S.Parkes, A. Ferrer, A. Gonzalez-Villafranca; HIGH PERFORMANCE SPACEWIRE

RMAP/DMA ENGINE FOR THE CASTOR MICROPROCESSOR 320

S. Mills, A. Mason, C.McClements, D. Paterson, I. Martin, S. Parkes; DEVELOPING SPACEWIRE

DEVICES WITH STAR-DUNDEE TEST AND DEVELOPMENT EQUIPMENT 257

S. Mudie, M. Dunstan, S. Parkes; SPACEWIRE EGSE: REAL-TIME INSTRUMENT SIMULATION

IN A DAY 286

M. Nickl, S. Jörg, T. Bahls, B. M. Cook; TOWARDS HIGH-SPEED SPACEWIRE LINKS 263

M.Nomachi, S. Ajimura, T. Yuasa, T. Takahashi, I.Fujishiro, F. Hodoshima; SPACEWIRE

BACKPLANE FOR GROUND EQUIPMENT 233

P.Norridge, D. Pecover, J. Poeckentrup, S.Thϋrey, W.Gasti, J.Windsor, M.de Meo; SPACEWIRE IN

SOLAR ORBITER 295

V. Olenev, I. Lavrovskaya, I. Korobkov; SPACEWIRE-RT/SPACEFIBRE SPECIFICATION AND

MODELING 344

B.Osterloh, A.Schäfer, H. Michalik; ADVANCED SPACEWIRE CORE WITH EXTERNAL CLOCK

RECOVERY PHY AND PROGRAMMABLE PROTOCOL PROCESSING 88

Y. Otake, K. Hosokawa, Y. Sota, T. Tanaka, H. Hihara; PERFORMANCE EVALUATIONS AND

PROPORAL TO IMPROVE NEXT-GENERATION SPACEFIBRE PROTOCOL 271

S. Parkes, C. McClements, A. Ferrer, A. Gonzalez; SPACEFIBRE: MULTIPLE GBIT/S NETWORK

TECHNOLOGY WITH QOS, FDIR AND SPACEWIRE PACKET TRANSFER CAPABILITIES 11

S. Parkes, A. Ferrer, A. Gonzalez, C. McClements, R. Ginosar, T. Liran, D. Alon, M. Goldberg,

G. Sokolov, G. Burdo, N. Blatt, P. Rastetter, M. Krstic, A. Crescenzio; A RADIATION

TOLERANT SPACEFIBRE INTERFACE DEVICE 123

R. Peel, P. Walker, B. Cook, D. Jameux; DETERMINING THE BEHAVIOUR OF BLACK-BOX

SPACEWIRE COMPONENTS 49

C. Quiroz, S. G. Dykes, P. Wood, A. Bertrand; OPNET MODELER® CO-SIMULATION FOR

MODELING SPACEWIRE PLUG-AND-PLAY PROTOCOLS 351

Author Surname R - Z

D.Raszhivin, Y.Sheynin, A. Abramov; DETERMINISTIC SCHEDULING OF SPACEWIRE DATA

STREAMS 141

G. Rouchaud, N. Kellet; LOW MASS SPACEWIRE AND COPPER BASED SPACEFIBRE LINKS 332

A. Sakharov, D. Skok, V. Gusev, T. Solokhina, J.Petrichkovich, Y. Sheynin, E. Suvorova;

RADIATION TOLERANT SPACEWIRE REMOTE TERMINAL CONTROLLER ASIC (RMR-02P) 213

T. Sasaki, I.Shoji, H. Kurosawa, T. Kato, S. Ichikawa, T.Okamoto, T. Seki, M. Abe; APPLICATION

OF SPACEWIRE TO NON-VOLATILE DATA RECORDER 304

P. Scott, A. Spark, P. Crawford, S. Parkes; MARGIN TESTING OF SPACEWIRE DEVICES 61

D. Skok, S. Kondratenko, A. Zaicev, A. Glushkov, T. Solokhina, V. Gusev, J. Petrichkovich; PHY

COMPONENTS FOR PERSPECTIVE SPACEWIRE-2 INTERFACE PROTOTYPING AND

EVALUATING 197

F. Sturesson, S. Habinc, J.Ilstad, J. Wouters, S. Redant, J. Ilstad; EUROPEAN LVDS TRANSCEIVER

DEVELOPMENT 106

M. Suess, F. Siegle; SPACEWIRE TIME CODE LATENCY AND JITTER 357

A.Syschikov, E. Suvorova, Y.Sheynin, N. Matveeva, B. Sedov, D.Razhivin; TOOLSET FOR

SPACEWIRE NETWORKS DESIGN AND CONFIGURATION 149

M. Takada, H.Takada, Y. Chen, T.Yuasa, T. Takahashi, M.Nomachi; DEVELOPMENT OF SOFTWARE

PLATFORM SUPPORTING A PROTOCOL FOR GUARANTEEING THE REAL-TIME PROPERTY OF

SPACEWIRE 80

R. Trautner; NEW DSP BASED IP, DEVICES AND SYSTEMS FOR SPACE APPLICATIONS

FEATURING SPW / SPFI INTERFACES 117

F. Vigeant, T. Parrain; SPACEWIRE VALIDATION TEST PLAN & CONFORMANCE TEST

BENCH PROTOTYPING 171

Q. Wan, B. Zhao, B. Liu, C. Wu; A NETWORK DEVICE DRIVER FRAMEWORK FOR SPACEWIRE 145

C. Xiaomin, G. Lin, S. Huixian; THE GENERAL SITUATION OF SPACEWIRE RESEARCH IN

CHINA 184

E. Yablokov, Y. Sheynin, E. Suvorova, A. Stepanov, T. Solokhina, Y. Petrichcovitch, A. Glushkov,

I. Alekseev; GIGASPACEWIRE - GIGABIT LINKS FOR SPACEWIRE NETWORKS 28

B. Yu, S. Parkes, J. Franklin, C. McClements, P. Scott, D. Dillon; HIGH PROCESSING POWER DIGITAL

SIGNAL PROCESSOR WITH SPACEWIRE AND SPACEFIBRE INTERFACES 77

Z.Yuan, L.Li, Z. Jian-hua, C. Wan-zhao, Z. Jun-yi; USING SPACEWIRE IN A INTELLECTUALIZED

DATA PROCESSOR 176

T.Yuasa, T. Takahashi, M. Nomachi, I. Fujishiro, F.Hodoshima; SPACEWIRE TRAFFIC

GENERATOR: A HIGHLY-SCALABLE PACKET GENERATION DEVICE 201

Y. Zhang, Z. Shi, Y. Guan, X.Li, J. Zhang; FORMAL VERIFICATION FOR SPACEWIRE

DECODING BY APPLING THEOREM PROVING 189

Q.Zhou, C.Zhang, H.Lin; DELAY GUARANTEE FOR REAL-TIME MESSAGE IN SPACEWIRE-D

NETWORK 154

Q. Zhou, L. Zhang, H. Lin; REAL-TIME PERFORMANCE SIMULATION OF SPACEWIRE

ROUTER WITH POLLING ARBITRATION SCHEMES 180

Papers Indexed by Session

Tuesday 11 June

Standardisation 1 (Long Papers)

S. Parkes, C. McClements, A. Ferrer, A. Gonzalez; SPACEFIBRE: MULTIPLE GBIT/S NETWORK

TECHNOLOGY WITH QOS, FDIR AND SPACEWIRE PACKET TRANSFER CAPABILITIES 11

C. Kimmery, S. Belvin; SPACEFIBRE QUALITY OF SERVICE AND NETWORK ROUTING 19

Standardisation 2 (Long Papers)

E. Yablokov, Y. Sheynin, E. Suvorova, A. Stepanov, T. Solokhina, Y. Petrichcovitch, A. Glushkov,

I. Alekseev; GIGASPACEWIRE - GIGABIT LINKS FOR SPACEWIRE NETWORKS 28

S. Gorbachev, L.Koblyakova, Y. Sheynin, A.Stepanov, E. Suvorova, M. Suess; DISTRIBUTED

INTERRUPT SIGNALLING FOR SPACEWIRE NETWORKS 35

C. Kimmery; RUNNING DISPARITY MANAGEMENT FOR DC-BALANCING A 10-BIT CODE SET 42

Test & Verification 1 (Long Papers)

R. Peel, P. Walker, B. Cook, D. Jameux; DETERMINING THE BEHAVIOUR OF BLACK-BOX

SPACEWIRE COMPONENTS 49

Y. Li, X. Li, R. Wang, Y. Guan, J. Zhang, X. Song; PROBABILISTIC ANALYSIS OF

SPACEWIRE COMMUNICATION PROCESSES 55

P. Scott, A. Spark, P. Crawford, S. Parkes; MARGIN TESTING OF SPACEWIRE DEVICES 61

P. Luo, X. Li, Y. Guan, R. Wang, J.Zhang, X. Song; MODELING AND VERIFICATION

OF SPACEWIRE INTERFACES BY TIMED AUTOMATA 70

Onboard Equipment & Software (Long Papers)

B. Yu, S. Parkes, J. Franklin, C. McClements, P. Scott, D. Dillon; HIGH PROCESSING POWER

DIGITAL SIGNAL PROCESSOR WITH SPACEWIRE AND SPACEFIBRE INTERFACES 77

M. Takada, H.Takada, Y. Chen, T.Yuasa, T. Takahashi, M.Nomachi; DEVELOPMENT OF SOFTWARE

PLATFORM SUPPORTING A PROTOCOL FOR GUARANTEEING THE REAL-TIME PROPERTY

OF SPACEWIRE 80

B.Osterloh, A.Schäfer, H. Michalik; ADVANCED SPACEWIRE CORE WITH EXTERNAL CLOCK

RECOVERY PHY AND PROGRAMMABLE PROTOCOL PROCESSING 88

Wednesday 12
th

 June

Components 1 (Long and Short Papers)

S. Habinc, J. Ekergarn, M. Simlastik, F. Ringhage, S.Redant, K Stinkens, G. Thys, J. Das Arul Mahesh,

M.Suess; 18X SPACEWIRE ROUTER BASED ON THE DARE 180NM LIBRARY 93

N. Ganry; ATMEL’S NEW RAD-HARD SPARC V8 PROCESSOR EMBEDDING STATE-OF-THE-

ART SPACEWIRE 98

J. Larsen, Rob Ciccariello; RELIABILITY STUDY OF OVER/UNDER VOLTAGE FOR LVDS

PHYSICAL LAYER OF SPACEWIRE 102

F. Sturesson, S. Habinc, J.Ilstad, J. Wouters, S. Redant, J. Ilstad; EUROPEAN LVDS TRANSCEIVER

DEVELOPMENT 106

V. Burkhay, A.Rocke, C. Boatella Polo, G. Furano, F. Guettache, J. Ilstad, G. Magistrati; RADIATION-

TESTED EXTENDED COMMON MODE LVDS COMPONENTS (S) 112

Components 2 (Long Papers)

R. Trautner; NEW DSP BASED IP, DEVICES AND SYSTEMS FOR SPACE APPLICATIONS

FEATURING SPW / SPFI INTERFACES 117

S. Parkes, A. Ferrer, A. Gonzalez, C. McClements, R. Ginosar, T. Liran, D. Alon, M. Goldberg,

G. Sokolov, G. Burdo, N. Blatt, P. Rastetter, M. Krstic, A. Crescenzio; A RADIATION

TOLERANT SPACEFIBRE INTERFACE DEVICE 123

Onboard Equipment & Software (Short Papers)

V. Grishin, P. Eremeev, S. Gorbunov, T. Solokhina, A. Glushkov, I. Alekseev, L. Menshenin,

J. Petrichkovich, Y. Sheynin, E. Suvorova, B.Berne; PROTOTYPE OF ONBOARD MASS STORAGE

DEVICE BASED ON SPACEWIRE AND SPACEFIBRE INTERFACES 130

M. De Meo, G. Saldi, G. Rosani, W. Gasti, J. Noyes, J. Windsor, J.Poeckentrup, R. Eilenberger;

BEPICOLOMBO SOLID STATE MASS MEMORY EMPLOYING SPACEWIRE 134

Networks & Protocols (Short Papers)

D.Raszhivin, Y.Sheynin, A. Abramov; DETERMINISTIC SCHEDULING OF SPACEWIRE DATA

STREAMS 141

Q. Wan, B. Zhao, B. Liu, C. Wu; A NETWORK DEVICE DRIVER FRAMEWORK FOR SPACEWIRE 145

A.Syschikov, E. Suvorova, Y.Sheynin, N. Matveeva, B. Sedov, D.Razhivin; TOOLSET FOR

SPACEWIRE NETWORKS DESIGN AND CONFIGURATION 149

Q.Zhou, C.Zhang, H.Lin; DELAY GUARANTEE FOR REAL-TIME MESSAGE IN SPACEWIRE-D

NETWORK 154

N. Matveeva, E. Suvorova, V. Olenev, I. Lavrovskaya, I. Korobkov, A. Eganyan; SPACEFIBRE

QUALITY OF SERVICE FEATURES SUPPORT IN A NETWORK LEVEL 158

Poster Presentations

C.Delay, S. Humbert; 1 TBITS OF DATA SERVICED BY SPW 167

F. Vigeant, T. Parrain; SPACEWIRE VALIDATION TEST PLAN & CONFORMANCE TEST

BENCH PROTOTYPING 171

Z.Yuan, L.Li, Z. Jian-hua, C. Wan-zhao, Z. Jun-yi; USING SPACEWIRE IN A INTELLECTUALIZED

DATA PROCESSOR 176

Q. Zhou, L. Zhang, H. Lin; REAL-TIME PERFORMANCE SIMULATION OF SPACEWIRE

ROUTER WITH POLLING ARBITRATION SCHEMES 180

C. Xiaomin, G. Lin, S. Huixian; THE GENERAL SITUATION OF SPACEWIRE RESEARCH IN

CHINA 184

G. Lin, S. Huixian, C. Xiaomin; A LOW-POWER SPACEWIRE CODEC IP CORE 186

Y. Zhang, Z. Shi, Y. Guan, X.Li, J. Zhang; FORMAL VERIFICATION FOR SPACEWIRE

DECODING BY APPLING THEOREM PROVING 189

N. Matveeva, E. Suvorova,; LATENCY JITTER ESTIMATION AND CONTROL IN

SPACEWIRE 193

D. Skok, S. Kondratenko, A. Zaicev, A. Glushkov, T. Solokhina, V. Gusev, J. Petrichkovich; PHY

COMPONENTS FOR PERSPECTIVE SPACEWIRE-2 INTERFACE PROTOTYPING AND

EVALUATING 197

T.Yuasa, T. Takahashi, M. Nomachi, I. Fujishiro, F.Hodoshima; SPACEWIRE TRAFFIC

GENERATOR: A HIGHLY-SCALABLE PACKET GENERATION DEVICE 201

Y. Chen, M. Takada, R. Kurachi, H. Takada; A SCHEDULING METHOD OF RMAP

PACKETS FOR SPACEWIRE-D 205

S. Kawakami, Y.Takeda, H.Hihara, T. Masuda, M. Ebara, R. Funase, T.Yamada; REAL-TIME DATA

RECORDING SYSTEM WITH SPACEWIRE FOR ASTEROID SAMPLE RETURN MISSION

HAYABUSA2 209

A. Sakharov, D. Skok, V. Gusev, T. Solokhina, J.Petrichkovich, Y. Sheynin, E. Suvorova;

RADIATION TOLERANT SPACEWIRE REMOTE TERMINAL CONTROLLER ASIC (RMR-02P) 213

A. Eganyan, E. Suvorova, Y. Sheynin, A. Khakhulin, I. Orlovsky; DCNSIMULATOR – SOFTWARE

TOOL FOR SPACEWIRE NETWORKS SIMULATION 216

R. Castillo, J. Almena, A. Carrasco, A. Montalvo, O.Gutiérrez, M. Prieto, S. Sánchez;

IMPLEMENTATION AND USE OF SPACEWIRE IN THE EPD INSTRUMENT FOR SOLAR

ORBITER 222

L. Koblyakova, S. Oleynikova, K. Khramenkova; NETWORK MANAGEMENT ALGORITHM FOR

HIGH SPEED ONBOARD SYSTEMS 226

M.Nomachi, S. Ajimura, T. Yuasa, T. Takahashi, I.Fujishiro, F. Hodoshima; SPACEWIRE

BACKPLANE FOR GROUND EQUIPMENT 233

A. Belger, F. Bubenhagen, B. Fiethe, H.Michalik, H. Michalik; A SOFTWARE SOCWIRE PROTOCOL

HANDLER FOR NOC MANAGEMENT 236

S. Habinc, A.Sakthivel, J. Ekergarn, A.Björkengren, R. Pender, S. Landström, F. Cordero, J.Mendes,

T.Ho, K. Stohlmann; MASCOT ON-BOARD COMPUTER BASED ON SPACEWIRE LINKS 240

S. Jörg, M. Nickl, T. Bahls. S. Strasser; SPACEWIRE-HS HOST ADAPTER – AN FPGA BASED

PCI EXPRESS DEVICE FOR VERSATILE HIGH-SPEED CHANNELS 244

D. Jameux, A.Tavoularis; SPACEWIRE STANDARD REVISION 248

S. Mills, A. Mason, C.McClements, D. Paterson, I. Martin, S. Parkes; DEVELOPING SPACEWIRE

DEVICES WITH STAR-DUNDEE TEST AND DEVELOPMENT EQUIPMENT 257

Thursday 13
th

 June 2013

Standardisation (Short Papers)

M. Nickl, S. Jörg, T. Bahls, B. M. Cook; TOWARDS HIGH-SPEED SPACEWIRE LINKS 263

T. Masuzaki, M. Nakamura, T. Kato, Y. Ido, T. Sasaki; IMPLEMENTATION AND

INTEROPERABILITY TESTS OF SPACEFIBRE 267

Y. Otake, K. Hosokawa, Y. Sota, T. Tanaka, H. Hihara; PERFORMANCE EVALUATIONS AND

PROPORAL TO IMPROVE NEXT-GENERATION SPACEFIBRE PROTOCOL 271

Test & Verification (Short Papers)

G. Fernάndez Berzosa, P.Rodriguez Perochena, A. Pérez Gómez, R.Regada Álvarez, L. R. Berrojo

Valero, L. Basanta Alonso; SPACEWIRE INTEROPERABILITY CHARACTERISATION 277

B.Dellandrea, D. Jameux; MOST: MODELING OF SPACEWIRE TRAFFIC 281

S. Mudie, M. Dunstan, S. Parkes; SPACEWIRE EGSE: REAL-TIME INSTRUMENT SIMULATION

IN A DAY 286

A. Ferrer Florit, A.G. Villafranca, C. McClements, S. Parkes; STAR-FIRE: SPACEFIBRE

DIAGNOSTIC INTERFACE AND ANALYSER 290

Missions & Applications (Short Papers)

P.Norridge, D. Pecover, J. Poeckentrup, S.Thϋrey, W.Gasti, J.Windsor, M.de Meo; SPACEWIRE IN

SOLAR ORBITER 295

C. Cara, M. Donati, E. Doumayrou, M. Lortholary, F. Pinsard; FAST READOUT CCD CAMERA

WITH HIGH PERFORMANCE SPACEWIRE TO PCI EXPRESS ACQUISITION BOARD 300

T. Sasaki, I.Shoji, H. Kurosawa, T. Kato, S. Ichikawa, T.Okamoto, T. Seki, M. Abe; APPLICATION

OF SPACEWIRE TO NON-VOLATILE DATA RECORDER 304

H. Hihara, K. Moritani, T. Masuda, R. Funase, H. Otake, T. Okada; INTELLIGENT NAVIGATION

SYSTEM WITH SPACEWIRE FOR ASTEROID SAMPLE RETURN MISSION HAYABUSA2 308

A. Girard, A. Degardin; SPACEWIRE NETWORK IN MTG SATELLITES 312

D. Juliusson; THE SWIFT CODEC DEVELOPMENT 316

Components (Short Papers)

C. McClements, S.Parkes, A. Ferrer, A. Gonzalez-Villafranca; HIGH PERFORMANCE SPACEWIRE

RMAP/DMA ENGINE FOR THE CASTOR MICROPROCESSOR 320

J. Ekergarn, J. Andersson, A. Larsson, D. Hellström, M. Hjorth, R. Weigand; NEXT GENERATION

MICROPROCESSOR FUNCTIONAL PROTOTYPE SPACEWIRE ROUTER VALIDATION

RESULTS 324

G. Baterina, Y.Moghe, P. Francois, A. Senior; GALVANIC ISOLATION OF SPACEWIRE LINKS 329

G. Rouchaud, N. Kellet; LOW MASS SPACEWIRE AND COPPER BASED SPACEFIBRE LINKS 332

K. Boxshall, A. Senior, S. Sharma; A MODULAR CONNECTOR FOR SPACEWIRE BACKPLANES 336

Networks & Protocols (Long Papers)

V. Olenev, I. Lavrovskaya, I. Korobkov; SPACEWIRE-RT/SPACEFIBRE SPECIFICATION AND

MODELING 344

C. Quiroz, S. G. Dykes, P. Wood, A. Bertrand; OPNET MODELER® CO-SIMULATION FOR

MODELING SPACEWIRE PLUG-AND-PLAY PROTOCOLS 351

M. Suess, F. Siegle; SPACEWIRE TIME CODE LATENCY AND JITTER 357

S. Habinc, A. Sakthivel, M. Suess; SPACEWIRE – TIME DISTRIBUTION PROTOCOL 363

Exhibitors

4LINKS

4Links test and simulation equipment for SpaceWire saves users time, delay, risk, and money. It does exactly

what test equipment needs to do. It has proved to be interoperable with every design that it has connected to,

while detecting faults including many not found by other methods. It provides information to resolve faults,

including long-standing ones, and often without the need to reproduce the fault. And the same hardware can be

re-used, for devices, subsystems and complete satellites, at all stages of a mission development.

Even before the technology acquired the name SpaceWire, 4Links supplied SpaceWire in CPLDs for test

equipment that passed all tests at the first attempt.

Customer recognition of 4Links quality has led to requests for SpaceWire IP and chips, which we are now

supplying, and to numerous accolades such as “4Links equipment is good value, very reliable and very

accurate”.

AEROFLEX

Aeroflex Microelectronic Solution divisions supply integrated circuits such as standard products for HiRel

applications including FPGAs, LEON 3FT Microprocessors, Logic, MIL-STD-1553 Databus/Transceivers,

Clocks, Voltage Regulators and Supervisors, MUXes, Diodes, MOSFETS, LVDS and Memory families and

our SpaceWire products - Transceivers, Protocol IP, Routers.

Our RadHard-by-Design Digital and Mixed-Signal ASICs handle design complexities up

to 3,000,000 usable gates. We also offer Radiation Testing and Circuit Card Assembly Services.

Aeroflex Gaisler, based in Goteborg, Sweden, is a provider of SoC solutions and IP-cores for exceptionally

competitive markets such as Aerospace, Military and Commercial applications. The Aeroflex Gaisler's IPcores

consist of user-customizable 32-bit SPARC V8 processor and floating-point-unit cores, SpaceWire cores,

peripheral IP-cores and associated software and development tools. The new GR712 LEON Microprocessor is

in production. Aeroflex Gaisler solutions help companies develop application-specific SoCs that are highly

competitive for customer specific applications. Gaisler Research's personnel have extended design experience,

and have been involved in establishing standards for ASIC and FPGA development.

ATMEL

In Europe, ATMEL has 2 main Business Units:

 MCU: MicroController Business Unit:

This BU develops Standard products and Custom products based on AVR8, AVR32 and ARM core.

ATMEL is becoming the first supplier of 8bit controllers thanks to its success with many applications

and especially the MaxTouch family

 Automotive, Memory and Aerospace Business Unit:

This BU develops products for dedicated Markets and applications

Aerospace developments within ATMEL are all located in Europe, mainly in France (Nantes and Rousset) but

also with technical centers supporting ASIC and FPGA business locally (France, Italy, Germany, UK).

There is no involvement of any USA Atmel employees and Aerospace products are guaranteed not restricted by

ITAR and EAR rules.

ATMEL Nantes site has been developing Integrated Circuit for space application since 1985. The development

team installed now in Nantes and Rousset has a very large experience of radiation hardened circuits design and

fabrication constraints.

ATMEL circuits are available in rad-hard versions that meet the harsh environment (cumulated dose, latch-up

and transient phenomena) of space applications. Design and manufacturing facilities reach international quality

standards recognition and are QML-V certified and ESCC QML certified.

High-reliability radiation-hardened products provided by Atmel mean :

• Full military operating temperature range (-55 to + 125°C)

• 100K - 300Krd range, Latch-Up, SEE, SEFI hardened

Atmel proposes advanced technical and competitive solutions for space market for the following products range:

• Processors (32-bit SPARC)

• Memories (Up to 16Mb)

• Communication ICs

• SRAM-based Reprogrammable FPGAs

• NVM 4Mb

• ASICs (up to 30M gates)

Atmel is committed for the long term to support the aerospace industry. Further developments will address 200

MIPS+ SPARC-based microprocessors, >5M equivalent ASIC gates SRAM based re-programmable FPGA,

high density EEPROMs and a new generation of rad-hard ASIC libraries with a complexity higher than the 30

million gates.

file://mc752/cederom/publish/atmel_aero/pdf/Quality%20Info/QML.pdf
file://mc752/cederom/publish/atmel_aero/pdf/MH1RT%20ESCC%20certificate.pdf
http://jaxa.jp/

AXON’ CABLE

The Axon’ group designs and manufactures wire, cable, connectors and cable assemblies for advanced

technology applications in the principal fields of space, aeronautics, medical electronics, automotive and

scientific research. Headquartered in France (100 Km east of Paris) the Group employs some 1700 staff in 14

subsidiaries across Europe, America and Asia, with an annual turnover of €115 million euro.

Axon’ Cable has been involved in many space projects, including the International Space Station, various LEO

and GEO satellites and rocket launchers including Ariane 5, and can boast flight heritage dating back to 1997.

The group offers various types of products for space applications:

- ESCC approved wires, cables and connectors,

- lightweight aluminium round cables and braids,

- aluminium bus bars for satellite power distribution,

- MIL-STD-1553 databus looms for digital transmission systems,

- high data rate links for Voice-Data-Image transmission including SpaceWire, IEEE1394, Ethernet, Fibre

 Channel,

- solutions suitable for the forthcoming multi-gigabit protocol, SpaceFibre,

- and custom-designed products for specific applications.

ELVEES

www.multicore.ru

R&D Center “ELVEES”, OJSC is a leading Russian ASIC design house, number one developer of multicore

digital signal processors and “systems on a chip (SOC)” with SpaceWire links: microprocessors, routers,

adapters, controllers, ADC/DAC — the largest chipset in Russia for space and telecommunications, navigation

and embedded systems.

R&D Center “ELVEES”, OJSC (www.multicore.ru) was founded in 1990 on the base of ELAS Space

Corporation that in 1960–80 (USSR) had been involved in space equipment design and development, such as

VLSI IC, onboard control and data processing systems, space computers being implemented in “Salyut”

computers for the “MIR” orbital Space station. Nowadays ELVEES has its own innovative MULTICORE IC

design platform which includes a great 250–40 nm silicon proven analog and digital IP-cores library (SpaceWire

IP-cores also), based on the commercial CMOS RadHard/temperature stability libraries suitable for space.

ELVEES provides chips, IP-cores, RT-library’s, new generation IP-cameras, tools and software for image

compression, adaptive signal processing, optical and radar monitoring, artificial vision, telecommunication and

navigation applications.

GLENAIR

GLENAIR – MINIATURIZED CONNECTORS AND CABLES

Glenair manufactures ultra-miniature interconnect solutions for high-performance applications such as missile

systems, satellites, and fighter-jets. Our innovative contacts, connectors and cable assemblies are used in air and

space platforms that require reliable performance as well as miniaturized packaging. Glenair is the world’s

largest manufacturer and supplier of both mil-qualified and commercial Micro-D and Nano miniature

connectors in wired and unwired space-grade formats. We also offer turnkey flex circuitry assemblies as well as

space-grade wire harnesses terminated to our high-availability connector products.

GLENAIR – SPACEWIRE CONNECTORS AND CABLE ASSEMBLIES

Reduced Cost of Ownership, Easy Integration, and High- Performance for Flight and Lab Grade Cable

Assemblies. The success of any space mission begins with reliable data transmission and Glenair SpaceWire

cables, built to meet the strict standards set forth by ECSS-E-ST-50-12C make this a reality. Our SpaceWire

cables offer bidirectional, high speed data transmission rates up to 400 Mbits/s while significantly reducing

cross talk, skew, and signal attenuation. By incorporating a serial, point-to-point cable, with low voltage

differential signalling (LVDS) reduced costs are realized through an easily integrated data transmission cable.

These features allow SpaceWire cables to be incorporated across various satellite programs without the expense

of costly design customization. SpaceWire: The Space Industry Data Transmission Standard

Glenair Inc

1211 Airway

Glendale

California

91201-2497

USA

Glenair UK Ltd

40 Lower Oakham Way

Oakham Business Park

Mansfield

Nottinghamshire

NG18 5BY

UK

www.glenair.com

Contact details (Micro D SpaceWire connectors and cables).

Deniz Armani, SNR Scientist – high speed interconnect solutions

Phone: +1 818 247 6000

darmani@glenair.com

Ross Thomson, Business Development Manager – interconnect systems

Phone: + 44 1623 638114

Cell: +44 7711 029 715

rthomson@glenair.com

http://www.nec.com/en/global/solutions/space/

W.L. GORE

Gore Products Meet the Challenges of Aerospace

Gore’s commitment to innovation is based on a thorough understanding of materials and how they interact with

their environment — with the result of reliable products for the aerospace industry. Smaller, lighter-weight

cables and cable assemblies can reduce mass and simplify routing while delivering electrical and mechanical

integrity in the most challenging applications.

GORE® Space Cables and Assemblies: SpaceWire Cables

Reduce Costs for High-Quality Flight and Ground Data Transfer

Data transmission is essential to the success of every space mission. Meeting the stringent electrical and

mechanical requirements of ECSS-E-ST-50-12C, GORE® SpaceWire Cables provide bidirectional, high-speed

data transmission up to typically 400 Mbit/s with minimal crosstalk, signal attenuation, and low skew.

The key to the outstanding performance of GORE® SpaceWire Cables is the proprietary material used in the

cable insulation — expanded polytetrafluoroethylene (ePTFE). Using ePTFE, Gore supports LVDS, which

allows data to pass through the cable without significant signal loss. By combining this LVDS technology with

standard hardware protocols, GORE® SpaceWire Cable provides a simple alternative to he need for customized

program designs.

JAXA - Japan Aerospace Exploration Agency

Web: http://jaxa.jp

JAXA, the Japanese space agency, has been collaborating with SpaceWire Working Group since its beginning,

and adopting SpaceWire in multiple spacecraft missions including BepiColombo/MMO, ASTRO-H, SPRINT-

A, and HAYABUSA-2. JAXA organizes Japan SpaceWire Users Group so that Japanese industries can share

experiences and outcomes of SpaceWire R&D.

NEC CORPORATION

NEC Corporation is a leader in the integration of IT and network technologies that benefit businesses and

people around the world.

By providing a combination of products and solutions that cross utilize the company's experience and global

resources, NEC's advanced technologies meet the complex and ever-changing needs of its customers. NEC

brings more than 100 years of expertise in technological innovation to empower people, businesses and

society.

For more information, visit NEC space system solutions at http://www.nec.com/en/global/solutions/space/

http://www.glenair.com/
mailto:darmani@glenair.com
mailto:rthomson@glenair.com

SHIMAFUJI ELECTRIC

Since 1990, Shimafuji Electric has been developing microcomputer boards including transmission, graphics and

other complex peripheral functions and also producing small amount of products for some OEMs. We have

more chances to develop evaluation boards for various RISCs and intelligent peripheral functions devices and T-

Engine boards/T-Engine appliance products these days.

Shimafuji have joined the SpaceWire Working Group since early days. We developed the 4 port Space Wire to

Gigabit Ether Unit and we are developing the 24-link SpaceWire Packet Recorder based on the 12-slots

microTCA SpaceWire Backplane system.

STAR-DUNDEE

STAR-Dundee specialises in supporting users and developers of SpaceWire and SpaceFibre; data networking

standards for on-board satellites and spacecraft.

SpaceWire is established as one of the main data-handling networks used on many ESA, NASA and JAXA

spacecraft and by research organisations and space industry across the world. SpaceWire's speed, simplicity,

flexibility and interoperability have contributed to its continuing adoption and popularity.

STAR-Dundee has a comprehensive product line of SpaceWire test and development equipment that can test

across all levels of SpaceWire standard. The product portfolio encompasses equipment to enable the design,

development, integration and testing of SpaceWire networks and devices, along with industry-leading flight IP

cores, chip designs, design services, consultancy and training.

SpaceFibre is an emerging ESA standard networking technology that provides a very high-speed serial data-link

for high data-rate payloads. SpaceFibre aims to complement the capabilities of the widely used SpaceWire

standard: achieving initial data rates of 2 Gbits/s improving to 5 Gbits/s long-term, capable of operating over

fibre-optic and copper cable, reducing cable mass by a factor of four, adding integrated QoS including

bandwidth reservation, priority and scheduling, enhancing robustness with FDIR features at all protocol levels,

providing galvanic isolation, and multi-laning improves the data-rate further to well over 20 Gbits/s.

SpaceFibre is being developed by the University of Dundee for ESA and STAR-Dundee can now provide

SpaceFibre IP Cores and chip designs, SpaceFibre interfaces, SpaceWire to SpaceFibre Bridge, and SpaceFibre

link analysis tools; everything needed for the early adoption of this new technology.

The STAR-Dundee team has leading expertise in all areas of SpaceWire and SpaceFibre technology and is

committed to helping our customers adopt these technologies, providing continued support through the full

development life-cycle.

	Front Cover
	Copyright Notice
	Preface
	Technical Committee
	Programme Overview
	Tuesday 11 June
	Standardisation 1 (L)
	Parkes - SpaceFibre: Multiple Gbit/s Network Technology with QoS, FDIR and SpaceWire Packet Transfer Capabilities
	Kimmery - SpaceFibre Qualirt of Service and Network Routing

	Standardisation 2 (L)
	Yablokov - GigaSpaceWire - Gigabit Links for SpaceWire Networks
	Gorbachev - Distributed Interrupt Signalling for SpaceWire Networks
	Kimmery - Running Disparity Management for DC-Balancing a 10-bit Code Set

	Test & Verification (L)
	Peel - Determining the Behaviour of Black-Box SpaceWire Components
	Li - Probabilistic Analysis of SpaceWire Communication Processes
	Scott - Margin Testing of SpaceWire Devices
	Luo - Modeling and Verification of SpaceWire Interface by Timed Automata

	Onboard Equipment & Software (L)
	Yu - High Processing Power Digital Signal Processor with SpaceWire and SpaceFibre Interfaces
	Takada - Development of Software Platform Supporting a Protocol for Guaranteeing the Real-Time Property of SpaceWire
	Osterloh - Advanced SpaceWire core with external clock recovery PHY and programmable protocol processing

	Wednesday 12 June
	Components 1 (L & S)
	Habinc - 18x SpaceWire Router based on theDARE 180nm Library
	Ganry - Atmel’s New Rad-Hard Sparc V8 Processor Embedding State-of-the-art SpaceWire
	Larsen - Reliability Study of Over/Under Voltage for LVDSPhysical Layer of SpaceWire
	Sturesson - European LVDS Transceiver Development
	Burkhay - Radiation-Tested Extended Common Mode LVDS Components

	Components 2 (L)
	Trautner - New DSP based IP, Devices and Systems for Space Applications featuring SpW / SpFi Interfaces
	Parkes - A Radiation Tolerant SpaceFibre Interface Device

	Onboard Equipment & Software (S)
	Grishin - Prototype of Onboard Mass Storage Device Based on SpaceWire and SpaceFibre Interfaces
	De Meo - BepiColombo Solid State Mass Memory employing SpaceWire

	Networks & Protocols (S)
	Raszhivin - Deterministic Scheduling of SpaceWire Data Streams
	Wan - A network Device driver Framework for SpaceWire
	Syschikov - Toolset for SpaceWire Networks Design and Configuration
	Zhou - Delay Guarantee for Real-time Message in SpaceWire-D Network
	Matveeva - SpaceFibre Quality of Service Features Support inthe Network Level

	Poster Presentations
	Delay - 1 Tbits of data serviced by SpW
	Vigeant - SpaceWire Validation Test Plan & Conformance Test Bench Prototyping
	Yuan - Using SpaceWire In a Intellectualized Data Processor
	Zhou - Real-time Performance Simulation of SpaceWire Router with Polling Arbitration Schemes
	Xiaomin - The General Situation of SpaceWire Research in China
	Lin - A Low-power SpaceWire Codec IP Core
	Zhang - Formal Verification for SpaceWire Decoding by Appling Theorem Proving
	Matveeva - Latency Jitter Estimation and Control in SpaceWire
	Skok - PHY Components for perspective SpaceWire-2 interface prototyping and evaluating
	Yuasa - SpaceWire Traffic Generator: a highly-scalable packet generation device
	Chen - A Scheduling Method of RMAP Packets for SpaceWire-D
	Kawakami - Real-time Data Recording System with SpaceWire for Asteroid Sample Return Mission HAYABUSA2
	Sakharov - Radiation Tolerant SpaceWire Remote Terminal Controller ASIC (RMR-02P)
	Eganyan - DCNSimulator – Software Tool for SpaceWire Networks Simulation
	Castillo - Implementation and use of SpaceWire in the EPD instrument for Solar Orbiter
	Koblyakova - Network Management Algorithm For High Speed Onboard Systems
	Nomachi - SpaceWire backplane for ground equipment
	Belger - A Software SoCWire Protocol Handler for NoC Management
	Habinc - MASCOT On-Board Computer Based on SpaceWire Links
	Jörg - SpaceWire-HS Host Adapter – An FPGA based PCI Express Device for Versatile High-Speed Channels
	Jameux - SpaceWire Standard Revision
	Mills - Developing Devices with STAR-Dundee Test and Development Equipment

	Thursday 13 June
	Standardisation (S)
	Nickl - Towards High-Speed SpaceWire Links
	Masuzaki - Implementation and Interoperability Tests of SpaceFibre
	Otake - Performance evaluations and proposal to improve next-generation SpaceFibre protocol

	Test & Verification (S)
	Fernández Berzosa - SpaceWire Interoperability Characterization
	Dellandrea - MOST: Modeling of SpaceWire Traffic
	Mudie - SpaceWire EGSE: Real-Time Instrument Simulation in a Day
	Ferrer Florit - STAR Fire: SpaceFibre diagnostic interface and analyser

	Missions & Applications (S)
	Norridge - SpaceWire in Solar Orbiter
	Cara - Fast readout CCD camera with high performance SpaceWire to PCI express acquisition board
	Sasaki - Application of SpaceWire to Non-Volatile Data Recorder
	Hihara - Intelligent Navigation System with SpaceWire for Asteroid Sample Return Mission HAYABUSA2
	Girard - Spacewire Network in MTG Satellites
	Juliusson - The Swift Codec Development

	Components (S)
	McClements - High performance SpaceWire RMAP/DMA engine for the CASTOR microprocessor
	Ekergarn - Next Generation Microprocessor Functional Prototype SpaceWire Router Validation Results
	Baterina - Galvanic Isolation of SpaceWire Links
	Rouchaud - Low Mass SpaceWire and Copper based SpaceFibre Links
	Boxshall - A Modular Connector for SpaceWire Backplanes

	Networks & Protocols (L)
	Olenev - SpaceWire-RT/SpaceFibre Specification and Modeling
	Dykes - OPNET Modeler® Co-Simulation for Modeling SpaceWire Plug-and-Play Protocols
	Suess - SpaceWire Time Code Latency and Jitter
	Habinc - SpaceWire – Time Distribution Protocol

	Papers Indexed by Author
	Papers Indexed by Session
	Exhibitors

